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and prognostic implications in
lung adenocarcinoma
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Renji Liang3* and Yuehua Li1*

1Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South
China, Hengyang, Hunan, China, 2Clinical Oncology School of Fujian Medical University, Fujian
Cancer Hospital, Fuzhou, China, 3Department of Thoracic Surgery, The First Affiliated Hospital,
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Lung adenocarcinoma (LUAD), characterized by a low 5-year survival rate, is the

most common and aggressive type of lung cancer. Recent studies have shown

that tertiary lymphoid structures (TLS), which resemble lymphoid structures, are

closely linked to the immune response and tumor prognosis. The functions of the

tertiary lymphoid structure-related genes (TLS-RGs) in the tumor

microenvironment (TME) are poorly understood. Based on publicly available

data, we conducted a comprehensive study of the function of TLS-RGs in LUAD.

Initially, we categorized LUAD patients into two TLS and two gene subtypes.

Subsequently, risk scores were calculated, and prognostic models were

constructed using seven genes (CIITA, FCRL2, GBP1, BIRC3, SCGB1A1,

CLDN18, and S100P). To enhance the clinical application of TLS scores, we

have developed a precise nomogram. Furthermore, drug sensitivity, tumor

mutational burden (TMB), and the cancer stem cell (CSC) index were found to

be substantially correlated with the TLS scores. Single-cell sequencing results

reflected the distribution of TLS-RGs in cells. Finally, we took the intersection of

overall survival (OS), disease-specific survival (DSS), and progression-free interval

(PFI) prognosis-related genes and then further validated the expression of these

genes by qRT-PCR. Our in-depth investigation of TLS-RGs in LUAD revealed their

possible contributions to the clinicopathological features, prognosis, and

characteristics of TME. These findings underscore the potential of TLS-RGs as

prognostic biomarkers and therapeutic targets for LUAD, thereby paving the way

for personalized treatment strategies.
KEYWORDS

lung adenocarcinoma, tertiary lymphoid structures, tumor microenvironment, tumor
mutation burden, overall survival
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1453220/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1453220/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1453220/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1453220/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1453220/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1453220/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1453220/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1453220&domain=pdf&date_stamp=2024-09-19
mailto:liyuehua2020@stu.usc.edu.cn
mailto:liangrenji2024@163.com
https://doi.org/10.3389/fimmu.2024.1453220
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1453220
https://www.frontiersin.org/journals/immunology


Wu et al. 10.3389/fimmu.2024.1453220
Introduction

Lung cancer is the predominant form of cancer and the leading

cause of cancer-related deaths worldwide (1–4). Approximately 80–

85% of these cases are non-small cell lung cancer (NSCLC) (5). Lung

adenocarcinoma (LUAD) is the most prevalent subtype of NSCLC (6,

7). The five-year survival rate for LUAD is approximately 15%

because most patients are diagnosed at an advanced stage (8).

Immunotherapy significantly alters the treatment course for cancer

patients (9–11). Specifically, therapeutic strategies for metastatic

NSCLC, either in a first- or second-line setting, have resulted in

unprecedentedly prolonged survival in some patients (12, 13).

Nevertheless, not every patient responds to immunotherapy, and

only a small fraction achieve long-term survival (14). Therefore, the

identification of additional biomarkers is essential to enhance the

efficacy of precision immunotherapy in NSCLC patients.

Tertiary lymphoid structures (TLS) are ectopic formations of

lymphoid tissue acquired from inflammatory, infectious, or tumoral

tissues (15, 16). TLS include a T cell zone containing mature

dendritic cells and a germinal center containing proliferating B

cells, follicular dendritic cells, and high endothelial venules (17–20).

Emerging as a significant predictor of patient outcomes, the TLS has

been identified in the pathological evaluation of numerous cancers

(21, 22). Due to their distinct immunogenic niches, they represent

excellent candidates for enhancing therapeutic efficacy and for

predicting and assessing the effectiveness of immunotherapy

drugs (21, 23, 24). Specific studies have examined the prognostic

significance of TLS in a range of tumor types, including pancreatic

ductal adenocarcinomas (25, 26), esophageal squamous cell

carcinoma (27), breast cancer (28, 29), endometrial cancer (30,

31), cholangiocarcinoma (32, 33), gastric carcinoma (34, 35),

human melanoma (36), renal cell cancer (37), and hepatocellular

carcinoma (38), among others. These studies showed that TLS

affects patient prognosis and influences immunological infiltration,

thereby enhancing patient survival. Therefore, a comprehensive

evaluation of TLS in LUAD is crucial, particularly focusing on

changes in tertiary lymphoid structure-related genes (TLS-RGs).

Identifying different TLS-RG subgroups among LUAD patients

may potentially improve their prognosis.

