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In recent decades, nanotechnology has significantly advanced drug delivery

systems, particularly in targeting subcellular organelles, thus opening new

avenues for disease treatment. Mitochondria, critical for cellular energy and

health, when dysfunctional, contribute to cancer, neurodegenerative diseases,

and metabolic disorders. This has propelled the development of nanomedicines

aimed at precise mitochondrial targeting to modulate their function, marking a

research hotspot. This review delves into the recent advancements in

mitochondrial-targeted nanotherapeutics, with a comprehensive focus on

targeting strategies, nanocarrier designs, and their therapeutic applications. It

emphasizes nanotechnology’s role in enhancing drug delivery by overcoming

biological barriers and optimizing drug design for specific mitochondrial

targeting. Strategies exploiting mitochondrial membrane potential differences

and specific targeting ligands improve the delivery and mitochondrial

accumulation of nanomedicines. The use of diverse nanocarriers, including

liposomes, polymer nanoparticles, and inorganic nanoparticles, tailored for

effective mitochondrial targeting, shows promise in anti-tumor and

neurodegenerative treatments. The review addresses the challenges and future

directions in mitochondrial targeting nanotherapy, highlighting the need for

precision, reduced toxicity, and clinical validation. Mitochondrial targeting

nanotherapy stands at the forefront of therapeutic strategies, offering

innovative treatment perspectives. Ongoing innovation and research are

crucial for developing more precise and effective treatment modalities.
KEYWORDS
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1 Introduction

The field of nanomedicine has witnessed a significant paradigm

shift towards the targeted delivery of therapeutic agents directly to

subcellular organelles, particularly mitochondria, to improve

treatment outcomes and minimize systemic side effects.

Leveraging subcellular targeting to enhance the therapeutic index

presents an enticing strategy, as it enables the direct delivery of

therapeutic agents to their intracellular sites of action (1). By

specifically targeting subcellular compartments or organelles

associated with disease processes, therapeutic molecules can

accumulate at the target site in higher concentrations, thereby

boosting specificity and efficacy. Targeted delivery methods also

permit the administration of lower therapeutic doses, thereby

significantly reducing off-target toxicity in non-target tissues and

enhancing the overall safety of the treatment strategy (2–4).

Furthermore, subcellular targeting supports the real-time

monitoring of therapeutic responses at the subcellular level;

imaging techniques or the tracking of specific subcellular

biomarkers or metabolites can dynamically assess the effectiveness

of the treatment. Mitochondria, often described as the powerhouse

of the cell, play a crucial role in energy production, apoptosis

regulation, and cellular metabolism (5–7). Their central role in

various physiological and pathological processes, including

neurodegenerative diseases, cancer, and cardiovascular disorders,

has positioned them as a strategic target for therapeutic

interventions (8, 9). Recent advancements in nanotechnology

have enabled the development of nanocarriers designed for the

precise delivery of drugs to mitochondria, overcoming biological

barriers that have traditionally impeded effective drug distribution

at the subcellular level (10–12). These nanocarriers leverage unique

physicochemical properties to navigate the complex intracellular

environment, ensuring that therapeutic agents are delivered

efficiently to mitochondria, thus maximizing therapeutic efficacy

while minimizing off-target effects (13). The mitochondria-targeted

nanomedicines represents a leap forward in the quest for precision

medicine. By focusing on the mitochondria, researchers aim to

exploit the organelle’s unique characteristics and vulnerabilities,

such as its membrane potential and the presence of specific

transporters, to enhance drug accumulation and activity within

the target site (14). This approach has shown promise in preclinical

studies, demonstrating improved outcomes in models of cancer,

mitochondrial diseases, and other conditions where mitochondrial

dysfunction plays a key role. As the field continues to evolve, the

design and development of mitochondria-targeted nanomedicines

are guided by a deeper understanding of mitochondrial biology,

the identification of novel targeting ligands, and advancements in

nanocarrier technology. This multidisciplinary effort, encompassing

the fields of nanotechnology, biochemistry, and pharmacology, is

paving the way for the next generation of therapeutics that can

selectively modulate mitochondrial functions for therapeutic gain.

The strategic targeting of mitochondria using advanced

nanomedicine approaches holds the potential to revolutionize the

treatment of a wide range of diseases. In the realm of cancer

therapy, multidimensional nanoplatforms and systems targeting
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mitochondria have been developed, significantly enhancing

treatment outcomes (15–17). By overcoming the limitations of

conventional drug delivery methods, mitochondria-targeted

nanomedicines offer a promising platform for enhancing

therapeutic outcomes and ushering in a new era of precision

medicine. M. Akhtar and colleagues focus on drug delivery

systems targeting overexpressed receptors in cancer tissues and

the tumor microenvironment in their review. They briefly explore

the structure and function of these receptor molecules, highlighting

elegant mechanisms that leverage specific characteristics of cancer

for therapeutic purposes. Following the discussion on receptors, the

review delves into their respective ligands and examines the

contribution of nanotechnology to delivering anticancer drugs in

preclinical cancer models. Ligand-functionalized nanocarriers have

shown significant anticancer drug delivery in various in vitro and in

vivo cancer models compared to cancer models lacking these

receptors or nanocarriers without ligand-mediated drug delivery.

The enhanced tumor site concentration of anticancer drugs

achieved through nanotechnology can significantly impact the

efficacy of cancer treatment while minimizing systemic side

effects (18).
2 Advances in mitochondria-
targeted nanotherapy

Mitochondria, the powerhouses within cells, play a crucial

role in supporting cellular life activities and metabolic processes

(19–21). They are central to critical physiological processes such

as electron transport, ATP production, reactive oxygen species

(ROS) generation, calcium ion regulation, and the initiation of

cell death (22–26). Furthermore, mitochondria are involved in

diverse metabolic activities including beta-oxidation of fatty

acids, the citric acid cycle, gluconeogenesis, and steroid synthesis,

significantly impacting cell fate (27–30). Energy-demanding

tissues like the heart, endocrine, visual, and nervous systems are

particularly susceptible to mitochondrial dysfunction (31–35).

Several approved drugs that exert therapeutic effects by activating

apoptosis pathways through direct action on mitochondria

underscore the pharmacological importance of mitochondria as

targets (36, 37). Targeting mitochondria for drug action presents an

effective strategy for addressing cellular metabolic dysregulation

and mitochondrial-related diseases (38). Despite the desire to direct

therapies specifically at mitochondria, their complexity makes this

task challenging.
2.1 Mitochondrial structural features and
their target potential in disease therapy

The uniqueness of mitochondria as organelles lies in their

distinctive structural features, making them ideal targets for

specific targeting. Composed of two membranes and four

compartments—the outer mitochondrial membrane (OMM), the

intermembrane space (IMS), the highly lipophilic inner
frontiersin.org
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mitochondrial membrane (IMM), and the mitochondrial matrix—

mitochondria’s architecture facilitates its functions (Figure 1). The

OMM is characterized by the voltage-dependent anion channels

(VDAC), the most abundant proteins on the outer membrane,

allowing small molecules to passively diffuse into the IMS (39).

