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Investigating the relationship
between the immune response
and the severity of COVID-19: a
large-cohort retrospective study
Riccardo Giuseppe Margiotta1†, Emanuela Sozio2†,
Fabio Del Ben3,4*, Antonio Paolo Beltrami3,4, Daniela Cesselli 3,4,
Marco Comar3, Alessandra Devito3, Martina Fabris3,4,
Francesco Curcio3,4, Carlo Tascini2,3 and Guido Sanguinetti 1

1Physics Department, International School for Advanced Studies (SISSA), Trieste, Italy, 2Infectious
Disease Unit, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy, 3Department of
Medicine (DMED), University of Udine, Udine, Italy, 4Department of Laboratory Medicine, ASU FC,
Udine, Italy
The COVID-19 pandemic has left an indelible mark globally, presenting

numerous challenges to public health. This crisis, while disruptive and

impactful, has provided a unique opportunity to gather precious clinical data

extensively. In this observational, case-control study, we utilized data collected at

the Azienda Sanitaria Universitaria Friuli Centrale, Italy, to comprehensively

characterize the immuno-inflammatory features in COVID-19 patients.

Specifically, we employed multicolor flow cytometry, cytokine assays, and

inflammatory biomarkers to elucidate the interplay between the infectious

agent and the host’s immune status. We characterized immuno-inflammatory

profiles within the first 72 hours of hospital admission, stratified by age, disease

severity, and time elapsed since symptom onset. Our findings indicate that

patients admitted to the hospital shortly after symptom onset exhibit a distinct

pattern compared to those who arrive later, characterized by a more active

immune response and heightened cytokine activity, but lower markers of tissue

damage. We used univariate and multivariate logistic regression models to

identify informative markers for outcome severity. Predictors incorporating the

immuno-inflammatory features significantly outperformed standard baselines,

identifying up to 59% of patients with positive outcomes while maintaining a false

omission rate as low as 4%. Overall, our study sheds light on the immuno-

inflammatory aspects observed in COVID-19 patients prior to vaccination,

providing insights for guiding the clinical management of first-time infections

by a novel virus.
KEYWORDS
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1 Introduction

The COVID-19 pandemic had a devastating impact worldwide,

causing significant morbidity and mortality. The strain on

healthcare systems has been particularly pronounced, with

hospitals reaching their capacity, especially for intensive care.

Notably, the virus has disproportionately affected certain

demographic groups, revealing stark disparities in health

outcomes (1). The reasons for these disparities are multifaceted,

encompassing socioeconomic and genetic factors, pre-existing

health conditions, and, potentially, differences in immune

responses. While our comprehension of the complex interplay

between SARS-CoV-2 and the human immune system has

improved over the years, the picture is still incomplete. During

the early phase of the pandemic, it became evident that the severity

of COVID-19 was influenced by the virus itself as well as the host’s

immune response. An overactive or dysregulated response in some

individuals led to severe disease and even death, while others

exhibited a more controlled response leading to a better outcome

(2, 3). The mechanisms governing these varied responses remain

incompletely understood, emphasizing the need for in-depth

studies on the interaction between the virus and the

immune system.

Understanding the immune-inflammatory response to COVID-

19 is also crucial for gaining insights into related diseases. One

important example is sepsis, a severe condition that can be caused

by bacteria, fungi, or viruses, which currently lacks a specific

treatment (4). COVID-19 hospitalized patients should intrinsically

be regarded as septic: the majority of critically ill patients (78%) met

Sepsis-3 criteria for septic shock with acute respiratory distress

syndrome (ARDS) as the most frequent organ dysfunction (88%)

(5, 6). Recent advances in understanding sepsis have led to the belief

that the majority of sepsis-related deaths are not caused by the initial

hyperinflammatory state, but rather by the suppression of the

immune system, known as sepsis-induced immunoparalysis (7).

One of the mainstays of treatment for severely ill COVID-19

patients on supplemental oxygen has been glucocorticoids, which

are anti-inflammatory and immunosuppressive drugs (8). However,

for some COVID-19 and septic patients, immunostimulation rather

than immunosuppression can be a more appropriate approach:

understanding the underlying mechanisms of disease progression is

essential to prevent inappropriate treatments. Furthermore, a deeper

understanding of the immune response to SARS-CoV-2 could aid in

developing predictive tools to identify individuals at risk of severe

outcomes. This would be extremely important for prioritizing

hospitalizations and allocating healthcare resources. Clinical scores

have been utilized as a method for predicting outcomes and

stratifying risks, such as the 4C Mortality Score, and they have

shown promising results (9, 10).

Throughout the pandemic, our hospital, the Ospedale Santa

Maria della Misericordia of Udine (Italy), has witnessed a large

number of hospitalizations among COVID-19 patients, presenting

an unprecedented opportunity to accumulate extensive information

about a single disease. We therefore used the collected clinical data
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to create a comprehensive retrospective database, the MANDI

registry (“MAnagement coroNavirus Disease In hospital registry”

– authorization of DG, decree n. 957, 10/09/2021). This database

has allowed us to delve into the study of immune status and identify

mid-regional pro-adrenomedullin (proADM) as an effective

biomarker for predicting outcomes, in association with lactate

dehydrogenase (LDH) and C-reactive protein (CRP) (11, 12).

Additionally, we have investigated the role of cytokines in the

setting of COVID-19-related pericarditis (13) and employed

machine learning techniques to develop predictive tools while

deepening our understanding of cytokines and serum proteomics

(14, 15). Building upon these achievements, in the present paper we

aim to provide a more comprehensive study of the immuno-

inflammatory profiles of COVID-19 patients. Our focus is on

analyzing the distribution of monocyte and lymphocyte

populat ions observed during the infect ion, ut i l iz ing

immunological data obtained by flow cytometry. Additionally,

our analysis includes serological biomarkers (CRP, proADM, and

LDH), as well as cytokines, thus covering different aspects of the

host’s immuno-inflammatory response. We believe that a better

comprehension of the pathophysiology of COVID-19 could provide

insights into the broader management of sepsis. The contribution of

this study is twofold. Firstly, we present a detailed phenotypic

characterization of COVID-19 patients, with an emphasis on viral

etiology, shedding light on the specific immune cell profiles

associated with the infection. Secondly, we conduct a predictive

analysis to identify the most informative biomarkers for predicting

patient outcomes, using several clinical scores as baselines

for comparison.

The rest of the manuscript is organized as follows: in Sec. 2, we

characterize the patients’ immune-inflammatory response through

descriptive statistics. Sec. 3 presents our analysis aimed at predicting

patient outcomes. Given the multifaceted nature of our analyses

across different data types, we discuss the results within their

respective sections as they are presented. Additionally, we provide

a comprehensive summary of the main findings and a broader

discussion in Sec. 4. Finally, a detailed description of the materials

and methods employed in our study is provided in Sec. 5.
2 Immuno-inflammatory profiles of
COVID-19 patients

The data collection process was conducted between March 2020

and April 2021, covering the first three waves of the pandemic. The

dataset consists of approximately 900 records and includes a range of

variables collected at hospital admission. These variables encompass

demographic details, individual comorbidities, monocyte and

lymphocyte counts, and, for smaller subsets of patients, cytokines

and serological biomarkers measurements. Importantly, none of the

patients had been vaccinated against SARS-CoV-2 at the time of data

collection. Below is a complete list of all the immuno-inflammatory

features considered in this study, along with the abbreviations used

throughout the manuscript:
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• flow cytometry (FC set): counts of white blood cells (WBC),

monocytes (Mono), lymphocytes (Lymph), T and B cells

with corresponding CD positivity (CD3, CD4, CD8, CD19),

natural killer cells (NK), recent thymic emigrants (RTE),

the percentage of monocytes, CD4, and CD8 positive cells

expressing HLA-DR (HLA+
%Mono, HLA+

%CD4, HLA+
%CD8,

respectively), the percentage of RTE-CD4 cells (RTE%CD4),

and the monocytes HLA-DR mean intensity fluorescence

(HLA+IFMono).

