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Background: Ovarian cancer (OC) is a global malignancy characterized by

metastatic invasiveness and recurrence. Long non-coding RNAs (lncRNAs) and

Telomeres are closely connected with several cancers, but their potential as

practical prognostic markers in OC is less well-defined.

Methods: Relevant mRNA and clinical data for OC were sourced from The Cancer

Genome Atlas (TCGA) database. The telomere-related lncRNAs (TRLs) prognostic

model was established by univariate/LASSO/multivariate regression analyses. The

effectiveness of the TRLs model was evaluated and measured via the nomogram.

Additionally, immune infiltration, tumor mutational load (TMB), and drug sensitivity

were evaluated.We validated the expression levels of prognostic genes. Subsequently,

PTPRD-AS1 knockdown was utilized to perform the CCK8 assay, colony formation

assay, transwell assay, and wound healing assay of CAOV3 cells.

Results: A six-TRLs prognostic model (PTPRD-AS1, SPAG5-AS1, CHRM3-AS2,

AC074286.1, FAM27E3, and AC018647.3) was established, which can effectively

predict patient survival rates and was successfully validated using external datasets.

According to the nomogram, the model could effectively predict prognosis.

Furthermore, we detected the levels of regulatory T cells and M2 macrophages

were comparatively higher in the high-risk TRLs group, but the levels of activated CD8

T cells and monocytes were the opposite. Finally, the low-risk group was more

sensitive to anti-cancer drugs. ThemRNA levels of PTPRD-AS1, SPAG5-AS1, FAM27E3,

and AC018647.3 were significantly over-expressed in OC cell lines (SKOV3, A2780,

CAOV3) in comparison to normal IOSE-80 cells. AC074286.1 were over-expressed in

A2780 andCAOV3cells andCHRM3-AS2only in A2780 cells. PTPRD-AS1 knockdown

decreased the proliferation, cloning, and migration of CAOV3 cells.

Conclusion: Our study identified potential biomarkers for the six-TRLs model

related to the prognosis of OC.
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Introduction

Ovarian cancer (OC) is the fifth most prevalent cancer globally

(1, 2). Epithelial OC, accounting for the majority of cases, includes

serous, endometrioid, mucinous, and clear cell subtypes, each with

varying degrees of differentiation (3). The International Federation

of Gynecology and Obstetrics (FIGO) classifies OC into five stages,

ranging from stage 0 to extensive stage IV metastasis (4). Currently,

targeted therapies, such as poly (ADP-ribose) polymerase

inhibitors, and other treatments like surgery, radiation,

immunotherapy, nanomedicine technology, and combinatorial

therapies, have made rapid progress in improving outcomes for

OC patients (5, 6). However, most OC patients still develop

resistance, recurrence, metastasis, and the potential development

of multi-system complications (7, 8). Hence, it is urgent to pinpoint

novel biomarkers that can serve as predictors for clinical outcomes

in OC.

Telomeres are special complexes crucial for protecting the ends

of eukaryotic chromosomes (9). Abnormal telomeres can result in

cancer and age-related pathologies which are related to the integrity

of the DNA damage response (10). Notably, short telomeres

contribute to genomic instability, which promotes cancer

progression. Nevertheless, long telomeres may enhance the risk of

cancer (11). It reported that telomerase is highly expressed in

ovaries (12). Additionally, a multicenter study shows that the

length of telomeres serves as the biomarker in elderly patients

with OC (13).

Long non-coding RNAs (lncRNAs) with a length surpassing

200 nucleotides contribute to the modulation of chromatin

dynamics, cellular growth, gene expression, differentiation, and

developmental processes (14). Compared to mRNAs, lncRNAs are

often less abundant in cells, exhibit more specialized tissue-

specific expression, and can have a shorter lifespan (15). To

fulfill their diverse biological roles, lncRNAs engage in intricate

gene regulatory networks through interactions with mRNAs (16).

Research has revealed that analyzing lncRNA-mRNA co-

expression networks is instrumental for elucidating the

involvement of lncRNAs in platinum resistance and for

uncovering those with prognostic significance and therapeutic

potential in OC (17, 18). Moreover, lncRNAs can modulate

immune responses and serve as crucial prognostic biomarkers

and diagnostic markers in OC (19, 20). Previous research revealed

that certain lncRNAs, including TERC, TERRA, and GUARDIN,

have been implicated in the intricate mechanisms of DNA

damage response integration, safeguarding of telomere

termini, and regulation of telomere length (21, 22). Indeed,

emerging evidence suggests that telomere-related lncRNAs

(TRLs) are associated with the prognosis of kidney renal

clear cell carcinoma prognosis (23). However, the molecular

underpinnings of how lncRNAs contribute to telomere

homeostasis remain largely uncharted territory. We found that

prior research has concentrated on the length and significance of

telomeres in cancer prognosis, leaving the correlation of TRLs

with OC unexplored. Recognizing the importance of both

telomeres and lncRNAs, combining the two to improve

prognosis in OC patients may be a viable strategy.
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In the present study, we formulated TRLs from The Cancer

Genome Atlas (TCGA) dataset to predict OC outcomes.