While the OMM is relatively permeable to small molecules, the

IMM is almost impermeable to small ions like hydrogen. The

IMM’s surface area is increased by folds called cristae, containing

numerous proteins involved in the electron transport chain (ETC)

and ATP synthesis (40, 41). The ETC, a crucial pathway in

mitochondria, involves a series of proton pump complexes

(42, 43) that transfer electrons from donors to acceptors through

redox reactions, generating energy that creates a proton gradient

between the IMS and the matrix, and a strong negative membrane

potential. This electrochemical potential energy is then used to drive

ATP synthesis. The ETC, along with oxidative phosphorylation and

the Krebs cycle, plays a vital role in cellular energy metabolism

and ATP production (44, 45). Mitochondria possess their own

DNA (mtDNA), yet most mitochondrial proteins and enzymes are

encoded in the cell nucleus, translated in the cytoplasm as unfolded

precursor proteins (46, 47).
2.2 Advancements and applications of
nanoparticle targeting to organelles

Significant advancements in nanotechnology for medical

applications have been achieved, from Lipodox in 1995 to the

Pfizer-BioNTech COVID-19 vaccine in 2020, marking major
Frontiers in Immunology 03
breakthroughs in nanomedicine. The development of nanodrugs

has enhanced drug accumulation in specific cells through the

enhanced permeability and retention (EPR) effect and active

targeting techniques for cellular uptake (48). However, despite

these advances, the effective concentration of nanodrugs remains

low, with studies showing only about 5.6% of injected nanodrugs

effectively accumulating at tumor sites (49). Moreover, a meta-

analysis found that only 0.7% (median) of the administered

nanoparticle dose reaches solid tumors (50). Biological barriers to

drug transport hinder the successful accumulation of nanotherapies

at diseased sites, limiting effective responses in conditions ranging

from cancer to inflammation. Despite extensive research efforts to

incorporate multifunctionality and specificity into nanocarrier

designs, many strategies fall short of fully overcoming these

obstacles. Challenges such as nonspecific distribution and

insufficient therapeutic drug accumulation remain significant

hurdles for drug developers. There’s a pressing need to reimagine

traditional nanoparticle formulations to effectively address these

drug delivery barriers (51). Although many factors affect the

effective delivery of nanodrugs, understanding physiological

conditions in health and disease and rational design can optimize

pharmacokinetic properties and modulate the key interactions

between nanodrugs and biological barriers that influence their in

vivo absorption and intracellular/subcellular localization. Third-

generation nanodrugs, utilizing subcellular localization strategies,

not only optimize therapeutic effects and reduce required dosages

but also overcome challenges of peptide and oligonucleotide

degradation within cells. These nanocarriers achieve precise

delivery to specific organelles by adjusting their chemical
FIGURE 1

Illustrates the intricate architecture of the mitochondrion, spotlighting crucial elements like the membrane potential, cardiolipin, translocase
complexes (TOM/TIM), and receptor affinities essential for targeted therapies. It emphasizes the capability for advanced therapeutic strategies
through precise mitochondrial targeting. Adapted from (145).
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properties, size, and shape, thus minimizing organelle toxicity. Key

elements in nanodrug design include targeting specific subcellular

structures, fine-tuning nanoparticle size, and ensuring charge and

biocompatibility to enhance therapeutic efficacy (52) (Figure 2). For

instance, Zeng et al. developed an innovative ROS-activatable

nanoprecursor drug (HTCF) capable of dual-targeting both tumor

cells and mitochondria for anticancer therapy. This ingenious

organelle-specific nanomedicine demonstrated significant

antitumor activity both in vitro and in vivo, unveiling the potential

of amplified tumor-specific oxidative therapies and offering insights

for treating various cancers (53).
2.3 Biological barriers in drug delivery

Nanoparticles (NPs) have emerged as an effective means for

treating a variety of diseases, including cancer, cardiovascular, and

inflammatory conditions. Various types of NPs have been synthesized,

such as liposomes, polymeric particles, micelles, dendrimers, quantum

dots, gold NPs, and carbon nanotubes. One of the primary challenges

limiting the success of NPs is their ability to reach the therapeutic site in

necessary dosages while minimizing accumulation at undesired

locations. The biodistribution of NPs is determined by biological

barriers in the human body, which manifest in several distinct ways

(54). After systemic administration, biological barriers are

hierarchically present, including nonspecific circulatory barriers,

specific tissue/microenvironment barriers, cellular-level, and

subcellular-level barriers (Figure 3). The complexity of this

classification increases due to the route of administration, target

diseases, and interpatient variability, and currently, there is no

universal method for effectively overcoming these biological barriers.

In designing drug delivery systems to overcome specific barriers,

numerous potential parameters are critical. The aim of these systems
Frontiers in Immunology 04
is to enable drugs to cross barriers that cannot be surmounted with safe

doses by conventional means, acting as a modifier of pharmacokinetics

(55). Moreover, off-target effects of systemically administered drugs

have always posed a significant challenge in designing therapies with

intended efficacy and acceptable toxicity. Over the past thirty years, a

vast body of literature has focused on understanding biological barriers

that impede tissue-specific drug delivery and strategies to overcome

these obstacles. This body of work outlines several targeting strategies

currently being adjusted in preclinical and clinical settings for drug

delivery, including strategies based on small molecules, nucleic acids,

peptides, antibodies, and cells (56). However, in addressing these

barriers, nanocarriers exhibit significant advantages by enhancing

drug solubility, stability, circulation time, targeting, and transcellular

barrier release, showing potential applications in oral and tissue

delivery (57).

2.3.1 Non-specific/circulatory obstacles
The reticuloendothelial system (RES) pose absorption barriers

by recognizing the physicochemical characteristics of

nanomedicines, while polyethylene glycol modification

(PEGylation) can effectively extend the circulation time of

nanomedicines in blood and reduce RES uptake (58, 59).

However, PEGylation may decrease the cellular uptake of

nanomedicines, impacting therapeutic efficacy (60, 61). Scientists

are exploring alternative hydrophilic polymers to PEG, such as poly

(ethyleneimine) (PEI), poly(aspartic acid) (PAsp), and sulfated

polymers, to mitigate potential complement activation and

allergic reactions caused by PEGylated nanomedicines, while also

enhancing targeting and reducing immunogenicity (62–64).

Moreover, biomimetic camouflage using natural cellular elements

(e.g., platelets) and developing non-traditional shapes of

nanoparticles (e.g., star-shaped, helical, and polyhedral

nanoparticles) are effective strategies to evade the RES system
FIGURE 2

Nanoparticle delivery strategies target key organelles, including the nucleus, mitochondria, lysosome, and endoplasmic reticulum. Various
approaches leverage organelle-specific properties and targeting peptides for effective intracellular delivery. Adapted from (169, 170).
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(65, 66). Notably, nanoparticles with irregular shapes enhance their

interaction with vascular endothelial cells (e.g., through “lateral

migration” or “marginal effect”), thus bypassing the RES and

improving drug delivery efficiency. The enhanced permeability

and retention (EPR) effect is crucial for enhancing the
Frontiers in Immunology 05
accumulation of nanomedicines at tumor sites, but its efficiency is

influenced by factors such as blood flow, vascularization, interstitial

pressure, and vascular obstruction (67, 68). Supplementary

mechanisms, like the “hitchhiking” effect of immune cells and

active transcytosis by tumor endothelial cells, also contribute to
FIGURE 3

Sequential biological barriers to site-specific drug delivery. After intravenous administration, nanoparticles face multiple obstacles, including
opsonization, uptake by macrophages, nonspecific accumulation in organs like the spleen and liver, and challenges in margination dynamics.
Additionally, high tissue pressure and cellular barriers such as internalization, endosomal escape, and drug efflux pumps hinder effective targeting
and delivery. Adapted from (171, 172).
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the accumulation of nanomedicines in tumors, overcoming the

limitations of the EPR effect.

After discussing the role of PEGylation and alternative

hydrophilic polymers in enhancing circulation time and reducing

undesired uptake by the reticuloendothelial system (RES), it is

crucial to consider another pivotal factor influencing nanoparticle

behavior in the bloodstream: the formation of a protein corona.