• cytokines (CK set): interleukin 10 (IL10), IL1-b (IL1B),

sIL2R-a/sCD25 (IL2R), interleukin 6 (IL6), interleukin 8

(IL8), chemokine IP10/CXCL10 (IP10), and interferon-g
(INF-g).

• biomarkers (BM set): mid-regional pro-adrenomedullin

(proADM), a marker of endothelial response to

inflammation and tissue damage, lactate dehydrogenase

(LDH), a marker of cell proliferation and/or damage, and

C-reactive protein (CRP), a marker of inflammation.
We also collected flow cytometry and demographic data from

approximately 370 asymptomatic outpatients, referred to as the

control set in our analysis. Importantly, the control set has statistical

similarities with a smaller cohort of healthy individuals (around 90

cases), as shown in Supplementary Figure 2. For hospitalized

patients, we collected information on outcomes, including

survival status, as well as the treatments they received. Disease

severity was assessed using a 4-point ordinal scale, based on the

World Health Organization’s guidance (16), which we refer to as

the WHO scale.

Depending on data availability, we also applied the Charlson

Comorbidity Index and four clinical indices as baseline scores to

evaluate patients ’ conditions at hospital admission, as

detailed below:
• CCI [Charlson Comorbidity Index (17)]: though not a

conventional score, it is used to predict the ten-year

mortality for patients with various comorbid conditions.

Each condition is assigned a score of 1, 2, 3, or 6, depending

on the associated risk of mortality.

• SOFA [Sequential Organ Failure Assessment (18)]: assesses

six organ systems (respiratory, cardiovascular, hepatic,

coagulation, renal, and neurological). It is used for

mortality prediction in intensive care unit patients (19)

and for the diagnosis of sepsis (18).

• NEWS [National Early Warning Score (20)]: evaluates the

severity of a patient’s illness and indicates the need for

critical care intervention (21). It assesses respiration rate,

oxygen saturation, systolic blood pressure, pulse rate, level

of consciousness, and temperature.

• qCSI [Quick COVID-19 Severity Index (22)]: based on

respiratory rate, pulse oximetry, and speech evaluation, it

predicts the 24-hour risk of critical respiratory illness in

COVID-19 patients.

• 4C [Coronavirus Clinical Characterisation Consortium

mortality score (23)]: incorporates age, sex, number of

comorbidities, respiratory rate, peripheral oxygen
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saturation, level of consciousness, urea level, and CRP to

predict the in-hospital mortality of patients admitted with

COVID-19 (24, 25).
In the following sections, we provide a detailed analysis of the

flow cytometry, cytokines, and biomarkers variables, focusing on

their relationships with illness severity (WHO scale), patient age,

and the number of days between symptom onset and

hospitalization (Dtons). It is important to note that Dtons is an

anamnestic variable with certain limitations, as it depends on the

patient’s ability to recognize symptoms and accurately recall when

they first appeared. For our analysis, we included only patients aged

30 to 100 years and with Dtons ranging 0 to 30 days. Patients with a

CCI greater than 6 were excluded to minimize the influence of

confounding factors on the outcomes. The resulting records,

grouped based on the availability of data for the three feature sets

(FC, CK, BM), show homogeneity in characteristics, as summarized

in Table 1, with the exception of sample size, which is largest for the

FC set. However, it should be noted that outpatients tend to be

younger and include a higher proportion of females. For further

details on the data collection process and preprocessing, we refer to

Sec. 5.
2.1 Relationship between immune
response and disease severity

We investigated how flow cytometry measurements, cytokine

levels, and biomarker concentrations varied with the severity of

disease during hospitalization; the results are shown in Figure 1.

Disease severity was categorized using the WHO scale, which

defines severity as mild (1), moderate (2), severe (3), and critical

(4); further details are provided in Sec. 5. Figure 1A illustrates the

flow cytometry features, where we observe a non-monotonic trend

in white blood cell (WBC) counts: WBC are lower in inpatients with

mild disease compared to outpatients (control) and increase as

disease severity worsens among inpatients. Interestingly, the

average number of monocytes (Mono) remains relatively stable

across WHO severity levels, while their activation (HLA+IFMono)

decreases sharply as severity increases. Conversely, a marked

reduction is seen in lymphocyte counts, both in aggregate

(Lymph) and in specific subpopulations such as CD4, CD8, and

NK cells. Given that monocyte counts remain stable and

lymphocyte counts decrease, the observed increase in WBCs with

disease severity is most likely driven by granulocyte populations,

such as neutrophils. Although granulocyte counts were not directly

measured in this study, it is well-established that neutrophil counts

rise significantly in severe inflammatory responses and infections,

including severe COVID-19 cases, contributing to the overall

increase in WBCs as disease severity progresses (26). Notably,

CD19 counts are lower in inpatients compared to the outpatient

control set, although differences across WHO severity levels are

minimal and not significant.

Cytokines show a consistent overexpression relative to reference

values (Figure 1B), with levels rising as WHO severity increases. This

trend is particularly evident for IP10, a pro-inflammatory chemokine
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that recruits immune cells to infection sites, and IL10, an anti-

inflammatory cytokine that helps regulate immune responses and

mitigate excessive tissue damage. A sharp increase in IL1B, a key

cytokine in infection response, is also noted, along with IL6, a critical

pro-inflammatory mediator that induces most acute phase reactants

and is closely linked to CRP (27, 28). While recent studies have

shown that patients with severe COVID-19 tend to have lower levels

of interferon-gamma (IFN-g) compared to those with milder forms of

the disease (29, 30), in our analysis IFN-g shows a moderate (non-

significant) increase with disease severity. Overall, the rising cytokine

levels are consistent with the well-documented “cytokine storm”

phenomenon observed in COVID-19 patients, characterized by

elevated levels of both pro-inflammatory signals (IL6, IL8, and

IP10) and immunomodulatory signals (IL10 and IL2R) (31, 32).

Similarly to cytokine levels, all analyzed biomarkers display

elevated concentrations and an upward trend with increasing WHO

severity levels (Figure 1C). This trend is particularly pronounced for

lactate dehydrogenase (LDH) and C-reactive protein (CRP), both of

which are widely recognized as markers of systemic inflammation.

The strong correlation between these biomarkers and WHO

severity levels suggests greater systemic involvement in more

severe cases of COVID-19. Notably, pro-adrenomedullin

(proADM), despite being a well-established predictor of patient

outcomes in previous studies (11, 33), exhibits only moderate

variation across the WHO scale in our dataset.