Patients with LUAD were initially divided into two distinct

subgroups based on TLS-RGs expression levels. Following the

identification of differentially expressed genes (DEGs) based on the

two TLS subtypes, patients were categorized into two distinct gene

subtypes. We created a scoring method to assess the immunological

landscape and predict prognosis. Additionally, we investigated how

TLS-RGs influence the tumor microenvironment (TME), cancer stem

cells (CSC), tumor mutational burden (TMB), and drug sensitivity in

LUAD. Moreover, we analyzed TLS-RGs through single-cell

sequencing to offer a comprehensive description of their prognostic

significance. Finally, the prognosis-related genes were verified by qRT-

PCR. Specifically, acquiring a more profound understanding of the role

played by TLS-RGs not only facilitates a comprehensive exploration of

TLS as potential therapeutic targets for treating LUAD but also

contributes to improving the prognosis of LUAD patients through

informed treatment strategies and personalized interventions.
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Materials and methods

LUAD dataset download and TLS-
RGs acquisition

A process map outlining the current study was depicted in

Supplementary Figure 1. TCGA database provides RNA expression,

somatic mutation data, and clinical characteristics for LUAD. The

TCGA database can be accessed at https://portal.gdc.cancer.gov/. A

suitable number of samples and comprehensive clinical information

were obtained from the Gene Expression Omnibus (GEO) database,

accessible at https://www.ncbi.nlm.nih.gov/geo/. From this

database, the LUAD-related dataset GSE13213 was located and

downloaded. The FPKM values of 541 LUAD patients and 59

normal patients from the TCGA database were converted to TPM

values and normalized. Subsequently, the GSE13213 data (117 LUAD

patients) was merged to create a comprehensive expression matrix.

These datasets were then systematically organized and processed

utilizing Strawberry Perl (version 5.30.0.1). Immunohistochemical

images of lung cancer tissues and their corresponding normal tissues

were obtained from the Human Protein Atlas (HPA) database to

assess the protein expression levels of 5 TLS prognostic genes.

Previous studies provided 39 TLS-RGs (39). Gene details are

available in Supplementary Table 1.

LUAD tissues and corresponding paracarcinoma tissue samples

were collected from 30 lung cancer surgery patients at Fujian

Cancer Hospital. This study was approved by the hospital’s Ethics

Committee (number: K2023-417-01). Informed consent was

obtained from all participants prior to enrollment.
Analysis of TLS-RGs using
consensus clustering

We utilized the “ConsensusClusterPlus” tool in the R package to

conduct consensus unsupervised clustering analysis. The following

standards were used to produce this clustering: initially, the curve

representing the cumulative distribution function (CDF) increased

steadily and gradually. None of the groups had small sample sizes.

Finally, there was an increase in the intragroup correlations and a

decrease in the intergroup correlations following clustering. The

classification of several subgroups can be evaluated using principal

component analysis (PCA), which partially reflects the variations

among subgroups. Kaplan-Meier (KM) curves were also generated to

illustrate differences in survival rates between different subgroups.
DEGs identification and functional
enrichment analysis

229 DEGs between the TLS subtypes were determined utilizing

the R “limma” package. The p < 0.05 and a fold change of 2.0 were

used as the criteria. The molecular signaling pathways involved were

determined using the Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis (40). Gene ontology (GO) enrichment
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https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2024.1453220
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2024.1453220
analysis facilitated the classification and description of gene and

protein activities (41). Differential analysis at the signaling system

level was performed using gene-set variation analysis (GSVA) (42).
Creation of TLS scores

First, univariate Cox regression analysis was conducted on the

dataset to identify the DEGs associated with LUAD overall survival

(OS). Secondly, based on the expression levels of prognostic TLS-

RGs, patients were stratified into two subtypes (TLS gene subtypes

A and B) for further investigation using an unsupervised clustering

method. Finally, a 1:1 randomization process was employed to

divide all patients with LUAD into training and test sets. The test set

and the training set each contained 312 patients. The training set

was utilized to create TLS-related prognostic scores. To sum up, we

utilized the “glmnet” R package alongside Lasso Cox regression to

reduce overfitting risk linked to TLS-related prognostic genes.

Through multivariate Cox regression analysis, candidate genes

were identified, and predictive TLS scores were subsequently

derived within the training set.

Patients within the training set were stratified into two groups:

those categorized as low-risk (TLS scores above median) and those

identified as high-risk (TLS scores below median). In a similar

manner, the testing group was divided into low-risk and high-risk

groups. Receiver operating characteristic (ROC) curves were

generated, and KM survival analyses were performed for each group.
Cell culture for qRT-PCR analysis

The cell lines Beas-2B, PC9, A549, H1299, and HCC827 used in

our study were purchased from procell (Wuhan, China). The frozen

stocks of Beas-2B, PC9, A549, H1299, and HCC827 cells were

thawed in a 37°C water bath. Subsequently, the cells were cultured

in 10 cm dishes with RPMI-1640 medium supplemented with 10%

fetal bovine serum and 1% penicillin/streptomycin, and then

incubated in a 37°C humidified atmosphere with 5% carbon

dioxide. The TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was

used to extract total RNA. Total RNA and the PrimeScript RT

Reagent Kit (Takara) were used to create complementary DNA.