Upon entering the biological milieu, nanoparticles rapidly associate

with various proteins in the serum, forming what is referred to as

the protein corona (69). This protein layer significantly influences

the biodistribution, cellular uptake, and interactions of

nanoparticles with target cells (70). For instance, the presence of

a protein corona can either enhance or hinder the targeting of

nanoparticles to specific cell populations (71). Understanding and

controlling the formation of the protein corona is crucial for

optimizing nanoparticle-based delivery systems, especially in

precise mitochondrial targeting strategies. By finely tuning the

surface characteristics and size of nanoparticles, the composition

and structure of the protein corona can be manipulated, thereby

enhancing therapeutic outcomes and minimizing non-specific

interactions (72, 73). This is a pivotal step in advancing

mitochondrial-targeted nanotherapeutics and their clinical

applications, ensuring higher precision and reduced toxicity

in treatments.
2.3.2 Tissue-specific barriers/microenvironment
The uniqueness of blood-tissue barriers and the tumor

microenvironment (TME) presents challenges for nanomedicine

delivery, yet also offers therapeutic opportunities by leveraging

environmental differences. Leveraging unique properties, a dual-

triggered activatable cell-penetrating peptide (designated as

dtACPP) responsive to lowered extracellular pH and MMP2 was

engineered, leading to the successful development of a smart

nanoparticle system modified with dtACPP for the dual loading of

gene therapies and chemotherapeutics. Upon systemic administration,

dtACPP-modified nanoparticles exhibit passive tumor targeting

through enhanced permeability and retention effect. Subsequently,

dtACPP is activated to expose cell-penetrating peptides, driving the

internalization of nanoparticles into tumor cells (74). Leveraging the

concept of stimulus-responsive nanomedicine, Chen et al. developed a

programmable nanoparticle (NP) delivery system featuring a pH-

triggered detachable PEG layer and a reduction-responsive core

modified with lactic acid (Lac) to tackle the “PEG dilemma” and

enable on-demand intracellular release of doxorubicin (DOX) (75).

Similarly, Zhang et al. constructed a pH-responsive polyethylene

glycolated hyaluronic acid nanoparticle system (HA-mPEG2k-

DOX), which efficiently targets CD44-positive CT26 cells. The pH-

responsive cleavable PEG shell dissociates in the mildly acidic tumor

microenvironment, facilitating cellular uptake of HA-DOX NPs. This

design not only prolongs DOX circulation time and reduces toxicity
Frontiers in Immunology 06
but also effectively targets CD44-positive tumors, thereby enhancing

therapeutic efficacy in colorectal cancer treatment (76).

2.3.3 Cellular and subcellular barriers
The success of engineered nanomedicines hinges on their

intracellular and subcellular localization within the target

environment, with internalization pathways and subcellular

targeting being critical to their therapeutic effectiveness (77, 78).

Optimized design allows nanomedicines to enhance therapeutic

outcomes, reduce required dosages, and minimize off-target effects.

Design considerations must include endosomal escape, specific

organelle characteristics, and uptake efficiency to ensure precise

and efficient drug delivery. A reported nanocarrier system, DF-

MTS-MITO-Porter, has been developed for mitochondrial delivery

to modulate intricate intracellular processes. This system is

designed not just for the delivery of small molecule compounds

but also for transporting proteins/nucleic acids to regulate

mitochondrial functions (79).
2.4 Strategies for overcoming
mitochondrial biological barriers

Effectively delivering specific drugs to mitochondria requires

not only solving intracellular transport issues but also precisely

crossing the mitochondrial outer and inner membrane barriers. The

membrane potential difference of mitochondria is a key factor for

drug entry into its matrix, with lipophilic and positively charged

molecules able to accumulate in mitochondria by exploiting this

potential difference (80). The design of multifunctional

nanocarriers targeting mitochondria has become a research focus

in recent years. These nanocarriers can bypass in vivo barriers,

increase bioavailability, and enable controlled release of therapeutic

agents at target sites, facilitating synergistic effects in treatments like

chemotherapy, gene therapy, and phototherapy (81). An acid-

activated mitochondrial-targeting drug nanocarrier has been

developed for precise delivery of nitric oxide (NO) as an ATP

synthase inhibitor, showing extended blood circulation, enhanced

cellular uptake, and restored mitochondrial targeting ability under

the extracellular pH value (6.5) of tumor cells (82). The transport of

bioactive molecules to mitochondria primarily depends on the

mitochondrial membrane potential and specific protein

absorption mechanisms. Scientists have found that specific

mitochondrial targeting molecules, especially amphiphilic cations,

can recognize and target the mitochondrial membrane potential,

thereby facilitating drug delivery to mitochondria. For example,

acid-activated nanoparticles developed by Qi et al. initially target

endosomes before migrating to mitochondria, significantly

enhancing therapeutic outcomes by triggering fluorescence

enhancement and photosensitization, inducing cancer cell death

upon laser irradiation (83). Triphenylphosphonium (TPP) moieties
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are widely used in mitochondrial targeting for their ability to

promote selective accumulation of bioactive molecules. In Liang

et al.’s study, a core-shell structured upconversion nanocrystals-

dendrimer complex targeting mitochondria and overcoming tumor

hypoxia enhanced the efficacy of anticancer photodynamic therapy;

catalytic degradation of hydrogen peroxide (H2O2) by catalase

overcame tumor hypoxia and mitochondrial targeting,

significantly enhancing PDT efficacy and offering a new paradigm

for cargo delivery (84). Sun et al. reported a mitochondrial-targeting

nanocarrier designed with poly(lactic-co-glycolic acid) (PLGA) and

TPP, which significantly increased levels of interferon-gamma

(IFN-g) activated by mitochondrial-targeting immunotherapy in

cancer cells. These TPP-modified mitochondrial-targeting polymer

nanoparticles can be used for cancer treatment, substantially

improving therapeutic outcomes (85).

Another strategy for mitochondrial targeting involves using

mitochondrial targeting ligands or mitochondrial targeting

sequences (MTS). For example, Lopez and their team developed

Janus mesoporous silica particles asymmetrically decorated with

two targeting moieties: one selective for folate membrane cell

receptors (folate) and the other capable of binding to the

mitochondrial membrane (triphenylphosphonium, TPP),

facilitating sequential vectorization from the cell to the organelle.

Compared to symmetric nanocarriers, the asymmetric decoration

on each side of the particles allows for precise control during the

targeting attachment process. The presence of folate induces

increased particle accumulation inside tumor cells, where these

nanocarriers are then guided to the vicinity of mitochondria

through the action of the TPP moiety. This strategy enhances the

therapeutic effects of current nanomedicines (86). Qi and colleagues

explored using a specific protein, mitochondrial targeting signal

protein (MLSP), for targeting mitochondria. The MLSP-modified

polymer nanoparticles they developed were efficiently taken up by

cells and localized to mitochondria, demonstrating potential for

direct intervention in mitochondrial dynamics (83). Most

mitochondrial targeting strategies utilize mitochondrial signal

sequences to direct complexes to mitochondria, and recognizing

and exploiting this mechanism lays the foundation for new

therapeutic developments. Gao and others effectively achieved

precise mitochondrial localization by integrating MTS sequences

on the surface of biocompatible nanocarriers, triggering significant

antitumor activity in cancer cells (87). Moreover, researchers have

been able to more precisely localize therapeutic agents to

mitochondria, enhancing therapeutic efficiency and reducing

impacts on normal cells, by utilizing hybrid peptide systems with

specific peptide sequences. This approach, by disrupting

mitochondrial membrane stability, directly affects mitochondrial

function, paving new pathways for cancer treatment (88). The

development and application of mitochondrial penetrating

peptides (MPPs) showcase the great potential of directing

nanoparticles to mitochondria through specific sequences. The

design and optimization of MPPs are expected to play a

significant role in future mitochondrial targeting strategies,

offering new directions for treating mitochondrial-related

diseases (89).
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2.5 Comparative effectiveness of
mitochondrial targeting sequences