Interestingly, the age distribution of patients shows no

significant variation when stratified by WHO severity levels

(Figure 1D). This suggests that within the studied cohort, age is

not a strong determinant of the risk of developing severe COVID-

19 symptoms. Although this appears to contradict earlier findings

that linked older age with increased disease severity (34), it is

important to clarify that those studies referred to age-related risks in

terms of severe outcomes – such as in-hospital mortality, case

fatality, and hospitalization – rather than the severity of the disease

symptoms themselves. Additionally, Figure 1D shows that patients
Frontiers in Immunology 04
who develop milder forms of COVID-19 tend to arrive at the

hospital earlier (i.e. have a shorter Dtons) compared to those who

progress to more severe illness. Finally, it is important to note that

the majority of hospitalized patients reached WHO level 3

(Figure 1E), which represents a critical point between patients

with mild to moderate symptoms and those with critical

conditions. This WHO level includes both patients with positive

outcomes (recovery) and those with negative outcomes (death or

worsening), highlighting the complexity of assessing disease severity

based solely on clinical presentation. This underscores the challenge

of predicting outcomes at this stage, as WHO level 3 encompasses a

wide range of disease trajectories.
2.2 The impact of age on the
immune response

Increased age has been reported as a significant factor in severe

COVID-19 outcomes across several studies (34). Indeed, aging is

frequently associated with immunosenescence, a process

characterized by a decline in immune cell function and diversity,

which weakens a person’s ability to mount effective immune

responses (35). In this study, we aimed to identify the specific

aspects of the immune system most affected by the SARS−CoV−2

viral infection, while also considering the role of immunosenescence.

To this end, we analyzed the rolling median of each immune feature

over a 15-year half-window, with the results presented in Figure 2.

Additionally, we conducted a quantitative comparison between

patients aged 40 to 70 years and those aged 70 to 100 years, as 70

years aligns approximately with the median age of hospitalized

patients (Figure 2D). A direct comparison between the cohorts of

inpatients and outpatients is provided in Supplementary Figure 1.

Figures 2A illustrates the flow cytometry features. We observe

that the median counts of white blood cells (WBC) and natural

killer cells (NK) remain relatively stable across the age spectrum,
TABLE 1 Demographics and clinical characteristics, for all records (FC set), and subsets of the FC set with measurements of cytokines (CK set) and
serological biomarkers (BM set).

outpatients

set N sex (female) age [Q2(Q1-Q3)] Dtons [Q2(Q1-Q3)] CCI < 2 NANs

FC 367 58.3% 51 (36-61) – – 22.1%

inpatients

set N sex (female) age [Q2(Q1-Q3)] Dtons [Q2(Q1-Q3)] CCI < 2 NANs

FC 788 33.9% 68 (58-76) 9 (7-12) 20.3% 3.8%

CK 297 34.3% 67 (56-77) 9 (7-12) 22.7% 0.9%

BM 539 35.1% 68 (58-76) 9 (7-12) 20.5% 6.9%

set SOFA > 1 NEWS > 4 qCSI > 6 4C > 8 WHO > 2 OTI+death

FC 63.0% 28.3% 2.0% 48.7% 63.2% 24.1%

CK 61.4% 22.8% 0.7% 46.5% 58.0% 23.6%

BM 60.5% 24.0% 1.7% 51.0% 57.9% 20.8%
Only records with less than 50% missing data (NANs) were included in each set. Dichotomous variables are presented as percentages of available data. Numerical variables are described by the
median (Q2), first (Q1), and third quartile (Q3). The cutoff of the scores are those identified in the literature as pathological. Dashes indicate missing information.
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with values near the lower end of the reference range. Monocytes

show a slight decline with age, both in absolute numbers (Mono)

and in functionality (HLA+IFMono). In contrast, lymphocytes

(Lymph) display a pronounced decrease with age, falling below

the reference range, particularly for recent thymic emigrants (RTE)

and CD19 cells. This reduction suggests a trend towards

granulocytosis with increasing age. Interestingly, the percentage of

CD4 and CD8 cells expressing HLA-DR increases with age,

indicating a reduction of inactive lymphocytes, though overall

lymphocyte activity may still be diminished in older patients.

Further analysis of CD4 and CD8 intensity fluorescence
Frontiers in Immunology 05
(HLA+IF) would be required to confirm this observation. The

relative increase of HLA+
%CD4 and HLA+

%CD8, alongside a

reduction in CD19, could indicate a shift towards a more cellular-

based immune response rather than a humoral one. These trends

are also seen in the younger cohort of outpatients, suggesting that

immunosenescence may occur independently of disease severity

(Supplementary Figure 1). However, outpatients exhibit higher

lymphocyte counts, with a less pronounced decline with age,

particularly in RTE and CD19 cells. Additionally, their monocyte

counts do not show significant age-related changes. Remarkably,

unlike inpatients, outpatients do not experience a reduction in
FIGURE 1

Immune response and disease severity. Boxplot of flow cytometry variables (A), cytokines (B), biomarkers (C), age and Dtons (D), for patients stratified
by the highest disease severity level reached during hospitalization (see legend). Measurements were taken at hospital admission. Boxes span first to
third quartiles, with the horizontal bar representing the median. The percentage change of the median between severity levels is shown on the right
of each plot (example: the WBC median is 8% lower in patients with mild disease compared to outpatients). Reference values for healthy individuals
are shown at the top-right of plots with no control cohort. (E) Number of hospitalized patients across disease severity levels (WHO scale).
Measurement units: white blood cells (WBC) and related subpopulations (Lymph, Mono, CD3, CD4, CD8, NK, CD19, RTE): U/µL; cytokines (IL10, IL6,
IL8, IL1B, IL2R, IP10, INF-g): pg/mL; lactate dehydrogenas (LDH): U/L; mid-regional pro-adrenomedullin (proADM): nmol/L; C-reactive protein (CRP):
mg/L.
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CD4 and CD8 cell counts, though they still show an increase in

HLA+
%CD4 and HLA+

%CD8 with age, similar to inpatients. Overall,

patients who did not require hospitalization demonstrated a

stronger and more consistent immune response across age groups

compared to those who were hospitalized.

Cytokine levels remain high above reference values across all

ages (Figure 2B), reflecting the persistent dysregulated

inflammatory state in COVID-19 patients. Most cytokines exhibit

a moderate upward trend with age, particularly IL8 and IL2R, likely

due to age-related chronic low-grade inflammation, which

manifests as higher baseline cytokine levels (36).

All the inflammatory biomarkers show median values above the

reference range in patients of all ages (Figure 2C). However, pro-

adrenomedullin (proADM) is the only biomarker that exhibits a strong

positive correlation with age. Other studies have highlighted the

interaction between proADM and age in predicting clinical outcomes,

such as cardiovascular events (37), or severe COVID-19 outcomes (11),

but the specific nature of this interaction remains an open question.
Frontiers in Immunology 06
2.3 Temporal patterns of the
immune response

COVID-19 patients typically presented to the hospital

approximately 10 days after symptom onset, a time frame we

refer to as Dtons, although this duration varied from 1 day to over

a month. This variability reflects differences in disease progression

dynamics. A shorter Dtons suggests a rapid, acute onset that required
immediate hospitalization, while larger values suggest a more

gradual disease course, where hospitalization became necessary

only at a later stage.

To explore the relationship between the immune response and

Dtons, we analyzed the rolling median of each feature using a 5-day

half-window across the Dtons range, providing insights into how

these feature change over time. We also compared the distributions

of immune features for two subgroups: those hospitalized within 1

to 10 days and those within 11 to 20 days. It is important to note

that our data does not track individual patients over time; rather, it
FIGURE 2

Immuno-inflammatory features vs age. Running median with a 15-year half-window of flow cytometry variables (A), cytokines (B), and biomarkers
(C) measured at hospital admission. Shaded areas represent the first to third running quartiles. Significant changes in distribution between ages 55
and 85 are expressed as the percentage increase or decrease of the median. Reference values for healthy individuals are shown in the top-right
corner of each plot, where available. (D) Age histogram of hospitalized patients. Measurement units: white blood cells (WBC) and related
subpopulations (Lymph, Mono, CD3, CD4, CD8, NK, CD19, RTE): U/µL; cytokines (IL10, IL6, IL8, IL1B, IL2R, IP10, INF-g): pg/mL; lactate dehydrogenas
(LDH): U/L; mid-regional pro-adrenomedullin (proADM): nmol/L; C-reactive protein (CRP): mg/L.
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provides a snapshot of how each variable correlated with Dtons,
instead of depicting personal disease trajectories.