Takara SYBR Green assays were utilized for qRT-PCR analysis. The

2-DDCt approach was used to compile qRT-qPCR data normalized

using GAPDH. The primer sequences used for the qRT-PCR are

listed in Supplementary Table 3.
Assessment of immune cells infiltration,
and TME

The ESTIMATE algorithm was utilized to assess the stromal

scores and immune scores of each patient. CIBERSORT was utilized

to measure the number of infiltrating immune cells in

heterogeneous samples from both the low- and high-risk groups,

aiming to assess the percentage of tumor-infiltrating immune cells
Frontiers in Immunology 03
(TIICs) in the TME. Seven genes with TLS scores were compared

with the fractions of the 19 infiltrating immune cells.
Assessment of TMB, CSC, and mutation

The R package “maftools” (43) was utilized to create the mutation

annotation format. This facilitated the comparison of somatic

mutations among LUAD patients. Additionally, we investigated the

correlation between CSC, TMB, and the two risk groups.
Drug susceptibility analysis

We utilized the “pRRophetic” software to compute the semi-

inhibitory concentration (IC50) values of medications commonly

used for treating LUAD. This analysis aimed to examine variations

in the therapeutic responses of these treatments among patients

belonging to the two groups.
Establishment and verification of
the nomogram

Utilizing findings from independent prognostic studies, we

effectively utilized clinical characteristics and risk scores to

construct a predictive nomogram, facilitated by the “rms”

program. A comprehensive assessment of the nomogram’s

performance ensued. Additionally, a calibration curve was

constructed to assess the predictive accuracy of the nomogram.
Data processing for single-cell sequencing

The GEO database provided the NSCLC scRNA-seq datasets

GSE143423, GSE146100, and GSE153935. Utilizing the R package

“Seurat” (44), the samples were combined. Cell data satisfying the

specified criteria were preserved, including gene counts ranging

from 300 to 7,000 and total transcript count under 100,000.

Conversely, cell data with gene counts of three or fewer cells and

those with fewer than 300 genes detected in a single cell were filtered

out. During the manual annotation of various cell clusters, auxiliary

annotations were obtained from the CellMarker database, the R

package “singleR,” and relevant references.
Statistical analysis

In this study, we employed R software (version 4.3.2) and

GraphPad Prism 9 for data processing, analysis, and visualization.

Quantitative variables were analyzed using independent samples t-

tests. The effectiveness of R software in predicting survival

outcomes was evaluated through ROC curve analysis and KM

survival analysis. Statistical significance was set at P < 0.05 for

comparisons between groups.
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Results

Transcriptional and genetic changes of
TLS-RGs in LUAD

According to the TCGA dataset, a total of 39 TLS-RGs were

identified. A summary analysis of the occurrence of somatic

mutations in the 39 TLS genes showed that TLS mutations were
Frontiers in Immunology 04
present in 97 (15.75%) of the 616 LUAD samples (Figure 1A). The

most frequent mutations were in CD4 (2%), IRF4 (2%), and MS4A1

(2%). The locations of the copy number variation (CNV) changes in

the TLS-RGs on the corresponding chromosomes are displayed in

Figure 1B. In the copy number circle diagram, the outermost circle

represents the chromosome, with corresponding chromosome

positions labeled as TLS-RGs. As depicted in Figure 1B, red

labeling signifies genes with a higher frequency of CNV increase,
FIGURE 1

Different mutations, CNV, and expression of TLS-RGs in TCGA cohort. (A) The somatic mutation frequency of TLS-RGs. (B) The location of CNV
alterations of TLS-RGs on 23 chromosomes. (C) The CNV frequency of TLS-RGs in LUAD. (D) Correlation analysis for TLS-RGs. (E) Expression of
TLS-RGs in both normal and LUAD tissues. **p < 0.01; ***p < 0.001.
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while blue labeling indicates genes with a higher frequency of CNV

deletion. Subsequently, we showed that the levels of IL10, IRF4,

CCL19, and CCL21 were generally elevated in CNV, whereas the

levels of GFI1 and CSF2 levels were decreased (Figure 1C). At the

same time, we performed a correlation analysis of TLS-RGs

(Figure 1D). Additionally, we investigated the differential

expression of the 39 TLS-RGs in LUAD tumors and normal

tissues. Among the 26 TLS-RGs exhibiting significant expression

differences in LUAD, 12 genes displayed up-regulation, while 14

showed down-regulation (Figure 1E). Our investigation uncovered

noteworthy variances in both TLS-RGs expression levels and

genetic profiles between LUAD and control specimens.