It is imperative to assess the unique mechanisms and

effectiveness of Mitochondrial Targeting Sequences (MTS),

Mitochondrial Processing Peptidases, and Mitochondrial

Localization Signal Peptides (MLSP). These sequences each play a

crucial role in directing nanomedicines to mitochondria,

distinguished by their distinct interactions with mitochondrial

membranes and import machinery. Typically positioned at the N-

terminus of proteins, MTSs are cleaved upon entry into

mitochondria and directly interact with the translocase of the

outer membrane (TOM) complex (90). This interaction facilitates

the entry of nanocarriers or therapeutic agents into the

mitochondrial matrix. The effectiveness of MTSs is shaped by

their amino acid composition and structural configuration,

influencing their recognition and processing by mitochondrial

import machinery. Although not a targeting sequence itself,

Mitochondrial Processing Peptidases is pivotal in the maturation

of proteins transported into mitochondria by cleaving their

targeting sequences (91). This enzymatic action is vital for the

functionality of MTS-containing proteins, ensuring they are

correctly processed and activated within mitochondria. The

efficiency of this process is influenced by the sequence and

context of the cleavage site, which can significantly impact the

overall success of the mitochondrial targeting strategy. MLSPs are

instrumental in the precise localization of proteins to specific

mitochondrial compartments—such as the intermembrane space,

inner membrane, or matrix. The specificity and efficiency of MLSPs

are vital in scenarios where the exact sub-mitochondrial positioning

of a therapeutic agent is crucial for its efficacy. Studies demonstrate

that the success of these targeting sequences varies based on the type

of nanoparticle, the therapeutic agent used, and the specific

mitochondrial function targeted. While MTS is generally

preferred for its widespread applicability and effectiveness in

delivering agents to the mitochondrial matrix—a site of

numerous vital metabolic processes-MLSP may be better suited

for targeting specific compartments within mitochondria that are

essential for activating apoptotic pathways in cancer therapies.

Further research is essential to conclusively determine the relative

effectiveness of these sequences as their performance may also be

contingent on the physicochemical properties of the nanocarrier

and the pathological context of the treatment. Continued studies

and clinical trials are expected to enhance our understanding of

how to best utilize these mitochondrial targeting strategies, paving

the way for more refined and effective therapeutic approaches.
3 Nanomedicines
targeting mitochondria

Murphy’s team developed a series of mitochondria-targeted

antioxidants that are specifically absorbed by mitochondria

through covalent linkage with lipophilic cations such as

triphenylphosphonium (TPP) (92). Besides TPP and rhodamine,
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certain specialized lipophilic cations have also been utilized for

mitochondria-targeted delivery research (93). By combining these

lipophilic cations with antioxidant molecules, Murphy’s team

developed targeted drug delivery systems for mitochondria.

Although these compounds are cost-effective, stable, and can be

conveniently chemically conjugated with nanocarriers for

mitochondrial targeting, their toxicity at high concentrations,

especially in scenarios that might disrupt mitochondrial

membrane potential, limits their application. Meanwhile, Zielonka

and colleagues introduced a new category of mitochondrial

targeting compounds known as delocalized lipophilic cations

(DLCs), which have gained widespread attention due to their

direct absorption by mitochondria. Zielonka’s research indicates

that DLCs, through their unique structure, serve as significant

targets in mitochondria for drug design in cancer, cardiovascular

diseases, and neurodegenerative diseases (93). Designing

mitochondria-targeted nanomedicines involves considering

strategies to cross multiple biological barriers in the body,

including optimizing the bioavailability and distribution of the

drug. Nanocarrier design emphasizes biocompatibility,

degradability, size, lipophilicity, charge, and the selection of

targeting elements to ensure precise drug release (Table 1),

(Figure 4). Multifunctional nanocarriers use materials like

liposomes, polymer nanocarriers, and mesoporous silica, focusing

on their biocompatibility and biodegradability. By incorporating

mitochondrial targeting peptides or DLCs and using polyethylene

glycol (PEG) to enhance blood stability, these carriers improve

mitochondrial localization and therapeutic efficiency. For example,

lipid polymer hybrid nanoparticles (LPNPs) consisting of poly(D,L-

lactide-co-glycolide) (PLGA), TPP-containing amphiphilic

polymers (C18-PEG2000-TPP), and reduction-responsive

amphiphilic polymers (DLPE-S-S-mPEG4000), after detaching the

PEG through redox reactions, achieved precise and rapid

localization and exhibited high anticancer activity (94).
3.1 Polymer nanomedicines

Polymer nanomedicines bring multifunctionality to

mitochondrial-targeted therapies through their biodegradability,

functional diversity, and stimulus-responsiveness. Surface

modification of polymer nanocarriers with DLCs (delocalized

lipophilic cations) and MPPs (mitochondrial penetrating peptides)

endows them with mitochondrial targeting capabilities, creating

novel mitochondrial-targeted drug delivery systems (95, 96).

Challenges include the potential toxicity of DLCs, stability issues

of MPPs, and complex design requirements. To address these issues,

research into new targeting ligands and polymers with

mitochondrial affinity is underway. Innovative nanocarrier designs

include charge-reversal materials that enhance intracellular uptake

through charge changes under specific conditions and self-

assembling micelles that show enhanced anticancer effects through

charge conversion. A novel nanoparticle system integrates
Frontiers in Immunology 08
chemotherapeutic agents with mitochondrial ROS inducers,

leveraging pH sensitivity and GSH (glutathione) depletion

for improved tumor targeting and efficacy. This nanocarrier uses

pH-responsive materials that alter conformation in acidic tumor

environments, facilitating drug release and uptake (97).

For instance, Deng and colleagues developed an a-cyclodextrin
(a-CD) nanocarrier combining chemotherapeutic drugs,

mitochondrial ROS inducers, and nitric oxide (NO) donors.

Through pH-sensitive and GSH-triggered mechanisms, it achieves

tumor-specific drug release, significantly enhancing antitumor

activity against a drug-resistant breast cancer model. It promotes

mitochondrial membrane permeabilization, reduces ATP levels, and

enhances the uptake and retention of DOX, helping to overcome

drug resistance and inhibit cancer metastasis (82). Wu et al. reported

ROS and GSH-responsive nanoparticles for delivering NO prodrug,

such as S-nitrosoglutathione (GSNO), chemically coupled to

amphiphilic block copolymers, demonstrating high NO load

capacity, stability, and sustained NO release with specific GSH-

activated kinetics. These GSNO-functionalized nanoparticles,

triggering doxorubicin (DOX) delivery in an ROS-activated

manner, enhanced intracellular DOX accumulation while

exhibiting good biocompatibility in normal healthy cells due to

physiological ROS concentrations. Their work showcases the

potential of multifunctional nanoparticles as an effective platform

for co-delivering NO and DOX, selectively killing chemotherapy-

resistant cancer cells by increasing chemotherapy sensitivity (98).

Additionally, Wang et al. demonstrated the advantages of targeting

cancer cell mitochondria against resistance, significantly enhancing

paclitaxel(PTX) mitochondrial delivery efficacy with paclitaxel

(PTX)-loaded TPH(TPH/PTX) nanomicelles. This approach

promotes mitochondrial targeting with positively charged TPP

medium to overcome lung cancer cell resistance, illustrating the

therapeutic potential of mitochondrial targeting delivery in treating

various resistant cancers (99). Reports indicate that chemoresistant

cancer cells adapt to intrinsic oxidative stress by upregulating their

antioxidant systems, leading to increased intracellular GSH content.

Doxorubicin, one of the most widely used drugs in tumor treatment,

kills cancer cells through various mechanisms but its use is limited

by toxicity and chemoresistance. Thus, new therapeutic strategies

that reduce dosage and overcome chemoresistance are needed.