Despite the inherent variability of Dtons as a self-reported,

anamnestic variable, clear trends emerge (Figure 3). Patients with

higher Dtons show elevated white blood cell (WBC) counts,

monocytes, and CD19 cells, but reduced monocyte activation

(HLA+IFMono) and natural killer (NK) cells (Figure 3A).

Meanwhile, T cell numbers remain relatively stable across the

Dtons range. The rise in WBC counts appears to be driven by

increased monocyte and granulocyte numbers, potentially

compensating for the declining functionality of monocytes.

Although NK and CD19 cell levels are reduced, we observe a

typical immune trajectory over time: as Dtons increases, there is a

shift from innate response (NK) to adaptive immune

activation (CD19).

Cytokine expression levels generally show a declining trend

with increasing Dtons (Figure 3B), particularly IL10, IL1B, and IP10.

Higher cytokine levels in patients with shorter Dtons point to a more

intense hyperinflammatory state early on, while patients with
Frontiers in Immunology 07
longer Dtons still exhibit elevated cytokines, though at reduced

levels, suggesting a waning inflammatory response. This trend

may reflect the natural resolution of inflammation over time, but

longitudinal measurements would be needed to confirm this

interpretation. Finally, lactate dehydrogenase (LDH) levels

indicate that patients who arrive earlier at the hospital experience

less systemic damage (Figure 3C). Similarly, proADM levels are

higher in patients with shorter Dtons, mirroring the behavior of pro-

inflammatory cytokines.

Overall, these findings suggest that inflammation and cytokine

levels are typically elevated when symptoms first appear, and tend

to decrease in patients with slower disease progression who arrive

later at the hospital. This indicates that patients hospitalized shortly

after symptom onset often present with a more acute inflammatory

response, while those admitted later exhibit more advanced

immune responses and greater tissue damage. It is important to

note that this is a cross-sectional analysis, and longitudinal data

would be required to fully understand the dynamics of disease

progression. Nonetheless, these results underscore the importance
FIGURE 3

Immuno-inflammatory features vs days from symptom onset to hospitalization (Dtons). Running median with a 5-day half-window of flow cytometry
variables (A), cytokines (B), and biomarkers (C) measured at hospital admission. Shaded areas represent the first to third running quartiles. Significant
changes in distribution between Dtons of 5 and 15 days are expressed as the percentage increase or decrease of the median. Reference values for
healthy individuals are shown in the top-right corner of each plot, where available. (D) Dtons histogram of the hospitalized patients. Measurement
units: white blood cells (WBC) and related subpopulations (Lymph, Mono, CD3, CD4, CD8, NK, CD19, RTE): U/µL; cytokines (IL10, IL6, IL8, IL1B, IL2R,
IP10, INF-g): pg/mL; lactate dehydrogenas (LDH): U/L; mid-regional pro-adrenomedullin (proADM): nmol/L; C-reactive protein (CRP): mg/L.
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of accounting for immune response dynamics when evaluating a

patient’s clinical condition.
3 Outcome prediction analysis

The ability to mount an effective response to the infection

significantly impacts patients’ prognosis. As discussed in Sec. 2.1,

reduced levels of lymphocytes and NK cells are typically associated

with more severe disease progression, as reflected in the WHO

severity scale. However, while the WHO scale measures the severity

of illness, it does not provide direct information about patient

outcomes, such as mortality. Features strongly linked to disease

severity may not be equally relevant for predicting patient

outcomes, making them less useful for clinical decision-making.

For instance, while pro-adrenomedullin shows only a weak

correlation with WHO severity levels (see Figure 1E), it has been

identified as a powerful predictor of survival rates (11, 12). To

identify the immune-inflammatory markers with the highest

predictive power for clinical outcomes, we focused on classifying

patients based on the combined outcome of death and/or

orotracheal intubation, referred to as the death+OTI outcome. A

visual representation of the immune-inflammatory features and

clinical scores stratified by the death+OTI outcome is provided in

Figure 4. This joint outcome has two advantages over mortality

alone: it increases the number of cases in the minority class (patients

with negative outcomes) and reduces bias introduced by

prioritization for invasive and life-saving interventions.

We employed logistic regression (LR) models for our analysis,

as preliminary tests with non-linear classifiers such as support

vector machines and random forests did not show significant

improvements. Two aspects of the LR models were evaluated:

overall predictive performance, measured by the area under the

ROC curve (AUC), and the ability to accurately identify low-risk

patients. Specifically, we aimed to detect the largest number of

patients who did not experience negative outcomes while keeping

the rate of false negatives below a predetermined low threshold. This
Frontiers in Immunology 08
second evaluation criterion is particularly important for

establishing priority protocols during critical situations, such as

pandemic outbreaks. We set a minimum negative predictive value

(NPV) requirement of 0.97 for classifiers on the training set, with

NPV values above 0.95 considered acceptable for the test set.

Although these thresholds are illustrative, it is important to note

that test NPV is typically lower than a training NPV set to a very

high value, and the required threshold must be adjusted

accordingly. Detailed information on data preprocessing and

model specifications is provided in Sec. 5.
3.1 Cytokine-based univariate models
outperform baseline indices

Firstly, we evaluated the predictive power of individual features

using univariate LR models, excluding missing data from the

analysis. The results are displayed in Figure 5. Among the clinical

indices, the Charlson Comorbidity Index (CCI) and the 4C score

show the highest AUC values (Figure 5A). For further comparisons,

we use the 4C score as the best baseline predictor and its associated

AUC as a reference (AUCref = 0.69). Remarkably, several flow

cytometry features, cytokines, and biomarkers match or outperform

this baseline. Among the flow cytometry features, lymphocytes

(RTE, CD3, CD4, Lymph) and monocyte activation (HLA+

IFMono) emerge as the strongest predictors, with RTE and CD3

achieving AUC values equal to AUCref. Interestingly, granulocytes

tend to be more highly expressed in patients with negative outcomes

(Figure 4), contrasting with the lower levels of monocytes and

lymphocytes. As a result, the total WBC count has limited

predictive power compared to these three subpopulations. It is

important to note that granulocyte counts were not measured

directly in this study; instead, they are estimated by subtracting

lymphocyte and monocyte counts from the total WBC count. The

reference AUCref value is significantly exceeded by mid-regional

pro-adrenomedullin (proADM), which confirmed its strength as a

predictor of clinical outcomes, and by several cytokines. IL8 and
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IL10 are the top performers, with the highest AUC values of all

univariate LR models (AUC = 0.79). IL8 is a potent,

proinflammatory chemokine that induces degranulation of

neutrophils and adhesion of polymorphonuclear cells to the

endothelium. It is released by various cell types in response to

inflammation, including monocytes, macrophages, and neutrophils

(38). This pro-inflammatory mechanism mediated by IL8 likely

explains the increase in both granulocytes and IL8 levels observed in

patients with poor outcomes. In contrast, IL10 plays an essential

role in inducing an immunoregulatory phenotype in B cells,

exerting significant anti-inflammatory and immunosuppressive

effects (39).