Additionally, we probed the connection between the TRLs model

and the immune and delved into the potential impact of TRLs on

therapeutic drug selection. This study introduces novel perspectives

and targets for treating OC.
Methods

Data collection

The transcriptome data, clinical information, and tumor

mutational burden (TMB) information of 429 OC patients were

from the TCGA (https://portal.gdc.cancer.gov/) database. Normal

sample data (88 samples) were from the GTEx (http://

commonfund.nih.gov/GTEx/) database. The annotation

information was from the Ensembl database (https://

www.ensembl.org) (24) to identify lncRNAs. The inclusion

criteria for our study were strictly defined: (1) patients diagnosed

with primary ovarian serous cystadenocarcinoma, (2) Samples with

complete survival time and outcomes. After matching, a total of 370

OC samples were enrolled in the subsequent study and randomly

divided into two groups (7:3 ratio), with 259 cases used for training

and 111 cases for testing. The clinical baseline information of the

patients is presented in Supplementary Table 1.
Determination of TRLs

The 2093 telomere-related genes (TRGs) were downloaded

from TelNet (http://www.cancertelsys.org/telnet/) database (25).

The differentially expressed TRGs were pinpointed using the

criteria of |log2 FC| ≥ 3 and FDR < 0.05 (23) with the “limma”

package. We performed the Pearson correlation analysis to calculate

the correlation coefficient between differentially expressed TRGs

and lncRNAs expression using the “linkET” package. LncRNAs

meeting P < 0.001 and |R|> 0.7 (18) screening criteria were

designated as TRLs.
Establishment and validation of the
prognostic model

To identify potential prognostic TRLs in OC patients, the

univariate Cox analysis was utilized to integrate the TRLs

expression information with survival information using the

“survival” package. The least absolute shrinkage and selection

operator (LASSO) analysis could mitigate the impact of

multicollinearity among the numerous genetic variables (26). This

approach, when synergized with the Cox model, can refine the

screening of potential biomarkers (27). In the training cohort, we

conducted a LASSO analysis to filtrate the prognostic TRLs

ulteriorly using the “glmnet” package. The LASSO-selected data

applied the multivariate Cox analysis to identify which TRLs

emerged as independent prognostic factors for OC patients (28–
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31). Subsequently, Kaplan-Meier (KM) analysis was utilized to

contrast the high- and low-risk groups, divided by the median

risk score. The KM method generated a survival curve with time

depicted on the x-axis and the cumulative survival probability

represented on the y-axis, offering a visual representation of the

proportion of individuals surviving over the study period. If the log-

rank test p-value is less than 0.05, there is a statistically significant

difference between survival curves (32). Additionally, Receiver

Operating Characteristic (ROC) analysis was applied to observe

the predictive value of the TRLs prognostic model using the

“timeROC” package. The ROC curve was plotted with the false

positive rate on the x-axis and the true positive rate on the y-axis,

featuring a 95% confidence interval indicated by dotted lines. The

area under the ROC curve (AUC) quantified the model’s

discriminatory ability, the AUC value closer to 1.0 signified

superior model performance and generalization capabilities (33,

34). To assess the independence of risk scores derived from the

signature, we performed the Cox regression analyses. Subsequently,

we verified the prediction performance using testing and entire sets.

Ultimately, the integrated nomogram was constructed,

encompassing all independent prognostic parameters using the

“rms” package, to provide a qualitative prediction of the overall

survival (OS) for OC patients within the entire set.
Go and KEGG analysis

To explore the functional mechanisms associated with the

model, we determined the differentially expressed genes between

low- and high-risk TRLs groups (|log2FC| > 1 and FDR < 0.05) using

the “limma” package. Subsequently, we conducted GO and KEGG

analyses on the above genes. P < 0.05 was considered significant.
Immune profile analysis