The high expression of CCL2, CCL3, CCL5, CCL18, CCL19,

CCR5, CD4, CD5, CD40, CSF2, CXCL9, CXCR3, FBLN7, GFI1,

ICOS, IGSF6, IL1R1, IL10, IRF4, MS4A1, SDC1, SH2D1A,

STAT5A, TIGIT, and TNFRSF17 was associated with improved

OS in LUAD patients. In contrast, the elevated expression of

CXCL8, IL1R2, CCL20, SGPP2, CXCL11, and CCL21 correlated

with poorer OS (Supplementary Figure 2).
Prognostic analysis of TLS-RGs, TLS
subtypes confirmation, and immune
infiltration analysis

The predictive significance of the 39 TLS-RGs for OS, disease-

specific survival (DSS), and progression-free interval (PFI) in

patients with LUAD was determined using univariate Cox

regression (Figures 2A–C). Concurrently, we examined the

intersection of OS, DSS, and PFI prognostic genes (Figure 2D). In

the prognostic network diagram, nodes depict TLS-RGs, with the

left semicircle color indicating gene attributes and the right

semicircle representing gene risk, with high-risk genes depicted in

purple and low-risk genes in green. Larger nodes denote genes more

likely to be prognostically relevant. Lines between nodes signify co-

expression relationships (Figure 3A). This figure illustrates the

interconnections among TLS genes, regulatory linkages, and their

significance in predicting the prognosis of LUAD patients. We

utilized a consensus clustering algorithm to classify patients

according to the expression profiles of the 39 TLS-RGs

(Supplementary Figure 3). Our findings indicate that the entire

cohort could be divided into subtypes A (n = 285) and B (n = 348),

with k = 2 appearing to be the best choice (Figures 3B–D). PCA

uncovered notable distinctions in the transcription profiles of TLS

between the two subtypes (Figure 3E). According to the KM curves,

it was observed that patients categorized as subtype B demonstrated

a significantly longer OS compared to those categorized as subtype

A (p = 0.002; Figure 3F).

The comparative analysis of clinicopathological features among

distinct subtypes of LUAD, conducted using data from both the

TCGA and GSE13213 databases, revealed significant distinctions in

TLS-RGs expression patterns and clinicopathological attributes. In

addition, most TLS-RGs were upregulated in cluster B (Figure 4A).

GSVA enrichment analysis revealed that subtype B exhibited

notable enrichment in fully activated immune pathways. This

included the activation of various pathways such as the
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chemokine signaling pathway, natural T and B cell receptor

signaling pathways, cytokine receptor interactions, as well as Toll-

like and Jak-stat receptor signaling pathways (Figure 4B). GSVA

analysis also revealed enrichment of molecular functions in B cell

activation, T cell differentiation, lymphocyte co-stimulation, and

immune response activation (Figure 4C). Using the CIBERSORT

algorithm, we evaluated the correlation between the two TLS

subtypes and the 23 human immune cell subpopulations in each

LUAD sample, aiming to further understand the function of TLS-

RGs within the LUAD TME. Our analysis revealed a notable

discrepancy in the infiltration levels of most immune cells

between the two subtypes (Figure 4D). Specifically, subtype B

exhibited elevated levels of 20 immune cell types compared to

subtype A, including activated B cells, activated CD4+ T cells,

macrophages, and activated CD8+ T cells (Figure 4D).
Gene subtypes identification based
on DEGs

Using the R package “limma”, we discovered 229 TLS subtype-

related DEGs (Supplementary Table 2) and carried out functional

enrichment analysis to explore the possible biological behavior

associated with each TLS pattern (Supplementary Figure 4A).

DEGs were predominantly enriched in immune process-related

biological functions, indicating that TLS subtype gene-mediated

immune process modifications are essential for LUAD regulation

(Figures 5A, B). Furthermore, the involvement of TLS subtype-

related genes in LUAD was explored using a consensus clustering

approach to divide the patients into distinct gene subgroups based

on the expression levels of TLS subtype-related genes. The findings

indicated that The best grouping outcomes were achieved when

patients were divided into two subgroups (Supplementary

Figures 4B–D). Gene cluster B had a superior OS compared to

gene cluster A, according to the KM curves, which showed a

significant difference in TLS between the two gene clusters (p <

0.001; Figure 5C). Figure 5D shows an expression heat map of the

genes associated with the two TLS subtypes. It was evident that

these two gene clusters had different levels of gene expression

(Figure 5D). Most TLS-RGs showed different expression levels

between the two gene clusters (Figure 5E).
Construction and certification of
TLS scores

Subtype-related DEGs were used to establish the TLS scores.

Initially, the LUAD patients were randomly divided into two groups:

the training group and the test group, each consisting of 312 patients.