Finally, we confirm that age is a relatively good predictor,

consistent with previous reports (40, 41), though its AUC is

slightly below AUCref. In contrast, sex and Dtons show

significantly lower predictive power compared to the best baseline

predictor. To summarize, poor outcomes are strongly associated

with high cytokine expression, increased endothelial dysfunction

(high proADM), cell injury (high LDH), and immune deficiency
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(IL10 overexpression, reduced lymphocytes, monocytes, and

monocyte activation).

Identifying low-risk patients with high confidence using only

one feature at a time poses a significant challenge, and none of the

baseline clinical indices proves useful for this task (Figure 5B).

Instead, the proADM-based model achieves a remarkable result,

identifying 44% of negative cases with a false omission rate of only

3%. Low-risk patients can also be identified using cytokine

expression levels, particularly IP10 (specificity = 0.31). Instead,

among all flow cytometry features, only recent thymic emigrants

(RTE) and monocyte activation (HLA+ IFMono) fulfill the minimum

NPV requirement on the test set, but with low specificity. The

identified low-risk cutoff values are reported in Table 2. The score

histogram of RTE, IP10, and proADM-based models are depicted in

Figure 5C, where the vertical dashed line marks the threshold below

which patients are considered at low risk. Remarkably, only 30% of

outpatients would be correctly classified as low-risk with the RTE-

based predictor. As we will see, this prediction improves

dramatically when using multivariate models.
TABLE 2 Best univariate predictors for low-risk patient identification.

RTE IL10 IL2R (103) IL6 IL8 IP10 (102) proADM CRP

range 3 - 346 2.3 - 85.7 0.8 - 11.0 2 - 504 9 - 255 1 - 36 0.45 - 3.34 1 - 269

cutoff ≥ 263 ≤ 5.5 ≤ 1.9 ≤ 6.9 ≤ 19 ≤ 6.5 ≤ 0.84 ≤ 9

NPV 0.93 0.96 0.95 0.96 0.96 0.96 0.97 0.94

specificity 0.04 0.20 0.16 0.16 0.17 0.31 0.44 0.10
Columns correspond to the features representing the best predictors. Rows show the observed range (1st–99th quantiles), the low-risk cutoff threshold, and the associated negative predictive
value (NPV) and specificity for each feature. The cutoff and specificity of the best predictor (proADM) are highlighted in bold. Measurement units: RTE: U/µL; cytokines (IL10, IL2R, IL6, IL8,
IP10): pg/mL; proADM: nmol/L; CRP: mg/L.
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Performance of univariate predictive models for the combined outcome event of death and/or orotracheal intubation. (A) Area under the ROC curve
(AUC) for each predictor variable shown on the x-axis. (B) Negative predictive value (NPV) and fraction of low-risk patients correctly identified
(specificity) for predictor variables on the x-axis (as in panel A), conditioned on train NPV ≥ 0.97. Crosses on the x-axis denote models that do not
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3.2 Multivariate models improve
identification of low-risk patients

The immuno-inflammatory features provide complementary

information on the host’s response to the infection and, when

combined, can lead to more accurate predictions. To this end, we

employed multivariate LR models using the following feature sets.
Fron
• FC: T CD3 cells (CD3), percentage of RTE-CD4 cells

(RTE%CD4), B CD19 cells (CD19), monocytes (Mono),

monocyte HLA-DR intensity fluorescence (HLA+IFMono),

granulocytes (Granulo);

• CK: interleukins 1-b (IL1B), sIL2R-a/sCD25 (IL2R), 6

(IL6), 8 (IL8), 10 (IL10);

• BM: mid-reg. pro-adrenomedullin (proADM), lactate

dehydrogenase (LDH), C-reactive protein (CRP).
We evaluated these sets individually and in combination with

the demographic set (Dem), including sex, age, and Dtons. Note that
FC and CK are subsets of the sets introduced in Sec. 2, which we

selected for their clinical relevance and predictive power while

controlling for collinearity. Only cases with less than 50% missing

data for each set were included in the multivariate analysis

(Supplementary Table 1), and missing values were imputed using

the KNN method.

The results of the multivariate prediction are summarized in

Figure 6, where panel A shows the AUC of multivariate logistic

regression models, and the corresponding univariate models using

variables from the FC, CK, BM, and Dem sets. The best

performances are again obtained using cytokines and serological

biomarkers. In particular, the CK+Dem model achieves an

AUC = 0.87, a significant improvement over the best baselines

(AUCref = 0.69). This model also performs best in identifying low-

risk patients, with specificity = 0.59 and NPV = 0.96 (Figure 6B),

meaning that it correctly detects 59% of low-risk patients while

keeping the false negative rate at just 4%. The FC+Dem

(AUC = 0.78) and BM+Dem (AUC = 0.81) models also show

significant improvements over the baseline. Figure 6C provides a

visual representation of these results, showing score histograms for

the FC+Dem, BM+Dem, and CK+Dem models. For the FC+Dem

model, the low-risk threshold achieves 86% accuracy on the control

set, a marked improvement compared to the best univariate

predictor from the FC set, the RTE-based model, which

accurately classifies only 30% of control patients using the same

criterion (Figure 5C). The relative importance of each feature in the

FC+Dem score is depicted in Figure 6D, which shows the

normalized coefficients of the model. Larger positive (or negative)

values indicate stronger positive (or negative) associations with the

outcome. All features contribute to the model, as none of the

coefficients are zero. The most important negatively associated

features are HLA+ IFMono, and CD3, while positive associations

are observed with age and granulocytes. Interestingly, ranking

features by coefficient magnitude does not correspond directly to

their univariate AUC rankings (Figure 5A). For example, monocyte

activation (HLA+ IFMono), while the 4
th-best univariate predictor, is
tiers in Immunology 10
the most important variable in the FC set within the multivariate

model. This indicates that the FC+Dem model captures non-trivial

interactions between features. From this picture, it is clear that the

immune cell state at hospitalization is highly informative of disease

progression. However, the most significant feature in the FC+Dem

model is age, a proxy variable that does not directly reflect the

immune response. This is not the case for the BM+Dem and

CK+Dem models (Figures 6E, F), validating the observation that

cytokines and inflammatory biomarkers hold the most relevant

information about disease progression. Finally, we observe that sex

and Dtons show negative associations with outcomes across all

models (Figures 6D–F), suggesting a higher likelihood of positive

outcomes for females, as reported in other studies (42, 43), and for

patients hospitalized later after symptom onset.