To delve into the connection between risk score and immune

infiltration, the ESTIMATE algorithm was employed to compute

the abundance of stromal and immune components. Patients were

stratified into two groups according to the median values of risk

score levels. Then, the abundance of 28 immune-cell types in two

groups was determined by the ssGSEA. Utilizing the CIBERSORT

algorithm, we estimated the abundance of 22 distinct immune cell

subtypes in patients. The distribution pattern of the two groups was

visualized by PCA analysis. To investigate the correlation between

immune cells and prognostic TRLs, the results were performed by

the Pearson correlation analysis and visualized utilizing the

“ggplot2” package.
Tumor mutation analysis

The TMB data was computed in low- and high-TMB groups,

categorized by the median TMB value of OC patients. Subsequently,

the mutational landscape was depicted in a waterfall plot using the
Frontiers in Immunology 03
“maftool” package. Furthermore, comparative and survival analyses

were executed to explore disparities in somatic mutations between

the two groups.
Prediction of potential drug sensitivity

The “oncoPredict” package was employed to forecast drugs IC50

values. The IC50, indicative of tolerance capacity, was computed,

with higher IC50 values signifying increased resistance of cells to the

drugs. Subsequently, the disparity in sensitivity scores between the

two groups was analyzed.
Cell culture

OC cell lines (SKOV3, A2780, CAOV3) and IOSE-80 cells were

sourced from the Cell Bank of the Chinese Academy of Sciences.

SKOV3 cells were grown in McCoy’s 5A medium (Servicebio

Technology Co., Ltd., China, G4541-500ML) with 10% fetal

bovine serum. A2780 cells and IOSE-80 cells were grown in

RPMI-1640 medium (Servicebio Technology Co., Ltd., China,

G4535-500ML) with 10% fetal bovine serum. CAOV3 cells were

grown in DMEM medium (Servicebio Technology Co., Ltd., China,

G4515-500ML) with 10% fetal bovine serum. Then, the cells were

cultivated in a 37°C incubator with 5% CO2.
qRT-PCR validation

Total RNA was extracted from the cells using an RNA

extraction solution (Servicebio Technology Co., Ltd., China,

G3013-100ML). For the conversion of RNA to cDNA, we utilized

a cDNA Synthesis kit ((TransGen, China, AU341-02) to carry out

the reverse transcription process. The quantification of lncRNA

levels was determined using the 2-DDCq method, with the results

being normalized against the expression levels of the GAPDH. The

TRLs sequences are shown in Table 1.
Transfection

CAOV3 cells, in the exponential growth phase, were seeded in

a six-well plate at a density of 4 × 104 cells per well to achieve 70–

80% confluency. Subsequently, CAOV3 cells were transfected

with small interfering RNA targeting PTPRD-AS1 (si‐PTPRD-

AS1) and a non-targeting siRNA as a negative control (siNC)

using the Lipofectamine 2000 reagent (Thermo Fisher Scientific,

USA, 11668-027). The PTPRD-AS1 siRNAs, siNC, and

Lipofectamine 2000 were prepared by dilution in Opti-MEM

serum-free medium (Gibco, USA, 31985-070), then combined

and allowed to incubate for 20 minutes to form the transfection

complex. This mixture was subsequently introduced into CAOV3

cells for transfection. After a 6-hour incubation period, the

medium was replaced with the fresh complete growth medium.
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The CAOV3 cells were then collected 48 h post-transfection for

further analysis. To confirm the knockdown efficiency, qRT-PCR

analysis was conducted post-transfection. The sequences of

siRNAs are shown in Table 2.
CCK8 and colony formation assay

The CCK8 assay and the colony formation assay were utilized to

determine the effect of PTPRD-AS1 knockdown on the

proliferation of CAOV3 cells. 4,000 CAOV3 cells transfected with

si-NC or si-PTPRD-AS1 per well were seeded into 96-well plates

and grown for 48 h. Subsequently, the optical density (OD) values

were measured at 450 nm within 1-4 h after the addition of 10 mL/
well of the CCK-8 reagent (Beyotime Inc., China, C0038). For

colony formation, a total of 1,000 CAOV3 cells transfected with si-

NC or si-PTPRD-AS1 per well were dispensed into 6-well plates

and cultured for 2 weeks. Upon the emergence of visible colonies,

the cells were processed for staining using crystal violet (Beyotime

Inc., China, C0121).
Transwell assay

Upper transwell chambers coated with matrigel (Corning, USA,

354234) were utilized to assess the invasive capacity of PTPRD-AS1

knockdown. 2×104 CAOV3 cells transfected with si-NC or si-

PTPRD-AS1 were plated in the upper chambers with DMEM

medium devoid of FBS. The lower chambers were filled with

DMEM supplemented with 10% FBS. Subsequently, the cells were

fixed using a 4% paraformaldehyde solution for 30 minutes and

stained with crystal violet for an additional 30 minutes to facilitate

the quantification of invasive cells.
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Wound healing assay

The assessment of cell migration was conducted using a wound

healing assay. CAOV3 cells transfected with si-NC or si-PTPRD-

AS1 were plated in 6-well plates to achieve 80% confluence. A

standardized scratch wound was created across the well using a 10

mL pipette tip to generate a uniform gap and photographed after

24 h.
Statistical analysis

All statistical analyses were carried out through R software

(version 4.3.1) and GraphPad Prism 8.0 software. Two Group

differences were statistically evaluated using the Student’s t-test.