Daga, M, et al. developed novel glutathione-responsive

cyclodextrin nanosponges (GSH-NS) that preferentially release

anticancer drugs in cells with high GSH content. In cancer

cells with high GSH, doxorubicin-loaded GSH-NS inhibited

clone growth, cell viability, topoisomerase II activity, and induced

DNA damage, showing higher efficacy than the free drug. Moreover,

GSH-NS reduced human tumor development in xenograft

models compared to the free drug, suggesting GSH-NS as a

suitable drug delivery carrier for future cancer therapy

applications (100). However, the charge-reversal strategy faces

challenges of low charge conversion efficiency and dependency on

heterogeneous stimuli, requiring careful consideration of off-

target toxicity.
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TABLE 1 Examples of mitochondria-targeted organic nanomedicines demonstrating specific trigger-responsive drug release, which have reached preclinical testing for various applications.
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3.2 Lipid-based nanosystems

Lipid-based materials are ideal for mitochondrial-targeted

nanomedicines due to their biocompatibility, simple formulation,

self-assembling capabilities, and potential to form hybrid

nanomedicines with polymer materials. Membrane fusion

technology, an effective mitochondrial targeting strategy, utilizes

special fusion lipids to integrate endosomal and mitochondrial

membranes. Yamada and colleagues developed the MITO-Porter

system, which employs lipid derivatives combined with

mitochondrial targeting signal peptides for direct mitochondrial

delivery through specific membrane fusion, effectively avoiding

lysosomal degradation. Enhanced by MTS, this approach

improves delivery efficiency and reduces toxicity. The optimized

MITO-Porter has shown significant antitumor activity in drug-

resistant kidney cancer models and photodynamic therapy. Further

optimization of the MITO-Porter system involves adjusting lipid

composition and surface functionalization strategies for more
Frontiers in Immunology 12
efficient and safe mitochondrial targeting (101). DQAsomes,

vesicles self-assembled from dequalinium, target mitochondria for

gene and chemotherapy, facing challenges such as low efficiency

and toxicity (102). However, recent advancements, including pH-

sensitive, PEGylated versions, show promise for clinical translation

with improved performance and reduced side effects. Lipid-

polymer hybrid nanoparticles, combining a polymer core, lipid

layer, and PEGylated surface, overcome limitations of frontier

mitochondrial targeting nanomedicines like DQAsomes and

Mito-Porters, such as low encapsulation efficiency and instability.

Moreover, Félix Sauvage and colleagues explored polyethylene

glycol-coated liposomes suitable for drug delivery, observing

greater stability when prepared in water compared to phosphate-

buffered saline. This highlighted the role of electrostatic

interactions between the positive charge on DQ and the polar

head groups of lipids (103). They exhibit excellent drug release and

mitochondrial localization capabilities, offering new strategies for

cancer treatment.
FIGURE 4

Schematic illustration of mitochondria-targeting-based nanotechnology. (A) Construction and therapeutic strategies of mitochondria-targeted
nanosystems for therapy. (B) Overview of a mitochondria-targeted, ROS-activated nanomedicine for cancer therapy. Features a ROS-sensitive
thioketal linker (TK) for targeted drug release within mitochondria. The structure consists of self-assembled a-cyclodextrin (a-CD) and hyaluronic
acid (HA) conjugates linked to a ROS-responsive prodrug via TK. It also incorporates triphenylphosphine (TPP) and Fenton-catalyzed ferrocene (Fc),
enhancing mitochondrial oxidative damage and promoting cell apoptosis through chemodynamic therapy. (C) Overview of a cyclodextrin-based
nanomedicine designed for targeting mitochondria in cancer therapy, utilizing mitochondrial membrane potential (MMP) and charge-reversal
techniques. The diagram outlines the composition and delivery mechanism of a-cyclodextrin (a-CD) nanoparticles. These particles are equipped
with nitric oxide (NO, attached via GSH) and doxorubicin (DOX, linked through hydrazine), and are further enhanced with dopamine-conjugated PEG
attached to a mitochondrial penetrating peptide sequence, (KLAKLAK)2CGKRK. This configuration boosts the treatment’s targeting precision and
effectiveness. Adapted from (53, 173, 174).
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3.3 Mitochondria-targeting peptides

Szeto-Schiller (SS) peptides possess the ability to penetrate cell

membranes, selectively accumulate in the inner mitochondrial

membrane (IMM), and scavenge reactive oxygen species (ROS)

(104). These short tetrapeptides, composed of alternating aromatic

and basic amino acids, carry a positive charge that facilitates free

cellular penetration at physiological pH. The mitochondrial

targeting mechanism of SS peptides is not fully understood, but it

is speculated that their net positive charge promotes attraction to

the negatively charged phospholipids in the IMM. Antioxidant

peptides such as SS-01, SS-02, and SS-31 have demonstrated

significant efficacy, with SS-31 has been used to study protective

effects in type 2 diabetic (105). Mitochondrial penetrating peptides

achieve efficient intracellular uptake and specific mitochondrial

localization through the inclusion of cationic and highly

hydrophobic residues (106). MPPs are notable for their tunability

and ease of synthesis, making them suitable for various cellular and

in vivo applications. Mitochondrial targeting sequence peptides are

recognized by mitochondrial surface receptors and consist of longer

amino acid chains, and also promotes translocation into

mitochondria by interacting with the membrane potential present

on the inner mitochondrial membrane (107). MTS peptides have

succeeded in delivering proteins and nucleic acids but face

challenges due to their large molecular size, poor solubility, and

cell membrane permeability issues. While mitochondrial targeting

peptides hold potential for drug delivery, limitations maybe include

restrictions on the size and type of cargoes and the inability to

access specific mitochondrial compartments (108). Developing

customizable multifunctional delivery systems to address specific

mitochondrial delivery needs represents a future research direction.
3.4 Mitochondria-specific stimuli-triggered
nanomedicine release

Mitochondrial-specific features can enhance the accumulation

and targeting of nanomedicines, allowing for the specific release of

therapeutic cargoes at the mitochondrial level in response to

particular stimuli (Table 2). A key strategy involves designing

mitochondrial ROS-responsive nanomedicines utilizing TK

linkers, biodegradable thioether derivatives that cleave in ROS

environments. Yu and colleagues developed a ROS-responsive

nanomedicine delivery system that combines mitochondria-

targeted cerium oxide nanoparticles with atorvastatin for the

treatment of acute kidney injury (AKI). This system demonstrates

significant targeting and enhanced cellular uptake. By targeting

elevated ROS in AKI, it releases drugs in ROS-rich environments,

mitigating excessive ROS through mitochondrial targeting. This

reduces oxidative stress and inflammation, effectively protecting

renal structures and decreasing tubular cell apoptosis and necrosis.

The system not only improves antioxidant and anti-apoptotic

effects but also showcases its therapeutic potential in a sepsis-

induced AKI mouse model (109). Research by Plotnikov et al.
Frontiers in Immunology 13
revealed the protective effects of the mitochondrial-targeted

antioxidant SkQR1 on the kidneys of neonatal rats in an LPS-

induced AKI model. The study confirmed SkQR1 could reduce

urine expression of AKI marker neutrophil gelatinase-associated

lipocalin (NGAL) and decrease blood urea and creatinine levels,

effectively protecting mitochondrial structures from damage (110).

SS-31, a mitochondria-targeted peptide known for its potent

antioxidant activity, is an excellent candidate for treating acute

kidney injury. Addressing existing limitations, Liu et al. developed

pH-responsive and AKI renal-targeted nanopolysomes (NPs) that

efficiently deliver SS-31. In the acidic lysosomal environment, the

electrostatic equilibrium of these NPs is disrupted, facilitating the

release of SS-31 and its subsequent targeting to the mitochondria

for therapeutic effects. These NPs have demonstrated remarkable

capabilities in reducing oxidative stress, protecting mitochondrial

integrity, diminishing inflammatory responses, and decreasing

apoptosis and necrosis in renal tubular cells following intravenous

administration (111). New nanotechnology-based therapies have

shown considerable potential in treating acute kidney injury (AKI).