3.2.1 Outcome prediction across
population strata

We conclude our analysis by evaluating the prediction results

after stratifying the population by age (≶ 70 years) and Dtons (≶ 10

days). First, we note that predicting outcomes becomes more

challenging for patients over 70 years of age, likely due to

increased fragility in this group. Indeed, models using flow

cytometry features (FC, FC+Dem) and biomarkers (BM,

BM+Dem) have significantly higher AUC for the younger cohort

(Figure 6G). In contrast, the multivariate predictors using cytokines

(CK, CK+Dem) show smaller difference in AUC between the two

age groups, reaching AUC = 0.87 for the younger cohort. When

stratifying patients by Dtons, predicting outcomes is easier for

patients with Dtons > 10, likely because their more advanced

immune response provides clearer prognostic signals. In

particular, cytokines-based models exhibit the largest variations in

AUC across these strata, with a remarkable AUC = 0.88 for patients

with Dtons > 10 (Figure 6H). Therefore, for patients hospitalized

later after symptom onset, cytokine levels are highly informative for

predicting outcome severity. As expected, adding demographic

features (Dem set) offers only minor improvements when

stratifying by age and Dtons.
4 Discussion

This paper provides a comprehensive description of the

immuno-inflammatory response observed in COVID-19 patients

before vaccination, thus serving as a case study for a first-time

infection by a new virus. Our analysis integrates white blood cell

subpopulations, cytokine expression levels, and serological

biomarkers measured at hospital admission, offering a

multifaceted description of several components of the immune

system and inflammatory pathways. Analyzing these features

together constitutes one of the core strengths of our contribution,

as they are typically studied separately in the literature. From an

overall standpoint, we observed that lymphopenia, compromised

monocyte function, granulocytosis, and heightened cytokine levels

correlated with disease severity and a negative outcome. Older

patients exhibited a more compromised immune response
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characterized by reductions in monocytes, T cells, and B cells,

suggestive of immunosenescence. Remarkably, they also showed

increased percentages of HLA-DR-positive T cells. Similar patterns

were observed in the cohort of asymptomatic outpatients, which,

however, maintained higher lymphocyte levels, with only recent

thymic emigrants and B cells decreasing with age. Additionally,

cytokine expression levels showed a weak positive correlation with

age, while mid-regional pro-adrenomedullin (proADM) levels

strongly correlated with age, possibly due to underlying chronic

low-grade inflammation and endothelial dysfunction that develops

with aging. To investigate the temporal behavior of the immune

response, we considered the number of days elapsed between
Frontiers in Immunology 11
symptom onset and hospitalization (Dtons). Our cross-sectional

analysis revealed a decrease in the effectiveness of monocytes over

time, characterized by an increase in their numbers but a

concurrent decrease in their activation level, as measured by the

mean intensity fluorescence of HLA-DR. We also observed a

reduction in natural killer cells and cytokine levels, higher

concentrations of lactate dehydrogenase (LDH), a marker of cell

injury, and increased activation of the humoral response, as

indicated by B CD19 cells. This pattern mirrors a typical dynamic

evolution of the host’s immune response, suggesting that these

results should be interpreted longitudinally. On the other hand,

patients with different Dtons may manifest intrinsically different
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diseases, where some exhibit a rapid and intense response and

others undergo a slower but more subtle progression, leading to the

need for hospital care at a later stage.

The serum levels of cytokines, whether proinflammatory (IL8,

IP10) or immunomodulatory (IL10), emerged as the most crucial

aspect of the immuno-inflammatory response for predicting

patients’ outcomes. Indeed, cytokine-based logistic regression

models substantially outperformed the best baseline index, the 4C

score, developed to predict in-hospital mortality for COVID-19

patients. Additionally, pro-adrenomedullin proved to be the best

individual predictor for identifying low-risk patients, with a cutoff

of ≤ 0.84 nmol/L corresponding to a specificity of 0.44 and a

negative predictive value (NPV) of 0.97. Importantly, this cutoff

aligns well with those found in other settings (11, 44), underscoring

the robustness of this result. However, we shall remark that

proADM is weakly correlated with the severity level on the WHO

scale, and it may reflect a broader physiological response, not

necessarily specific to the severity of COVID-19. Therefore, using

proADM alone for risk stratification might not fully address

treatment needs specific to COVID-19, such as oxygen-based

therapies. In contrast, cytokine expression levels may provide a

more targeted tool for identifying low-risk patients, as they show

significant correlations with both COVID-19 morbidity and

mortality. Notably, when combining cytokine levels with

demographic information into a single model, we achieved a

remarkable AUC of 0.87. This model also proved very effective in

detecting low-risk patients, reliably identifying approximately 60%

of individuals who may not require hospitalization, while

maintaining a false omission rate of just 4%. Moreover, our

analysis revealed that cytokine-based models can be further

improved when focusing on patients hospitalized later after

symptom onset (Dtons > 10). This finding, if interpreted

longitudinally, suggests that monitoring the evolution of the

cytokine levels through follow-up tests could offer valuable

predictive insights. Lastly, our analysis shows that flow cytometry

features exhibit less predictive power than cytokines (IL6, IP10,

IL10, IL8) and biomarkers (LDH, proADM). Nevertheless, features

such as recent thymic emigrants and T CD3 cells match the

performance of the best baseline predictor, the 4C score. When

integrated into a single model, the flow cytometry features

outperform the 4C score, leveraging non-trivial relationships

between white blood cell subpopulations and thus underscoring

the complexity of the immune response. Notably, in the combined

model, the mean intensity fluorescence (IF) of monocytes HLA-DR

emerges as the most important flow cytometry feature, highlighting

the critical role of cell activation in the immune response. Exploring

HLA-DR IF in lymphocyte subpopulations could further improve

our understanding of the immune response to COVID-19 and other

infectious diseases.
4.1 Limitations

Despite the valuable insights and contributions provided by this

study, several limitations need to be acknowledged. Firstly, our

dataset included measurements of cytokine expression levels and
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serological biomarkers only for subsets of hospitalized patients, with

no corresponding measurements for outpatients or healthy

individuals. Therefore, our control set only encompassed

demographic information and flow cytometry measurements, and

we had to rely on reference values for cytokine expressions and

inflammatory biomarkers. Moreover, due to the limited availability

of information regarding cytokines and biomarkers, we opted to

employ multivariate logistic regression models where these features

are not combined. This approach aimed to prevent further

reduction in dataset size and maintain statistical power in our

analyses. Combining all covariates into a single multivariate

predictor could potentially improve predictive power, though it

would require more advanced feature selection methods to enhance

model interpretability (45). Another limitation is the absence of

external validation for our predictive models. While our study

utilized a large dataset from our hospital, the generalizability of

our findings to other healthcare settings, populations, and other

infectious diseases remains uncertain. As already reported in the

text, it is important to acknowledge the limitation of the Dtons
variable, which relies on the ability of patients to accurately recall

when symptom onset occurred. This variable is thus subject to

significant variability stemming from differences in symptom

perception and memory capabilities of the patients. Furthermore,

we remark that our study was conducted within a specific context

and timeframe, involving patients admitted to our hospital during

the COVID-19 pandemic before the vaccination campaign started.

As the understanding of COVID-19 and its management continues

to evolve, future studies incorporating diverse populations and

settings are needed to validate and expand upon our findings.

Finally, like any observational study, our research is subject to

potential confounders and unmeasured variables. Despite our best

efforts to account and adjust for known factors, there may still be

uncontrolled variables that could influence the results.
5 Materials and methods

5.1 Data collection

This study involves data from patients admitted to the

Infectious Disease ward of the Azienda Sanitaria Universitaria

Friuli Centrale Santa Maria della Misericordia of Udine, a 1000-

bed tertiary-care teaching hospital identified as a regional referral

center for COVID-19 patients. The analyzed records were collected

from March 2020 to April 2021, covering the first, second, and part

of the third pandemic waves. During this period, clinical data from

patients admitted for SARS-CoV-2 were included in a retrospective

registry, namely the “MAnagement coroNavirus Disease In hospital

(MANDI) registry” (authorization of DG, decree n. 957, 10/09/

2021). Patients were enrolled in accordance with the Helsinki

Declaration. Ethical approval was granted from governance

bodies of Friuli Venezia Giulia. The registry included patients

admitted to either the infectious disease clinic or the intensive

care unit, diagnosed with SARS-CoV2 infection through at least one

positive nasopharyngeal swab, confirmed by reverse transcriptase

PCR assays. SARS-CoV2 infection detection on nasopharyngeal
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swabs was based on the presence of unique sequences of virus RNA