For the analysis of multiple groups, One-way ANOVA was the

procedure followed. P < 0.05 was considered significant.
Results

Determination of TRLs

We obtained the expression information of 2093 TRGs. 79

differentially expressed TRGs, including 31 down-regulated and 48

up-regulated genes (Figure 1A), and 1,6901 lncRNAs were

determined. Finally, 77 TRGs were reserved, and 381 lncRNAs

were determined as TRLs (|R| > 0.7 and P < 0.001).
Establishment of TRLs prognostic model

A total of 10 TLRs of 381 TRLs were observably connected with

OS via the univariate analysis (Supplementary Table 2). LASSO
TABLE 1 The TRLs sequences.

Gene Name Forward sequence (5’-3’) Reverse sequence (5’-3’)

PTPRD-AS1 CTATTCATCATCACCTCCACATTC AATTATGCACTAGAGGGGGTAGTG

SPAG5-AS1 CTCTCAGATCACCACATTGTTTTC TAAGTCTGATGACACAGCAGAACA

CHRM3-AS2 GAGTCTAGCATCTTGCATCTTCCT TGTTGAGGATAGAACTAGCACAGC

AC074286.1 CCACTGCCAGTTAGAAGACCTATT AGATCAGCACCACATACACCTAAA

FAM27E3 CACTTGAGAAACAGACCGTATTGT CTAGGATCAAGATGAACACACTGC

AC018647.3 AGTATACACTGCACCCTGTTTGTG ACCTGGATGAGACTGGAGACTATT

GAPDH TGACAACTTTGGTATCGTGGAAGG AGGCAGGGATGATGTTCTGGAGAG
TABLE 2 The PTPRD-AS1 gene siRNA sequence.

Gene Name Sense(5’-3’) Antisense(5’-3’)

PTPRD-AS1 si-NC UUCUCCGAAGGUGUCACGUTT UUCUCCGAAGGUGUCACGUTT

PTPRD-AS1 si-1 GCUCUAACAUUCUGUGAUATT UAUCACAGAAUGUUAGAGCTT

PTPRD-AS1 si-2 CGAUGACAAUAAUAGUAAUTT AUUACUAUUAUUGUCAUCGTT
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analysis was performed according to the 10 TRLs, and no genes

were screened for incompatibility (Figures 1B, C). Subsequently, we

performed the multivariate Cox regression analysis and identified

six key TLRs (Figure 1D). The risk score for prognostic-related

TRLs = (0.941293163 × PTPRD-AS1) + (0.893391681 × SPAG5-

AS1) + (-7.750446273 × CHRM3-AS2) + (1.50190086 ×

AC074286.1) + (-0.57365439 × FAM27E3)+ (-3.094785104 ×

AC018647.3). Notably, CHRM3-AS2, FAM27E3, and AC018647.3

were protective factors with HR < 1 in OC patients. Nevertheless,

PTPRD-AS1, SPAG5-AS1, and AC074286.1 were risk factors with

HR > 1. The findings indicated that PTPRD-AS1, CHRM3-AS2,

AC074286.1, and AC018647.3 were independent prognostic factors

of OC patients (P< 0.05). The coefficient results of six TRLs are

shown in Figure 1E. The expression levels of six TLRs in tumor

cases in comparison to normal cases are shown in Figure 1F.
Validation of the TRLs prognostic model

The low- and high-risk groups were categorized by the median

score in the training, testing, and entire cohorts (Figures 2A–C).

Analysis of survival status distributions indicated a higher mortality

rate in the high-risk group (Figures 2D–F). The six TRLs in two

groups were visually depicted through heat maps (Figures 2G–I). In

the high-risk group, PTPRD-AS1, SPAG5-AS1, and AC074286.1

demonstrated comparatively elevated expression levels, while three

protective lncRNAs (PTPRD-AS1, SPAG5-AS1, and AC074286.1)
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displayed the opposite trend. Additionally, the low-risk group

experienced a higher OS rate (Figures 3A–C). The precision of

the TRLs prognostic model was assessed by ROC analysis, revealing

that the TRLs prognostic signature demonstrated potential in

predicting OS (training cohort: 5-year AUC = 0.691, test cohort:

5-year AUC = 0.666, and entire cohort: 5-year AUC = 0.68)

(Figures 3D–F). Furthermore, the risk score demonstrated

superior prognostic prediction for OC patients compared to other

clinical variables (Figures 3G–I). PCA analysis was employed to

distinct distribution patterns between the two risk groups in the

training, testing, and overall sets (Supplementary Figure 1). The two

risk groups tended to diverge along two paths. These results

underscored the robust predictive capability of this signature.
Identification of TRLs prognostic
model independence