Xu and others developed a nanoparticle platform for anti-tumor

therapy specifically targeting the mitochondria of breast cancer.

This strategy utilized bovine serum albumin (BSA) nanoparticles,

modified with tumor-targeting aptamers and combined with a

mitochondria-targeted ROS-activated prodrug. Utilizing the

Fenton reaction to convert H2O2 into highly cytotoxic hydroxyl

radicals, this nanoparticle platform targeted mitochondria within

tumor cells. ROS-induced degradation of the TK linker released

active components, promoting H2O2 production, enhancing

cytotoxicity, and triggering mitochondria-mediated apoptosis. In

a breast cancer mouse model, this nanoparticle platform

significantly inhibited tumor growth, showcasing the potential of

mitochondrial-targeted chemodynamic therapy (112).

Inspired by natural dopamine, Li et al. synthesized polydopamine

(PDA) nanoparticles, using triphenylphosphonium (TPP) for

improved mitochondrial targeting efficiency, developing a

mitochondria-targeted drug delivery system. By loading the

anticancer drug doxorubicin (DOX) into PDA-polyethylene glycol

(PEG) and TPP-functionalized PDA-PEG (PDA-PEG-TPP)

nanoparticles, DOX can be effectively delivered to both the cell

nucleus and mitochondria. Long-term repeated treatment of MDA-

MB-231 cancer cells revealed that mitochondria-targeted PDA-PEG-

TPP-DOX nanoparticles have a higher potential to overcome drug

resistance than conventional delivery nanoparticles PDA-PEG-DOX

(113). The higher pH of the mitochondrial matrix offers a specific

trigger mechanism for drug release. For example, Zhang et al.

constructed a novel mitochondria-targeted pH/ROS dual-responsive

block copolymer TPP-PEG2k-b-(BS-AA)n (P1) and a non-targeted

pH/ROS dual-responsive copolymer mPEG2k-b-(BS-AA)n (P2) for

the stepwise release of chemotherapeutic drugs and simultaneous

disruption of mitochondria and cell nuclei for combined anticancer

chemotherapy. This system not only achieves controlled drug release in

the specificmitochondrial environment but, through a unique response

mechanism, directs the drug to mitochondrial DNA and nuclear DNA,

enhancing the anticancer efficacy of chemotherapy drugs (114).
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3.5 Transition metal complexes:
mitochondrial targeting and photodynamic
therapy potential

Transition metals like ruthenium (Ru) and iridium (Ir)

complexes are found to possess innate mitochondrial targeting

properties. These metal complexes can modulate their subcellular

localization based on the type of ligands adjacent to their metal core

and the counterions they carry, making them ideal photosensitizer

candidates in photodynamic therapy due to their unique

photophysical and photothermal properties (115), it also has great

potential for building new diagnostic and treatment platforms
Frontiers in Immunology 14
(116). Guo et al. developed a mitochondria-targeted nanoplatform

for near-infrared light-controlled nitric oxide release, coupled with

photothermal therapy. This platform, consisting of nitroso-

ruthenium functionalized nitrogen-doped graphene quantum dots

and triphenylphosphonium components, demonstrated significant

antitumor efficacy under 808 nm light irradiation both in vitro and

in vivo (117). However, their accumulation in mitochondria as

lipophilic cationic-metal complexes may impair mitochondrial

membrane potential, leading to cytotoxicity. Further discussions

on mitochondria-targeted Ru and Ir-based nanomaterials are

mentioned in related literature. Gu and colleagues developed a

smart nanocomposite material composed of silver nanoparticles
TABLE 2 Methods used in studies of mitochondria-targeted nanomedicine to assess targeting efficacy and induced changes.

Technique
Type

of analysis
Strengths Limitations

Application in
relevant
studies

Flow cytometry
ROS levels ATP
levels MMP

Individual cell analysis Precise analysis Non-
destructive technique High throughput

Dyes required Requires initial visual
evaluationExpertise required Expensive

and slow

(158)

Seahorse
XF Analyzer

Mitochondrial
respiration
Metabolic
alterations

obtain OCR and ECAR information Assessment
of metabolic alterations using specific kits Tissue
measurements possible Non-destructive technique

accuracy depends on Cell culture conditions
and confluence time consuming and expensive

Normalization to cell number required

(138)

Western Blotting

Mitochondrial
targeting

Mitochondrial
protein expression

Widely available method Selectivity for the
desired protein technological maturity

isolation requirment only protein cargo can be
assessed time-consuming
Destructive technique

(166)

HPLC-UV
Mitochondrial

targeting
Precise and reproducible Rapid analysis and

automation Non-destructive technique
professional and Expensive equipment

isolation requirment
(151)

Fluorescence
spectroscopy

Mitochondrial
targeting ROS
levels ATP
levels MMP

simple and rapid analysis Highly selective and
sensitive Non-destructive technique

isolation requirment Introduction of artifacts
when using fluorophores autofluorescence is

not allowed Environmental sensitivity

(156)

microscopy

confocal laser
scanning

microscopy(CLSM)

Mitochondrial
targeting

Morphological
alterations MMP

ROS levels

simple experimental protocol 3D live imaging
Detects spectral changes of a fluorescent dye

(FRET and BRET phenomena) Non-destructive
technique dynamic tri-dimensional tracking

relatively low resolution marker binding may
fail due to molecular interactions indirect

fluorophore-mediated detection

(158)

Transmission
electron

microscopy(TEM)

Mitochondrial
targeting

Morphological
alterations

unique information provided by high resolution
reveal the fine relationships allow the direct
visualization Improves contrast through

metal staining

processed biological samples lower the
resolution time consuming and expensive

Poor contrast for biological systems
Incompatible with 3D imaging

Destructive technique

(167)

Mass spectrometry

ESI-MS
Mitochondria
targeting

Soft ionization Rapid analysis and automation
Accuracy by multiple charging No

matrix interferences

isolation requirment Destructive technique
time consuming and expensive

(168)

ICP-MS

Mitochondria
targeting

High sensitivity isotopic selectivity and a wide
dynamic range Multi-element analysis Low
sample volume needed High throughput

Detection limitation(ionization potential)
isolation requirment time consuming and

expensive Destructive technique
Matrix interferences

(169)
Adapted from (94, 174, 182, 184, 192–195).
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and polymer microspheres, designed for a dual attack on tumor

cells: chemotherapeutic and enhanced oxidative stress response.

Once inside the cell, the silver nanoparticles are released, activating

internal chemotherapy drugs and inducing strong oxidative stress,

leading to autophagic cell death of cancer cells with minimal impact

on surrounding normal cells (118). Additionally, Deng and others

explored a nanosystem composed of copper nanoparticles and

porous carbon nanoparticles, which rapidly respond to

intracellular environment changes upon entering tumor cells,

releasing copper nanoparticles. This not only enhances the release

efficiency of chemotherapeutic drugs but also significantly increases

intracellular reactive oxygen species (ROS) levels, effectively

inhibiting cancer cell growth while protecting normal cells (119).

Zeng et al. further explored the application of metal-organic

framework (MOF) materials in cancer therapy, finding that

specifically designed MOFs can localize to mitochondria within

cancer cells and persist for an extended period. By modulating

mitochondrial membrane potential and promoting ROS generation,

they effectively induce cancer cell death without harming normal

cells. These results suggest that precisely designed nanomaterials

can serve as a new generation of cancer therapy strategies, achieving
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targeted delivery and precise treatment (88).Thus, numerous

studies focus on directly conjugating targeting ligands with

therapeutics, aiming to enhance therapeutic efficacy (120).