by nucleic acid amplification in real-time PCR (RT-PCR). The

genes investigated were the E gene for screening and the RdRp and

N genes for confirmation. RT-PCR was performed using a

LightMixr Modular SARS and Wuhan CoV E-gene kit on a

LightCyclerr 480 II instrument (Roche, Basel, Switzerland). The

specimens were considered positive if the cycle threshold (Ct) value

for at least one of the three genes was ≤ 36. The eligible participants

were aged 18 years or older and had provided informed consent for

the utilization of anonymous clinical data. Hospital admission

involved routine inquiries regarding consent for anonymized

aggregate data for research purposes, facilitated by the General

Electronic Consents (GECO system). Relevant patients’ data were

extracted by a team of physicians from the hospital electronic health

record (INSIEL, Trieste, Italy), anonymized, and recorded on a

cloud-based clinical data management platform (Castor,

Netherlands and USA). All patients had not yet been vaccinated

against SARS-CoV-2.
5.2 Immuno-inflammatory features

Approximately 900 patients underwent lymphocyte and

monocyte immunophenotyping within the first 72 hours of

hospital admission. For identifying the main lymphocyte and

monocyte subpopulations, a multicolor flow cytometry analysis

was performed using the following antibodies: CD45 PerCP-

Cy5.5, CD3, CD4, CD8, CD19, CD56, CD16, and HLA-DR FITC

(BD Biosciences, San Diego, CA, USA). To identify recent thymic

emigrant lymphocytes (RTE), the following antibodies were used:

CD45 V500, CD3 V450, CD31 PE, CD4 APC (BD Biosciences), and

CD45RA PE-Vio770 (Miltenyi Biotec, Germany). Cell acquisition

was performed using the automated FACSCanto II instrument (BD

Biosciences, San Jose, USA), equipped with 488 nm, 633 nm, and

405 nm lasers. For each tube, 50,000 events were acquired. BD

FACS™ 7-color setup beads (BD) were used daily to adjust detector

voltages, set fluorescence compensation, and monitor instrument

performance. Data analysis was conducted using FACSDiva

software (BD Biosciences, San Jose, USA), with cell populations

represented through dot-plot graphs.

Lymphocytes were separated using a combination of two gating

strategies: a physical gate (FSC-A vs. SSC-A) and a lymphocyte gate

(SSC vs. CD45), where the CD45highFSClowSSClow cell population was

selected. T lymphocytes were identified as T CD3+ cells (CD3), B

lymphocytes as CD3−CD19+ cells (CD19), and natural killer cells as

CD3−/CD16+CD56+ cells (NK). T lymphocytes were further

subdivided into helper T lymphocytes, CD3+CD4+ (CD4), cytotoxic

T lymphocytes, CD3+CD8+ (CD8), activated helper T lymphocytes,

CD3+CD4+HLA-DR+, and cytotoxic T lymphocytes, CD3+CD8+HLA-

DR+. The latter two were expressed as a percentage of helper T

lymphocytes (HLA+
%CD4) and cytotoxic T lymphocytes (HLA+

%CD8),

respectively. Monocytes were identified based on their physical

properties and CD45 expression. The activation of monocyte
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populations was quantified in terms of the percentage of HLA-DR–

positive monocytes (HLA+
%Mono), and by the HLA-DR mean

fluorescence intensity, measured in arbitrary units (HLA+IFMono).

RTEs were defined as the subpopulation of CD3+CD4+ lymphocytes

characterized by coexpression of CD45RA and CD31. The absolute

number of lymphocyte and monocyte subpopulations was calculated

by an indirect method based on the number of lymphocytes and

monocytes determined by the hemocytometer. We refer to the flow

cytometry features as the FC set. The same measurements were taken

for approximately 370 asymptomatic outpatients and 90 healthy

individuals. These two cohorts exhibit matching statistics

(Supplementary Figure 2), and we employed the outpatients’ data as

a control dataset for our analysis. The flow cytometry features provide

a comprehensive description of the immune response, encompassing

the innate immune system (Mono, NK), the cell-mediated adaptive

system (CD4, CD8), and the antibody-mediated adaptive system

(CD19). We remark that many of these features are hierarchically

related: WBCs consist of lymphocytes, monocytes, and granulocytes.

Lymphocytes include CD3, CD19, and NK cells. CD3 cells can be

categorized into CD4 and CD8 cells, and RTE cells are a subpopulation

of CD4 cells. It is important to consider these relationships to avoid

collinearity effects.

In our analysis, we also included a broad panel of systemic

inflammatory biomarkers. Among these, we collected data on seven

cytokines: interleukin 10 (IL10), IL1-b (IL1B), soluble IL2R-a/
sCD25 (IL2R), interleukin 6 (IL6), interleukin 8 (IL8), chemokine

IP10/CXCL10 (IP10), and interferon-g (INF-g). This group of

features, referred to as the CK set, includes both pro-

inflammatory (e.g., IL6, IL1B) and immunomodulatory molecules

(e.g., IL10, IL2R) (14). Cytokines were analyzed using a

microfluidic, ultrasensitive, fully automated ELISA method,

employing multiplex customized cartridges on the Ella

Instrument (R&D Systems, Bio-Techne, USA). Two types of

cartridges were used, each capable of measuring 4 cytokines

across 16 samples. This technique proved to be highly precise,

reproducible (with excellent lot-to-lot consistency), and extremely

sensitive, offering up to 4 logs of dynamic range. Detailed

information about Limit of Detection and Limit of Quantification

of each cytokine can be found on the manufacturer’s website

(https://www.biotechne.com). We also collected data on three

standardized biomarkers, which we refer to as the BM set: mid-

regional pro-adrenomedullin (proADM), lactate dehydrogenase

(LDH), and C-reactive protein (CRP). CRP and LDH were tested

in serum by a well-established commercial diagnostic method

(Elecsys, Roche Diagnostics, Basel, Switzerland), while proADM

plasma concentrations were measured in the automated Kryptor

analyzer, using the TRACE technology (Kryptor, BRAHMS,

Hamburg, Germany).

In addition to the immuno-inflammatory features described

above, we collected information on several comorbidities for all

patients enrolled in the study, as well as age, sex, and number of

days elapsed between symptom onset and hospitalization. We refer

to Supplementary Table 2 for a detailed description of the dataset.
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5.3 Preprocessing and statistical analysis

Manually filled databases often contain typos, leading to the

presence of outliers or attributes with no physical meaning. To

minimize the impact of these mistakes and ensure the data’s

homogeneity and cleanliness, we implemented the following pre-

processing steps: we considered patients with age in the range of 30

to 100 years and Dtons between 0 and 30 days. We further filtered

records to include only patients with a CCI score of less than 7, to

mitigate potential confounding factors for the outcome of the

patients and ensure a more accurate description of the immune

response. High CCI scores indicate the presence of significant

comorbidities, which could interfere with the interpretation of

immunological data and may lead to an inaccurate representation

of the true effects of COVID-19 on the immune system. Finally, we

performed a careful inspection of the distributions of features and a

conservative outlier removal step. To detect outliers, we employed a

power transform from scikit-learn (46) to normalize the data

distribution. We then set to NAN data with a z-score of absolute

value larger than 3.