In the training cohort, univariate analysis showed risk score was

related to patient survival (Figure 4A). Furthermore, the

multivariate analysis suggested that risk score was the

independent prognostic factor for OC patients (Figure 4B). The

analysis results for both the testing set (Figures 4C, D) and the

overall set (Figures 4E, F) were consistent. Subsequently, a

nomogram was conducted by combining the risk score with

clinical features (Figure 4G). The calibration curves proved the

dependability of the six TRLs prognostic model (Figure 4H).
FIGURE 1

Establishment of TRLs prognostic model in OC. (A) The differentially expressed TRGs between normal and OC samples. (B) The distribution of
lambda values in LASSO analysis. (C) The deviance diagram of LASSO analysis. (D) The six prognostic TRLs by multivariate analysis. (E) The coefficient
distributions of six prognostic TRLs. (F) The expression of six prognostic TRLs between normal and OC tissues. *** P < 0.001.
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FIGURE 3

KM and ROC curves analysis in the training, testing, and overall sets. (A–C) OS rates. (D–F) ROC curves for the prognostic model. (G–I) ROC curves
for the six TRLs risk scores and clinical factors.
FIGURE 2

Verification of prognostic model in the training, testing, and overall sets. (A–C) The risk scores. (D–F) The survival status. (G–I) Heatmaps of 6
TRLs expression.
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Enrichment analysis

To study the potential biological function between the two

groups, relevant enrichment analyses were carried out with 12 genes

of differential expression between the two groups. GO terms showed

that 12 genes were related to fibrillar collagen trimer and collagen

fibrill organization (Figures 5A–C), while the KEGG pathway

contained proteoglycans in cancer and PI3K-Akt signaling

pathway, etc. (Figure 5D). Moreover, the cnetplots were used for

the specific GO terms and KEGG categories (Figures 5E–H). These

biological processes and pathways likely contribute to the high-risk

group towards poorer clinical prognosis.
Immune infiltration analysis

The levels of stromal score were significantly lower in the low-

risk group (Figure 6A). ssGSEA analysis demonstrated that the

abundance of regulatory T cells was comparatively higher in the

high-risk group, and the abundance of activated CD8 T cells and

monocytes was the opposite (Figure 6B). CIBERSORT analysis

revealed that the high-risk group had significantly higher levels of

M2 macrophages (Figure 6C). PCA plot demonstrated the marked

classification of immune cells in two groups (Figure 6D). Moreover,

the correlation analysis indicated that PTPRD-AS1, SPAG5-AS1,
Frontiers in Immunology 07
CHRM3-AS2, AC074286.1, FAM27E3 and AC018647.3 were

strongly associated with 28 immune cells (Figures 6E–J). In

summary, these findings reveal the obvious differences between

the two groups in the immune cells and are closely related to

PTPRD-AS1, SPAG5-AS1, CHRM3-AS2, AC074286.1, FAM27E3,

and AC018647.3.
Tumor mutation analysis

In the analysis of TMB in OC patients, individual TMB values

were determined. The probability of TMB in the high- and low-risk

groups was 99.28% and 99.29%, respectively (Figures 7A, B).

Nevertheless, the TMB values between the two groups were no

significant difference (Figure 7C). Subsequent survival analyses

were conducted across different TMB and risk groups. Notably,

the high-TMB group exhibited the favorable OS, and the high-TMB

combined with the low-risk group demonstrated the highest OS rate

(Figures 7D, E).
Sensitivity of potential drugs

To assess the efficacy of the TRLs prognostic model for

predicting several drugs in OC, we calculated the IC50 value of
FIGURE 4

Establishment of nomogram. Univariate and multivariate analysis in the training (A, B), testing (C, D), and overall (E, F) sets. (G) Nomogram analysis in
OC patients. (H) The calibration curves of the nomogram.
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the anti-cancer drugs in two groups of OC patients. The low-risk

group had the low IC50 value of the anti-cancer drugs, which means

that the above drugs were more sensitive to the low-risk

group (Figure 8).
Frontiers in Immunology 08
PTPRD-AS1 associated with OC prognosis

We performed qRT-PCR, and the result demonstrated that

PTPRD-AS1, SPAG5-AS1, FAM27E3, and AC018647.3 were
FIGURE 5

Functional analysis of 12 genes with differential expression between low- and high-risk groups. (A–C) GO terms analysis. (D) KEGG pathways
analysis. (E–H) Specific genes related to the GO terms and pathways.
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significantly over-expressed in OC cell lines (SKOV3, A2780,

CAOV3) in comparison to normal IOSE-80 cells (P < 0.05).