4 Key factors in nanomedicine design
and optimization for
intracellular delivery

The design of nanomedicines hinges on their physicochemical

properties, such as size and shape, which affect their entry into cells

via specific internalization pathways, while surface charge

determines interactions with cells and toxicity (121, 122)

(Figure 5). For instance, endothelial cells internalize particles of

different sizes through specific mechanisms, with particle shape and

charge affecting cellular uptake efficiency. Additionally, the physical

stiffness of nanoparticles also impacts cell uptake preference,

demonstrating inconsistent effects across different cell types (123).

This underscores the necessity of considering these attributes in

nanomedicine design to optimize intracellular delivery efficiency

and reduce cytotoxicity.
FIGURE 5

Nanoparticles with Enhanced Drug Delivery Properties. Surface modifications with PEG or targeting ligands improve nanoparticle stability and
targeting. Adjusting morphology and surface charge optimizes their performance. At the target site, cargos are released through biochemical or
external triggers. Adapted from (175).
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4.1 Endosomal escape: a tool to aid the
intracellular journey of nanomedicines

Employing chemical and physical strategies to facilitate

endosomal escape and minimize cellular damage, the

optimization of ionizable lipids that change charge states based

on pH can enhance biocompatibility and circulation time. In acidic

environments, these lipids become positively charged, promoting

membrane fusion and endosomal rupture for effective nucleic acid

delivery. The FDA and EMA-approved Onpattro® and mRNA

vaccines against SARS-CoV-2 demonstrate the medical

application potential of this strategy (124). Although lipid

nanoparticles have succeeded in delivering nucleic acids,

endosomal escape remains a core challenge, with custom-

designed lipid nanoparticles showing promise. To enhance

cytoplasmic release efficiency of DNA, siRNA, and Cas9 mRNA

in CRISPR/Cas gene editing, researchers developed a novel library

of ionizable phospholipids. The library of ionizable phospholipids

developed encompasses various structural types that can convert to

a cationic state in acidic environments, interacting with endosomal

membranes to facilitate hexagonal phase transitions and enhance

cytoplasmic release (125–128). Specifically, these phospholipids

consist of different head groups and fatty acid chain lengths,

forming nanoparticles with varying solubility and charge

properties (129). These nanoparticles are designed to interact

with specific organelle membranes, allowing targeted delivery and

efficient nucleic acid release (130–132). For example, Habrant and

colleagues developed a series of ionizable carriers derived from the

natural aminoglycoside antibiotic tobramycin, achieving diversity

through structural optimization at the linker and hydrophobic

domain levels. These carriers, forming complexes with mRNA,

DNA, or siRNA, exhibited high transfection efficiency,

particularly when combined with dual-stimuli (pH and near-

infrared) controlled release, showing significantly higher drug

release rates at acidic pH 5.5 compared to neutral pH 7.0, with

further enhancement under acidic conditions (133). Another

strategy involves using viral peptides with efficient endosomal

escape capabilities, such as GALA peptide, which changes

conformation in acidic environments to form transient pores,

thus facilitating endosomal escape. Nakase et al.’s research shows

the application of GALA peptide not limited to enhancing

transfection efficiency of plasmid DNA mediated by cationic

liposomes but also as a functional molecule in multifunctional

enveloped nanodevices (MEND). Complexes of GALA with

targeting molecules can effectively enter cells via endocytosis in

the presence of cationic lipid complexes, successfully avoiding

endosomal traps and potential metabolic degradation (134).

Most polymer-based nanomedicines achieve endosomal escape

through the proton sponge effect, a mechanism involving the

buffering action of polycationic polymers such as polyethyleneimine

(PEI), peptides, chitosan, and other polymers, leading to increased

osmotic pressure inside endosomes and causing them to rupture (135,

136). Specifically, BO-112, a ligand constructed from double-stranded

RNA mimetics and PEI, is being used in clinical trials for melanoma,

showcasing the application of the proton sponge effect in promoting

cytoplasmic delivery. However, the understanding and application of
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the proton sponge mechanism are contentious, with studies

suggesting other factors and mechanisms such as polymer

conformation, shape, and degradation characteristics may play roles

in endosomal escape. To address toxicity issues associated with

traditional cationic nanomedicines, researchers have explored

stimulus-responsive materials as alternatives to enhance the

therapeutic effect of nanomedicine. A novel mRNA formulation

encapsulated in a charge-reversal polymer that switches from

negative to positive charge in acidic endosomal environments was

developed. This formulation employs protonizable polyurethane

derivatives (pHPUs) that promote endosomal escape through

charge reversal at acidic pH, thereby enhancing mRNA delivery

efficiency. The molecular design of pHPUs includes reversible

protonizable groups that switch from a negative to a positive

charge under acidic conditions, thereby enhancing mRNA delivery

efficiency (137, 138). This design allows the polymer to respond to the

acidic endosomal environment after cellular uptake, facilitating drug

release into the cytoplasm and demonstrating safe and efficient

endosomal escape functionality (139–141). Additionally, as

alternatives to traditional endosomal escape mechanisms, strategies

such as photochemical disruption and utilizing extracellular vesicles

(EVs) as delivery vehicles have been proposed. Photochemical

methods achieve effective drug or gene release by destroying

endosomal membranes with reactive oxygen species (ROS) or

thermal energy produced by photosensitizers. This strategy utilizes

photosensitive materials like PEI-modified gold nanoparticles, which

generate photothermal effects under near-infrared (NIR) irradiation,

leading to endosomal membrane rupture and effective endosomal

escape (142). Extracellular vesicles (EVs), as natural nanoparticles,

offer an efficient delivery strategy by releasing their cargo through

membrane fusion. Engineered EVs can encapsulate specific

therapeutic molecules, which are taken up by target cells and

release their load through membrane fusion, achieving targeted

therapeutic effects. The advantage of this strategy lies in the natural

origin and excellent biocompatibility of EVs, making them a

promising therapeutic delivery system (143). These strategies have

shown potential in promoting siRNA delivery in cancer models,

although further optimization and preclinical studies are required.

Combining different endosomal escapemechanisms in nanomedicine

design may be key to achieving efficient cytoplasmic delivery.
4.2 Direct cell membrane penetration of
customized nanoparticles

Direct cytoplasmic delivery of nanomedicines, bypassing the

need for endosomal escape, can be achieved through membrane

fusion or direct penetration. Membrane fusion is suitable for lipid-

based nanomedicines, while direct penetration relies on the

compactness, small size, cationic properties, or amphipathic

surface patterning of the nanomedicine. Cell-penetrating peptides

(CPPs) are extensively used to enhance the surface of nanomedicines

for direct penetration, aiding in the delivery of nucleic acids,

proteins, and drugs (144). CPPs, which include non-amphipathic

cationic CPPs and primary and secondary amphipathic CPPs, are

classified into cationic, amphipathic, and hydrophobic types (145).
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These CPPs facilitate membrane permeation by altering

conformation or forming pores. Although the exact entry

mechanisms of CPPs remain partially unknown, their efficiency is

influenced by various factors such as concentration and cell type

(146). Fine-tuning the physicochemical properties of nanomedicines,

such as reducing size, surface functionalization with biodegradable

CPPs, and designing amphipathic materials, contributes to direct cell

membrane penetration and is an effective strategy for enhancing in

vivo translation of nanomedicines (147, 148). To further enhance the

efficiency of direct cytoplasmic delivery and bypass endocytosis,

researchers have developed the following additional strategies:

Firstly, the technique of “Membrane Perforation through

Nanostructures” utilizes metallic nanoparticles to create temporary

disruptions in the cell membrane, enabling direct delivery of proteins

into the cytoplasm (149, 150). This includes methods such as using

gold nanoparticles heated by a laser to induce membrane perforation

(149). Secondly, “Membrane Translocation by Chemical Means”

involves employing specially designed peptides and other chemical

agents that interact with the cell membrane to create temporary

openings or translocate directly through it. This approach includes

the use of cell-penetrating peptides (CPPs) that can deliver cargo by

penetrating the cell membrane without requiring endocytosis (151–

154). Additionally, “Membrane Fusion Techniques” mimic viral

entry mechanisms, where delivery vehicles fuse with the cell

membrane, releasing their cargo directly into the cell (155, 156).