Our characterization of the immuno-inflammatory profiles

entailed multi-dimensional comparisons among various patient

groups. More precisely, we investigated the relationship between

features and developed disease severity by stratifying patients

according to the WHO scale (Figure 1). This scale is based on the

World Health Organization’s guidance (16) and categorizes patients

into four levels as follows:
Fron
1. mild disease: symptomatic patients without pneumonia;

2. moderate disease: patients with clinical signs of pneumonia

with no need for oxygen therapy;

3. severe disease: patients with clinical signs of severe

pneumonia in need of oxygen therapy;

4. critical disease: patients with oxygenation impairment,

acute respiratory syndrome, and/or sepsis.
To detect relevant patterns of the immune response, we also

analyzed the rolling median of all features along two axes: the age

and Dtons of the patients. More precisely, we employed a half-

window of 15 years to examine age-related variations (Figure 2),

comparing the median of two age groups: patients aged 40-70 and

70-100 years. Similarly, we used a half-window of 5 days for the

Dtons (Figure 3) and compared patients with Dtons of 1-10 and 11-20
days. The distributions of different population groups were tested

using the Mann-Whitney U test.
5.4 Outcome prediction

In Sec. 3, we explored the potential of predicting patient

outcomes based on their immune response as measured upon

hospital admission. To this end, we employed both univariate and

multivariate logistic regression (LR) models to predict the joint
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event of death and/or orotracheal intubation, referred to as the

death+OTI outcome. Combining these two events helps to mitigate

an important source of bias: patients’ prioritization for invasive and

life-saving interventions. Moreover, considering this outcome offers

a second advantage: it improves class imbalance, with a negative

event observed in approximately 24% of patients, compared to 17%

when considering death only (Supplementary Table 2). To address

the class imbalance, we used logistic regression models from scikit-

learn with l2 penalty and class weights balanced based on class

frequency. We evaluated univariate LR models by removing records

with missing data, thus capturing the true signal associated with

each variable. We randomly split records into train (70%) and test

(30%) sets, keeping the class and sex frequencies unchanged, and

repeating the process several times to collect performance statistics.

For the multivariate models, we considered different subsets of

features, controlling for collinearity via the variance inflation factor

and domain-based knowledge. Records with more than 50% of

missing data in each feature subset were omitted from the analysis.

The remaining missing data were replaced via KNN imputation

(K = 10, neighbors weighted uniformly), and the least significant

PCA components (with less than 5% of explained variance) were

removed from the data. We combined k-fold cross-validation and

grid-search on each train set to select the regularization strength for

the l2 penalty.

We measured the performance of each logistic regression model

in two ways. First, we computed the area under the ROC curve

(AUC) to quantify the overall predictive power of the classifier.

Second, we evaluated the ability of each classifier to detect the

largest fraction of low-risk patients, i.e., patients with a positive

outcome, while retaining a low false omission rate. Practically, we

set a requirement of a negative predictive value (NPV) of 0.97 on

the train set, with NPV values above 0.95 considered acceptable on

the test set, and we measured the performance in detecting low-risk

patients in terms of specificity.
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SUPPLEMENTARY TABLE 1

Datasets used for the multivariate predictions. Demographic and clinical
characteristics of the datasets employed in the multivariate predictive

analysis (see Sec. 3.2). Records with more than 50% missing data in any
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feature set were excluded from the analysis. The feature sets include flow
cytometry variables (FC set), cytokines (CK set), serological inflammatory

biomarkers (BM set), and demographic information (Dem set). At least 50% of

the Dem set is available for all records. Thus, combining the Dem set with any
of the FC, CK, or BM sets does not reduce the dataset size but affects the

percentage of missing data. Stratified datasets exclude records with missing
information in the stratification variable.

SUPPLEMENTARY TABLE 2

Extended demographics and clinical characteristics of hospitalized patients

and outpatients. Hospitalized patients are also grouped by age, number of
days elapsed between symptom onset and hospitalization (Dtons), and WHO

level. Dichotomous variables (sex, comorbidities, outcomes) are presented as
proportions of occurrences relative to the total number of records with

available data. Numerical variables (age, CCI, immune cell counts, cytokines,
biomarkers) are expressed in terms of median (Q2), first (Q1) and third (Q3)

quartiles, following the format Q2(Q1-Q3). Dashes indicate unavailable data.

Demographics: number of records, age, and proportion of male patients.
Comorbidities: proportion of patients with obesity, hypertension,

cardiovascular disorders (CVDs), dyslipidemia, diabetes, chronic kidney
injuries (CKI), solid and hematologic neoplasms (tumor, oncohematology),

chronic obstructive pulmonary disease (COPD), autoimmunity, hepatopathy,
immunosuppression (primary or secondary). Comorbidities are also

summarized in the Charlson Comorbidity Index (CCI). Immune cells

measured via flow cytometry: white blood cells (WBC), monocytes (Mono),
mean intensity fluorescence of HLA-DR-positive monocytes (HLA+IF Mono),

percentage of HLA-DR-positive monocytes (HLA+ % Mono), lymphocytes
(Lymph), T CD3+ cells (CD3), percentage of CD3+ lymphocytes (CD3%

Lymph), HLA-DR-positive T CD3+ cells (CD3 HLA+), Th CD3+CD4+ cells
(CD4), percentage of CD3+CD4+ lymphocytes (CD4% Lymph), percentage

of HLA-DR-positive CD4 cells (HLA+ % CD4), recent thymic emigrants (RTE)

and associated percentage of CD4 cells (RTE % CD4), Tc CD3+CD8+ cells
(CD8), percentage of CD3+CD8+ lymphocytes (CD8% Lymph), percentage of

HLA-DR-positive CD8 cells (HLA+ % CD8), B CD3−CD19+ cells (CD19),
percentage of CD3−CD19+ lymphocytes (CD8% Lymph), T NK CD3−CD56/

CD16+ cells (NK), and percentage of CD3−CD56/CD16+ lymphocytes (NK %
Lymph). Cytokines: interferon-g (INF-g), interleukin 10 (IL10), IL1-Beta (IL1B),

sIL2R-a/sCD25 (IL2R), interleukin 6 (IL6), interleukin 8 (IL8), and interleukin

IP10/CXCL10 (IP10). Biomarkers: pro-adrenomedullin (proADM), lactate
dehydrogenase (LDH), and C-reactive protein (CRP). Outcomes: proportion

of patients who developed infectious complications, underwent orotracheal
intubation (OTI), died (death), or experienced either OTI or death

(death+OTI).

SUPPLEMENTARY FIGURE 1

Flow cytometry features of outpatients and inpatients vs age. (A) Running
median offlow cytometry variables with a 15-year half-window. Shaded areas

represent the first to third running quartiles. Significant changes in distribution

between ages 35 and 65 are expressed as the percentage increase or
decrease of the median. (B) Distribution of flow cytometry variables

stratified by age and cohort (inpatients vs outpatients). Boxes span the first
to third quartiles, with the horizontal bar indicating the median. Median

comparisons on the right of each plot are quantified as the percentage
change between inpatients and outpatients. (C) Age histograms of

inpatients and outpatients. Measurement units: white blood cells (WBC) and

related subpopulations (Lymph, Mono, CD3, CD4, CD8, NK, CD19, RTE) are
expressed in U/µL.

SUPPLEMENTARY FIGURE 2

Flow cytometry feature distributions for inpatients, outpatients, and the

healthy cohort. To ensure comparability, data for all variables were scaled
and shifted to standardized statistics within the healthy population. Statistical

comparisons between the healthy cohort and outpatients/inpatients were
conducted using the Mann–Whitney U test. Proportions of male patients

were compared using the z-test. The statistical significance of each
comparison is provided by the p-value.
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