The prognostic model was constructed using data from the training

group, and the accuracy of the model was validated using the testing

group. To determine the ideal prognostic signature for TLS subtype-

related prognostic DEGs, LASSO and multivariate Cox analyses were

performed. Fifteen OS-associated genes were identified using LASSO

regression analysis, as shown by minimal partial likelihood deviance

(Figures 6A, B). Subsequently, we evaluated these fifteen OS-
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1453220
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2024.1453220
FIGURE 2

Association between TLS-RGs expression and OS, DSS, and PFI. (A) Forest plot of OS relationships in 39 TLS-RGs. (B) Forest plot of DSS relationships
in 39 TLS-RGs. (C) Forest plot of PFI relationships in 39 TLS-RGs. (D) Venn diagram of OS, DSS, and PFI prognostic genes.
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associated genes using multivariate Cox regression analysis, leading

to the identification of seven genes (CIITA, FCRL2, GBP1, BIRC3,

SCGB1A1, CLDN18, and S100P). Based on the outcomes of

multivariate cox regression analysis, the TLS score was computed
Frontiers in Immunology 07
using the following formula: Risk score = (-0.241448343 × expression

of CIITA) + (-0.300276561 × expression of FCRL2 + (0.194538624 ×

expression of GBP1) + (0.174440808 × expression of BIRC3) +

(-0.074347915 × expression of SCGB1A1) + (-0.081694457 ×
FIGURE 3

Identification of TLS-RG subgroups in LUAD. (A) Prognostic network diagram of TLS-RGs. (B) For each tested value of k, the CDF illustrates the
cumulative fraction of each sample co-clustering at the specified consensus index, where 1.0 indicates complete co-clustering (100% of the time).
(C) The consensus clustering delta area curve depicts the variation in the area under the CDF curve concerning k - 1 for each category number k.
(D) Heatmap of the consensus matrix indicating the correlation region and two clusters (k = 2). (E) Significant differences in transcriptomes between
the two subtypes are shown by PCA. (F) Analysis of KM survival between Clusters A and B.
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expression of CLDN18) + (0.058453204 × expression of S100P).

Patients were then stratified into two risk groups, high and low, based

on the median value of the risk scores.

The distributions of patients among the two TLS subtypes, two

gene subtypes, and two TLS score groups are shown in Figure 6C.

The TLS scores exhibited variation in both the TLS and gene

clusters, as shown in Figures 6D, E. TLS scores were lower in the

TLS cluster B and gene cluster B. As TLS scores increased, the risk

distribution plot illustrated a decrease in survival times and an

increase in recurrence rates (Figure 7A). According to the KM

survival curves, it was noted that patients with low scores exhibited

superior OS compared to those with high scores (p < 0.001;

Figure 7C). Furthermore, as depicted in Figure 7E, the AUC

values for the 1-year, 3-year, and 5-year survival rates based on

the TLS scores are 0.740, 0.719, and 0.719, respectively.

We calculated the TLS scores across the testing group to

validate their prognostic performance. Based on the formula

applied within the training group, we further categorized the

patients into groups denoting low-risk and high-risk statuses.

The relationship between TLS scores, survival times, and

recurrence rates is depicted in the risk distribution plot

(Figure 7B). Survival analysis unveiled a markedly superior

prognosis within the low-risk group compared to the high-risk
Frontiers in Immunology 08
group (p = 0.002; Figure 7D). ROC curves in the testing group

revealed that the TLS scores maintained relatively high AUC

values (Figure 7F). In addition, we investigated the differential

expression of TLS-RGs across various TLS scores. According to

the results, among the 39 TLS-RGs, 28 genes exhibited differential

expression, with the majority demonstrating high expression

levels in the low-risk group (Figure 7G).
Construction of a nomogram

Utilizing clinical features and TLS scores, we created a

prognostic nomogram aimed at precisely predicting the prognosis

of patients diagnosed with LUAD (Figure 8A). The results of the

Concordance Index indicate the favorable predictive capability of

the nomogram (Figure 8B). Figures 8C–E present the ROC curves

and corresponding AUC values for risk score, nomogram, age,

gender, T-stage, and N-stage at 1, 3, and 5 years, respectively. In

Figure 8C, the risk score (AUC = 0.724) and nomogram (AUC =

0.714) demonstrate superior performance in predicting patient

prognosis. Figures 8D, E reveal that the AUC values for the

nomogram are 0.723 and 0.725, respectively, outperforming the

risk score, which highlights its robust predictive capability.
FIGURE 4

Clinicopathologic features, enrichment analysis, and immune cells infiltration of TLS subtypes. (A) Clinicopathological characterization of different
TLS subtypes. (B) GSVA of biological pathways in the TLS subtypes. (C) GSVA of molecular function in the TLS subtypes. (D) The characterization of
23 immune cells in the TLS subtypes. ***p < 0.001.
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Evaluation of TME between different
TLS scores