AC074286.1 were over-expressed in A2780 and CAOV3 cells and

CHRM3-AS2 only in A2780 cells (P < 0.05) (Figure 9A). FAM27E3

had the highest expression in OC cell lines. We found that high
Frontiers in Immunology 09
expression of FAM27E3 was associated with a good prognosis (P =

0.036). Moreover, the levels of FAM27E3 were increased in stages

III and grade III in OC. However, there was no significant difference

among different stages and grades (Supplementary Figure 2).

Among them, PTPRD-AS1, CHRM3-AS2, AC074286.1, and
FIGURE 6

Immune cell infiltration analysis with TRLs risk group. (A) The ESTIMATE score, Immune score, and Stromal score diagrams. (B) The 28 type immune
cells in two risk groups by ssGSEA. (C) The level of 22 immune cell infiltration in two risk groups by the CIBERSORT algorithm. (D) PCA analysis of
immune cells between two groups. (E–J) Correlation analysis of six prognostic biomarkers (PTPRD-AS1, SPAG5-AS1, CHRM3-AS2, AC074286.1,
FAM27E3, and AC018647.3) and immune cells. * P < 0.05, ** P < 0.01, **** P < 0.0001, ns, not significant.
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AC018647.3 were independent prognostic factors of OC patients.

PTPRD-AS1 was strongly associated with the immune cells. In

addition, high expression levels of PTPRD-AS1 have been proven to

be associated with shorter survival of OC (35). But there is no

further experimental evidence. Thus, we selected PTPRD-AS1 for

more in-depth analysis. We utilized OS as the outcome measure to
Frontiers in Immunology 10
evaluate its effect on prognostic outcomes. Our results

demonstrated a significant correlation between elevated PTPRD-

AS1 expression and a poorer prognosis (P = 0.036, Supplementary

Figure 3A), which was consistent with the previous research.

Concurrently, we appraised the anti-cancer drugs sensitivity

analysis. Patients exhibiting high levels of PTPRD-AS1 showed a
FIGURE 7

TMB analysis. (A, B) The waterfall plot of the frequency of TMB in two risk groups. (C) TMB levels between the two risk groups. (D) KM analysis of
TCGA-OV patients in the low- and high-TMB groups. (E) KM analysis of TCGA-OV patients in the two risk groups combining the TMB groups.
FIGURE 8

The oncoPredict algorithm predicted the IC50 values for ten anti-cancer drugs.
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more favorable response to the drugs Rapamycin and Dasatinib

(Supplementary Figures 3B–F).
PTPRD-AS1 inhibition suppresses CAOV3
cells proliferation, migration, and invasion

PTPRD-AS1 exhibited the highest mRNA expression levels in

CAOV3 cells compared to other OC cell lines. Consequently,

CAOV3 cells were chosen for further functional analysis. We

achieved successful knockdown of PTPRD-AS1 in CAOV3 cells

through transfection with Si-PTPRD-AS1 (Figure 9B). Importantly,

the CCK8 assay and colony formation assay demonstrated a

reduction in the proliferative capacity of CAOV3 cells after the

knockdown of PTPRD-AS1, respectively (Figures 9C, D).

Additionally, our findings indicated that the suppression of

PTPRD-AS1 significantly impeded the metastatic and invasive

properties of CAOV3 cells (Figures 9E, F). Notably, qPCR

experiments revealed a significant downregulation of MMP2 and

MMP9 upon PTPRD-AS1 knockdown (Supplementary Figure 4).

Collectively, these results imply that the knockdown of PTPRD-AS1

exerts an inhibitory effect on the proliferation, migration, and

invasion of CAOV3 cells.
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Discussion

OC remains a global malignancy characterized by metastatic

invasiveness and recurrence (36). Notably, prognosis models based

on lncRNAs have demonstrated accurate predictions for OC patient

outcomes (37, 38). Although the clinical application of lncRNAs as

predictive biomarkers is not yet fully understood, they offer distinct

advantages over protein and mRNA biomarkers due to their tissue

and stage-specific expression (39). This calls for more research to

identify similar biomarkers for OC. Telomeres play a crucial role in

preserving genomic integrity by safeguarding chromosome ends

(40). Interestingly, anomalies in telomeric structures have been

associated with various cancer types, underscoring their impact on

oncogenesis and tumor progression. However, few studies explore

the links between telomeres and lncRNAs in OC.

In this study, 79 TRGs were initially screened for differential

expression between normal samples and OC samples. Through

univariate Cox regression analysis, 10 TRLs were identified.