Using the CIBERSORT algorithm, we evaluated the relationship

between the TLS scores and the abundance of immune cells. The

scatter diagrams indicate a positive correlation between TLS scores
Frontiers in Immunology 09
and M0 macrophages, M1 macrophages, neutrophils, CD8 + T cells,

activated memory CD4 + T cells, and activated mast cells. Conversely,

they show a negative correlation with naive B cells, memory B cells,

resting mast cells, resting dendritic cells, monocytes, and resting

memory CD4 + T cells (Figure 9A). High stromal and immune scores

were strongly correlated with low TLS scores (Figure 9B).
FIGURE 5

DEGs-based gene subtypes identification. (A) GO enrichment analyses of DEGs between different TLS subtypes. (B) KEGG enrichment analyses of
DEGs between different TLS subtypes. (C) KM curves of gene subtypes. (D) Association between the two gene subtypes and clinicopathologic
characteristics. (E) Differential expression of TLS-RGs across gene subtypes. **p < 0.01; ***p < 0.001.
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Furthermore, we observed a significant correlation between the

expression of these seven genes and the majority of immune

cells (Figure 9C).
Relationship of TLS scores with TMB and
CSC index

Based on accumulating evidence, patients with high TMB may

potentially benefit from immunotherapy due to their increased

neoantigen counts (45, 46). Our analysis of mutation data from

the TCGA LUAD cohort indicates that individuals in the high-risk

group may benefit from immunotherapy, as the high subgroup

displays higher TMB (Figure 10A). Furthermore, Spearmanor

correlation analysis revealed a positive correlation between TMB

and TLS scores (R = 0.34, p < 0.001), as illustrated in Figure 10B.

The linear association between the CSC index and TLS scores is

depicted in Figure 10C. Our data analysis revealed a positive

correlation between CSC and TLS scores (R = 0.45, p < 0.001).

These findings imply that LUAD cells exhibiting higher TLS scores

tend to exhibit enhanced stem cell characteristics and diminished
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levels of cellular differentiation (Figure 10C). Subsequently, we

delved into the differences in somatic mutation distribution

between the two TLS scoring groups within the TCGA-LUAD

cohort. The top ten mutated genes were identified as TP53, TTN,

MUC16, CSMD3, RYR2, LRP1B, ZFHX4, USH2A, KRAS, and

XIRP2, respectively (Figures 10D, E). Notably, the frequency of

mutations observed in patients with high TLS scores was

significantly higher. These findings further emphasize the

potential clinical significance of TLS scores in individuals with

LUAD, providing crucial insights for tailored treatment strategies

and prognostic assessments.
Drug sensitivity analysis in different
TLS scores

Drug sensitivity reflects the reaction of a patient to drug

therapy. To evaluate the sensitivity of patients to various

medications commonly used in LUAD treatment, we selected

several drugs for evaluation. Interestingly, patients with high TLS

scores showed lower IC50 values for vinblastine, thapsigargin,
FIGURE 6

The LASSO regression and the construction of the TLS scores. (A) LASSO regression. (B) Profiles of LASSO coefficients. (C) Alluvial diagram
illustrating the distribution of subtypes between groups based on survival outcomes and TLS scores. (D) Variations in TLS scores between gene
subtypes. (E) Variations in TLS scores between TLS subtypes.
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FIGURE 7

Evaluation and categorization outcomes of TLS scores. (A) The distribution of risk scores, survival status, and expression levels of seven prognostic
genes in the training group. (B) The distribution of risk scores, survival status, and expression of seven prognostic genes in the testing group. (C) KM
curve outcomes for LUAD patients with various TLS scores in the training group. (D) KM curve outcomes for LUAD patients with various TLS scores
in the testing group. (E) Based on the TLS scores, ROC curves are used to estimate the sensitivity and specificity in the training group. (F) Using the
TLS scores, ROC curves estimate the sensitivity and specificity in the testing group. (G) Variations in the expression of TLS-RGs in patients with
different TLS scores. *p < 0.05; **p < 0.01; ***p < 0.001.
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parthenolide, paclitaxel, gemcitabine, doxorubicin, docetaxel,

cyclopamine, cisplatin, and bortezomib, whereas those with low

TLS scores showed significantly lower IC50 values for therapeutics

such as temsirolimus, salubrinal, roscovitine, nilotinib,

methotrexate, metformin, lenalidomide, lmatinib, bexarotene, and

axitinib. Overall, these findings underscore the relationship between

TLS-RGs and drug sensitivity, indicating potential implications for

therapeutic outcomes (Figure 11).
Single-cell sequencing analysis

To investigate differences in TLS gene expression among

different LUAD cell types, we systematically analyzed LUAD

single-cell sequencing data from three datasets: GSE143423,

GSE146100, and GSE153935. For each dataset, integration

involved implementing batch correlation techniques, followed by

dimensionality reduction methods and subsequent unsupervised

clustering procedures. In the resultant graph of the UMAP analysis

of the dataset GSE143423, it was clear that different cell populations

were distinguished based on their expression profiles, including

malignant, immune, and stromal cells (Figure 12A). Notably,
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mononuclear macrophages constituted the primary immune cell

population, with a predominance of M2 over M1 cells within the

macrophage subset (Figures 12B, C). Using the Kruskal-Wallis rank

sum test, we assessed the differential expression of the TLS gene set

using AUCell scoring in different cell types. Our findings revealed

that the TLS gene set exhibited differential expression in immune,

stromal, and malignant cells, with TLS-RGs showing notably high

expression levels in immune and malignant cells (p < 0.001;

Figures 12D–F). Similar results were observed in gene sets

GSE146100 and GSE153935 (Supplementary Figures 5, 6).
TLS-RGs validation with LUAD cells
and tissues

The expression levels of MS4A1, IRF4, IL1R2, CD5, and ICOS

in LUAD cell lines (PC9, A549, H1299, and HCC827) and Beas-2B

control cell line were evaluated using qRT-PCR. The results

indicated that MS4A1, IRF4, and IL1R2 were upregulated in

LUAD cell lines, while CD5 and ICOS were downregulated

(Figures 13A–E). Additionally, the expression levels of these five

TLS prognosis-related genes were assessed in 30 pairs of LUAD
FIGURE 8

Nomogram results based on TLS scores and clinical factors. (A) Prognostic nomogram that predicts OS of LUAD patients, incorporating clinical
features and TLS scores. (B) Prognostic nomogram Concordance Index findings. (C) ROC curves for nomogram, risk score, and clinical
characteristics at 1 year. (D) ROC curves for nomogram, risk score, and clinical characteristics at 3 year. (E) ROC curves for nomogram, risk score,
and clinical characteristics at 5 year.
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tissues and their adjacent normal tissues. It was found that

MS4A1, IRF4, and IL1R2 were significantly upregulated in

LUAD tissues, whereas CD5 and ICOS were downregulated

(Figures 13F–J). Immunohistochemical images of lung cancer

from the HPA database corroborated these findings

(Supplementary Figure 7), which were also consistent with the

results from the TCGA cohort.
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Discussion

Lung cancer stands as one of the leading causes of cancer-

related fatalities worldwide (47), with LUAD emerging as the

predominant subtype. It accounts for over one million deaths

annually across the globe (48, 49). Therefore, additional methods

for guiding the treatment of LUAD are urgently required. TLS has
FIGURE 9

Assessment of the TME. (A) Relationships between immune cell types and TLS scores. (B) Associations between stromal scores, immune scores, and
TLS scores. (C) Relationships between immune cell abundance and the expression of seven genes. *p < 0.05; **p < 0.01; ***p < 0.001.
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gradually become an important factor associated with prognosis

and carcinogenesis (50, 51). Therefore, through an in-depth

exploration of the function of TLS in LUAD, we aim to gain a

better understanding of its impact on patient prognosis and offer

more precise and effective strategies for LUAD treatment. This will

contribute to the development of personalized treatment plans and

provide the best treatment options for each patient. Ultimately, this

approach seeks to reduce discrepancies in prognosis, enhance

treatment outcomes, and improve survival rates.

The findings of our study demonstrate widespread changes in

TLS-RGs in LUAD at both the transcriptional and genomic levels.

Utilizing 39 TLS-RGs, we stratified LUAD into two distinct TLS

subtypes. Patients with TLS subtype A showed lower OS and more

advanced clinicopathological characteristics than those with TLS

subtype B. Significantly, there existed a notable contrast in the

infiltration levels of most immune cells between the two TLS

subtypes, with subtype B exhibiting heightened levels of 20

immune cell types compared to subtype A. In TLS subtype B, we

also observed significant differences in immune activation,

including natural killer cell-mediated cytotoxicity, activation of

chemokine signaling pathways, T-cell and B-cell receptor

signaling pathways, cytokine receptor interactions, as well as Toll-

like and Jak-Stat receptor signaling pathways. These findings
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indicate that TLS-RGs play a critical predictive role in assessing

the response to LUAD immunotherapy and determining clinical

prognosis, thus exerting a significant influence on patient treatment

and recovery.

Utilizing the DEGs identified in TLS subtypes, we stratified

LUAD patients into two gene subtypes. Notably, the OS of gene

subtype B surpassed that of gene subtype A. Subsequently,

prognostic models were constructed, and risk scores were

calculated. LUAD patients were classified into two distinct groups:

high risk and low risk. There were notable differences in

clinicopathological features, mutations, prognosis, CSC index,

TMB, and medication responsiveness between patients with

different TLS scores. Compared to those with high TLS scores,

patients exhibiting low TLS scores demonstrated markedly longer

survival times and lower rates of recurrence. The somatic mutation

frequency was notably higher in patients with high TLS scores

compared to those with low scores, potentially indicating a poorer

prognosis. It is well known that cancer patients with CSC have a

poor prognosis (52). Several studies have reported a negative

association between TMB and the prognosis of tumor patients

(53–55). Both CSC and TMB show a positive correlation with TLS

scores, indicating a worse prognosis for patients with high TLS

scores. Patients with low TLS scores exhibited markedly lower IC50
FIGURE 10

Outcomes of TMB, CSC, and tumor mutation landscape analysis. (A) The TMB expression in different TLS scores. (B) Spearman correlation analysis
between TMB and TLS scores. (C) Relationships between the CSC index and TLS scores. (D) Somatic mutation features resulting in high TLS scores.
(E) Somatic mutation features resulting in low TLS scores. Every column denoted a distinct patient. TMB was displayed in the top bar plot.
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values for temsirolimus, salubrinal, roscovitine, nilotinib,