Subsequently, based on LASSO and multivariate analysis, the

prognostic model comprising 6 TRLs (PTPRD-AS1, SPAG5-AS1,

CHRM3-AS2, AC074286.1, FAM27E3, and AC018647.3) was

constructed. Among them, PTPRD-AS1 has been recognized as

an effective biomarker for predicting the prognosis of breast cancer
FIGURE 9

Analysis of PTPRD-AS1 mRNA Levels in OC. (A) Comparative expression levels of six prognostic genes in OC cell lines (SKOV3, A2780, CAOV3) and
normal IOSE-80 cells by qRT-PCR. (B) Expression levels of PTPRD-AS1 in CAOV3 cells transduced with siRNA by qRT-PCR. (C–F) CCK8 assay,
colony formation assay, wound healing assay, and transwell assay in transduced CAOV3 cells. The experiments were repeated at least three times.
The One-way ANOVA was applied for statistical significance, * P < 0.05, ** P < 0.01, *** P < 0.001.
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patients and OC patients (41). SPAG5-AS1 can promote apoptosis

to improve and alleviate podocyte injury (42). CHRM3-AS2 was

highly expressed in glioma cells, and silencing of CHRM3-AS2

expression could inhibit glioma growth (43). AC074286.1 had been

proven as a protective lncRNA in glioma, and its high expression

showed a favorable prognosis (44). The expression of FAM27E3

was up-regulated in thyroid cancer, and the high expressions of

FAM27E3 suggested poor prognosis (45). However, the role of

AC018647.3 remains unexplored in the literature, so future studies

will necessitate investigations to unravel its functions

and mechanisms.

To evaluate the prognostic utility of the model for OC patients,

the OC patients were allocated into two risk groups. KM analysis

revealed the low-risk group had the higher OS. ROC analysis

demonstrated that the TRLs prognostic signature demonstrated

potential in predicting OS. Subsequently, we confirmed the risk

scores were the adverse prognostic factor. In addition, the

nomogram enhanced the applicability of the prognostic model in

clinical practice. The enrichment analysis was used to explore the

mechanisms of prognostic TRLs. GO terms revealed these genes

were observably related to fibrillar collagen trimer and collagen

fibrill organization. The KEGG pathway contained proteoglycans in

cancer and PI3K-Akt signaling pathway, etc. These biological

processes and pathways likely contribute to the high-risk group

towards poorer clinical OS.

We investigated the association between the characteristics of

OC tumors and immune infiltration. The high-risk group had

higher stromal score and estimate score, which might mean the

activation of diverse biological behavior within the tumor

microenvironment (46, 47). In addition, we find the levels of

regulatory T cells (Tregs) were comparatively higher in the high-

risk group, while the abundance of activated CD8 T cells and

monocytes was the opposite by ssGESA. CIBERSORT analysis

revealed that the high-risk group had significantly higher levels of

M2 macrophages. Tregs are connected with dampening excessive

immune activation and preserving immune homeostasis (48).

Excessive activity of Tregs has the potential to promote the

development of tumors (49). The strategic targeting of Tregs to

restore a pro-inflammatory and immunogenic tumor

microenvironment has gained increasing attention as an attractive

approach for cancer treatment (50). CD8 T cells are the primary

effector cells crucial for anti-tumor responses in immunotherapy.

The phenomenon of CD8 T cell “exhaustion” frequently results in

the loss of control and advancement of tumors (51). Monocytes,

integral components of the mononuclear phagocyte system within

the innate immune system, are crucial regulators of cancer initiation

and progression. Distinct subsets of monocytes undertake diverse

functions, contributing to both pro-tumoral and anti-tumoral

immune responses (52). The expression of M2 macrophages is

associated with a poor prognosis of OC (53). The study revealed

that M2 macrophages stimulated the proliferation of OC cells, a

process associated with the elevated expression of MMP9 (54). We

observed discrepancies between the outcomes of ssGSEA and

CIBERSORT analyses, which may point to contradictions. The
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varying levels of immune activity could potentially account for

the poor prognosis observed in high-risk OC patients. It is

noteworthy that the connection between the risk stratification of

TRLs and immune response has not yet been verified. Elucidating

the underlying mechanisms of this association is a valuable area for

future investigation.

TMB is a critical measure of the tumor’s mutational load,

which is translated into antigens that are presented to T cells. An

elevated TMB can lead to the production of a greater number of

neoantigens, increasing the chances of T cell recognition. This

increased recognition may, in turn, enhance the efficacy of

treatments involving immune checkpoint inhibitors by

bolstering the immune system’s response against the tumor (55,

56). TMB levels are becoming widely acknowledged as a sensitive

indicator predicting clinical responses to immunotherapy across

diverse cancer types (57). Overall, TMB levels serve as a reflection

of effective immune activation, with research indicating that

higher TMB levels are associated with a greater likelihood of

benefiting from immunotherapy (58). To investigate the essential

roles of TMB in OC through somatic mutation analysis, we

identified somatic mutations in 247 patients, with 137 (99.28%)

in the high-risk group and 140 (99.29%) in the low-risk group.