methotrexate, metformin, lenalidomide, lmatinib, bexarotene, and

axitinib. Conversely, patients with high TLS scores exhibited

significantly lower IC50 values for vinblastine, thapsigargin,

parthenolide, paclitaxel, gemcitabine, doxorubicin, docetaxel,

cyclopamine, cisplatin, and bortezomib, suggesting that individuals
Frontiers in Immunology 15
with varying TLS scores respond differently to medication. These

findings imply that TLS scores have the potential to personalize

treatment strategies for patients with LUAD. Additionally, by

integrating TLS scores with tumor stage, we developed a

quantitative nomogram, which not only enhanced performance

but also facilitated the effective utilization of TLS scores.
FIGURE 11

Relationships between drug sensitivity and different TLS score groups.
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The significant role of the TME in cancer development and drug

resistance is widely recognized (56–58). The primary cellular

constituents of the TME are innate immune cells, including

tumor-associated neutrophils, tumor-associated macrophages,

tumor-associated dendritic cells, and adaptive immune cells, such

as regulatory T cells (59). Significant disparities were identified

between the two molecular subtypes concerning TLS scores, TME,

and the relative abundance of 19 TIICs. T-cells play a pivotal role in

cancer immunotherapy (60–62). TLS subtype B, characterized by a

low TLS score and associated with better prognosis, exhibited

heightened infiltration of activated CD4+, CD8+ T cells, and

gamma delta T cells. Emerging evidence indicates that B cells also

contribute to the immune response against tumors (63–65). In our
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study, we observed that the numbers of activated B cells, activated

CD8+ T cells, and immature B cells were significantly higher in TLS

subtype B and subtypes with lower TLS scores compared to TLS

subtype A. Additionally, we conducted single-cell sequencing

analysis to examine the distribution of TLS-RGs within cells.

Lastly, we validated the expression of five genes related to

prognosis through qRT-PCR analysis. In the LUAD cell lines

PC9, A549, H1299, and HCC827, elevated expression levels of

MS4A1, IRF4, and IL1R2 were observed compared to the Beas-2B

control cell line. These observations align with data from the TCGA

cohort, suggesting that these genes may serve as pivotal markers for

LUAD. Conversely, we noted significantly lower expression levels of

CD5 and ICOS in LUAD cell lines. These distinct expression
FIGURE 12

Single-cell sequencing analysis of TLS-RGs in GSE143423. (A–C) Aggregation of consolidated data in the UMAP. (D) Differences in TLS-RGs
expression between cells. (E) Single-cell TLS-RGs AUCell scoring. (F) Differences in TLS-RGs expression between specific cells.
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profiles underscore the intricate interplay between tumor cells and

the immune system in LUAD. Our findings underscore the

potential of these genes as prognostic biomarkers and therapeutic

targets in LUAD.

Despite the thorough analyses conducted in this study, several

limitations must be acknowledged. First, all samples were obtained

retrospectively, and all analyses were limited to data from publicly

available databases, which may have introduced inherent biases in

case selection, potentially affecting the results. Second, larger

prospective studies and in vitro and in vivo experiments are

necessary to thoroughly validate these findings. Third, the lack of

clinical validation limits the direct applicability of the results in real-

world clinical settings. Additionally, the use of multiple datasets

may have resulted in batch effects, despite efforts at normalization.

These limitations indicate that further studies, including larger
Frontiers in Immunology 17
cohort studies and extensive experimental validation, are

necessary to confirm these findings.
Conclusion

In conclusion, our extensive exploration of TLS-RGs in LUAD

unveiled their promising role as biomarkers for prognostic

prediction in patients with this disease. We found that TLS-RGs

exert a notable influence on the immunological landscape of LUAD

patients, providing valuable predictive information for both

immunotherapy and chemotherapy outcomes. The results of this

study highlighted the significant clinical consequences of TLS-RGs

and offered novel insights into the development of tailored

immunotherapeutic approaches for patients with LUAD.
FIGURE 13

The degree of 5 TLS prognostic signature mRNA expression by qRT-PCR. The mRNA expression levels of (A) MS4A1; (B) IRF4; (C) IL1R2; (D) CD5; (E)
ICOS in Beas-2B, PC9, A549, H1299 and HCC827 cell lines; (F–J) Relative expression of MS4A1, IRF4, IL1R2, CD5, and ICOS in normal and LUAD
tissues by qRT-PCR. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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