Consistent with findings from other studies, the TP53 gene had

the highest mutation frequency (59). Moreover, The high-TMB

group exhibited superior survival rates in OC, corroborating

findings from the previous study (60). Interestingly, the high-

TMB combined with the low-risk group demonstrated the highest

OS rate, demonstrating that the low-risk group might derive more

significant benefits from immunotherapy.

Additionally, we looked at patients’ responses to drug

sensitivity, assessed through IC50 values. It is noteworthy that the

above anti-tumor drugs were more sensitive to the low-risk group.

In our subsequent analysis, we explored the correlation between

PTPRD-AS1 expression and the sensitivity to the above anti-tumor

drugs. Our findings indicated that patients with elevated PTPRD-

AS1 levels exhibited a significantly better therapeutic response to

Rapamycin and Dasatinib compared to those with lower levels.

Rapamycin, a multifaceted immunosuppressant, has demonstrated

therapeutic potential in the treatment of OC. Its antitumor activity

is mediated through the inhibition of the mTOR signaling pathway,

a critical cellular regulator of growth and proliferation (61, 62).

Dasatinib, a potent tyrosine kinase inhibitor, has exhibited

antitumor effects against OC (63). Collectively, these results

indicate that patients with elevated levels of PTPRD-AS1 may

respond more favorably to the therapeutic effects of Rapamycin

and Dasatinib.

We verified six prognostic genes by qRT-PCR. The PTPRD-

AS1, SPAG5-AS1, CHRM3-AS2, AC074286.1, FAM27E3 and

AC018647.3 expression levels were significantly over-expressed in

OC cell lines (SKOV3, A2780, CAOV3) in comparison to normal

IOSE-80 cells. Notably, PTPRD-AS1 knockdown decreased cell

proliferation, migration, and invasion in OC. In addition, we

found a significant correlation between elevated PTPRD-AS1

expression and a poorer prognosis. And, PTPRD-AS1 was closely
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related to the immune cells. These results demonstrate that PTPRD-

AS1 might serve as an efficient biomarker in OC.

Our study holds distinctive advantages. First, our prognostic

model allows for a more nuanced understanding of the interactions

between TRLs and patient outcomes. The risk of disease

progression and prognosis for patients is evaluated by integrating

clinical data with the expression levels of TRLs. Second, our model

proposes a high-low risk stratification of patients and assesses their

susceptibility to anti-cancer drugs as well as the efficacy of

immunotherapy, which can facilitate more accurate treatment

approaches and follow-up plans, providing the basis for

personalized management and treatment strategies. Furthermore,

our research has uncovered a novel biomarker for OC, PTPRD-

AS1, which could be instrumental in identifying high-risk

populations. It has the potential to enhance both the sensitivity

and specificity of early diagnostic approaches, thereby improving

the detection rate among at-risk individuals.

There are still some limitations to our study. First, aside from

PTPRD-AS1, the remaining 5 TRLs need further experimental

verification to confirm their roles. Second, our analysis was

confined to the TCGA database, which means that our TRLs

prognostic model needs to be validated using external datasets

and ideally tested to test the predictive power of the model in a

multicenter, large-scale clinical trial. In addition, achieving

personalized precision studies depends on the integration of

varied datasets, including clinical and multi-omics study data.

Undoubtedly, our future research will be conducted in subsequent

papers, including in vitro and in vivo experimental studies to better

determine the capabilities of TRLs and mitigate the development of

OC. We also need to collect blood and tissue samples from OC

patients and integrate metabolomics and proteomics for

comprehensive detection and analysis. This study is the first to

verify the therapeutic potential of PTPRD-AS1 in OC. However, the

precise mechanism by which PTPRD-AS1 influences prognosis,

particularly its relationship with immune cell infiltration, remains

to be elucidated. To explore this, We plan to examine the

transcriptional effects of PTPRD-AS1 by conducting an RNA

sequencing (RNA-seq) analysis. This will be complemented by

the GO analysis to identify and characterize the functional roles

of differentially expressed TRGs, providing insights into the

mechanism of PTPRD-AS1. We will conduct flow cytometry

assays to evaluate the impact of PTPRD-AS1 knockdown on the

expression of OC cell surface markers. Additionally, we will co-

culture these cells with peripheral blood mononuclear cells

(PBMCs) or tumor-specific T cells to measure cytotoxic effects

and the proliferation of immune cells. Immunohistochemical

staining will be utilized to examine the spatial distribution and

concentration of immune cells within tumor tissues, including CD8

+ T cells, Monocytes, and Tregs. It is important to note that this

study does not include drug-related validation. Consequently,

future research will focus on pharmacokinetic studies to assess

drug delivery, distribution, and accumulation of Rapamycin and

Dasatinib in OC tissues.
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