This might involve the use of liposomes or engineered viral

envelopes that can fuse with cellular membranes (157). Lastly,

“Thermal and Mechanical Methods” apply physical forces or heat

to disrupt the cell membrane temporarily, allowing proteins to enter

directly. One example is sonoporation, where ultrasound-generated

microbubbles are used to mechanically disrupt the cell membrane

(158–160). These approaches are particularly advantageous for

delivering molecules directly to the cytoplasm, bypassing the

endosomal pathway which often leads to the degradation of

therapeutic proteins (161, 162). During in vivo administration,

nanocarriers must overcome numerous physiological barriers to

reach the mitochondria, successfully release the drug, and exert the

desired therapeutic effect. The overall charge of nanocarriers is

crucial for their interaction with the biological environment.

Positively charged nanocarriers tend to interact nonspecifically

with blood components, leading to rapid clearance from the

bloodstream (163). However, their positive charge is necessary for

escaping from endolysosomes into the cytoplasm through the proton

sponge effect (164). In contrast, negatively charged nanocarriers

experience less serum protein adsorption but struggle to escape

lysosomes. Employing a “stealth effect,” such as coating positively

charged nanocarriers with hydrophilic materials like PEG, can

prevent their adsorption by serum proteins and reduce nonspecific

clearance in the body, thus prolonging circulation time and

achieving passive targeting of tumor regions through the enhanced

permeability and retention (EPR) effect. This section focuses on

developing customized nanomedicines for precise subcellular

targeting following cytoplasmic release, with a particular emphasis

on mitochondrial delivery.
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4.2.1 Layered targeting for precision delivery
Layered targeting employs a multi-stage strategy, integrating

various targeting elements and release mechanisms to ensure precise

delivery to subcellular targets. Compared to charge-reversal materials,

it enhances specificity and efficacy while minimizing off-target effects.

Researchers developed a smart nanoparticle based on hyaluronic acid

(HA) for tumor reductive response and CD44 receptor-mediated

targeting therapy. These nanoparticles, formed by linking HA with

poly(lactic-co-glycolic acid) (PLGA) through disulfide bonds, create a

diblock copolymer (HAssLG). Doxorubicin (DOX)-loaded HAssLG

nanoparticles prepared through dialysis exhibit a spherical appearance

under 300 nm. Fluorescent measurements showed DOX release from

nanoparticles in a dose-dependent manner upon adding glutathione

(GSH), increasing with GSH addition, indicating their reductive

responsiveness. The nanoparticles’ uptake by CD44-positive MDA-

MB231 cells, confirmed through increased fluorescence upon

treatment, was significantly reduced by pre-treatment with free HA

to block CD44 receptors (165).

Moreover, a hyaluronic acid (HA)-modified micelle system was

developed to encapsulate paclitaxel (PTX) and the P-glycoprotein

inhibitor ritonavir (RTV). HA, a natural ligand for the CD44

receptor overexpressed in breast cancer cells, is conjugated to

poly(lactic-co-glycolic acid) (PLGA) via a disulfide bond (HA-ss-

PLGA), which is cleaved in the glutathione-rich environment of

breast cancer cells. RTV inhibits P-gp and CYP3A4-mediated PTX

metabolism, helping reverse multidrug resistance (MDR) and

sensitize cells to PTX. In vitro studies showed greater uptake of

micelles and PTX in breast cancer cell lines (MCF-7 and MDA-MB-

231) compared to non-tumorigenic MCF-12A cells. Efficacy assays

indicated reduced mitochondrial membrane potential and reactive

oxygen species, promoting apoptosis in cancer cells (166).

Additionally, researchers have developed reversible crosslinked

HA nanoparticles for targeted DOX delivery to CD44+ breast

cancer cells using HA-Lys-LA conjugates (Lys: L-lysine methyl

ester, LA: lipoic acid). DOX-loaded crosslinked nanoparticles

formed by autogenous crosslinking exhibited inhibited DOX

release under physiological conditions but rapid drug release in

the presence of 10mM GSH. MTT tests showed that DOX-loaded

crosslinked HA-Lys-LA10 nanoparticles had significant targeting

and superior antitumor activity against DOX-resistant MCF-7

human breast cancer cells overexpressing CD44 receptors (MCF-

7/ADR) (167). Additionally, a layered targeting strategy was

employed using glucose transporter 1 (GLUT1) and matrix

metallopeptidase 2 (MMP2) with PAMAM dendrimers for

mitochondrial delivery of paclitaxel (PTX). The system, through

MMP2-sensitive PEG layer detachment, GLUT1-mediated

internalization, mitochondrial localization, and glutathione

(GSH)-triggered PTX release, effectively reversed multidrug

resistance (MDR) and enhanced the effect on MCF-7/MDR cells

while reducing systemic toxicity, demonstrating potential in

overcoming MDR in cancer treatment (168). Experimental

findings indicated that the mitochondrial targeting conjugate,

mediated by GLUT1 and triggered by MMP2, effectively

overcame multidrug resistance in paclitaxel-resistant cancer cells,
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resulting in enhanced tumor suppression and reduced weight loss.

Beyond cancer treatment, layered targeting strategies also extend to

neurodegenerative diseases. For example, Sharma’s group proposed

a mitochondrial targeting of hydroxy PAMAM dendritic drug

constructs (TPP-D-NAC) by utilizing N-acetyl cysteine (NAC),

where triphenyl-phosphonium (TPP) is used for mitochondrial

targeting and NAC is used for targeting mitochondria delivered

to injured glial cells. It was demonstrated that the dendrimer-NAC

conjugate (D-NAC) significantly improved the attenuation of

oxidative stress by TPP-D-NAC compared to free NAC (169).

4.2.2 Enhancing specificity and efficacy of
mitochondrial targeting

Delocalized lipophilic cations (DLCs), widely used as

mitochondrial targeting molecules in nanomedicine, have

facilitated the development of numerous preclinical nanodrugs

but come with limitations. Their efficacy is compromised by post-

treatment mitochondrial depolarization and inconsistent

accumulation due to tumor cell heterogeneity. The concentration-

dependent toxicity of DLCs and their nonspecific targeting across

mitochondrial regions limit their broader application. To enhance

specificity and effectiveness, research suggests combining

mitochondrial targeting with specific disease markers. Sharma

and colleagues developed a novel nanotherapeutic strategy by

conjugating TSPO (translocator protein) targeting ligands to

PAMAM (polyamidoamine) dendrimers through click chemistry,

specifically for treating glioblastoma. With TSPO significantly

upregulated in pathological conditions like glioblastoma, this

strategy demonstrated specific targeting of tumor-associated

macrophages and an enhanced anti-tumor immune response,

representing an effective combination of mitochondrial and

cellular specificity targeting, offering a new strategy for

glioblastoma treatment (170). Due to the hearing impairment

caused by aminoglycoside drugs leading to damage or loss of

inner ear mechanosensory hair cells, and the significant role

of mitochondrial cell death pathways in cellular dysfunction, a

study developed a novel mitochondrial-targeting drug delivery

system (DDS) to enhance the protective effect of gentamicin. This

research successfully fabricated SS-31 peptide-conjugated

geranylgeranylacetone (GGA)-loaded poly(lactic-co-glycolic acid)

(PLGA) nanoparticles using the emulsion-solvent evaporation

method. The results demonstrated that SS-31 conjugated

nanoparticles exhibited mitochondrial specificity in hair cells

accumulation; further experimental data suggested that the

mitochondrial-targeting PLGA-based DDS has potential

applications in protecting hair cells from ototoxic substances (171).
4.2.3 Polymer carriers
Utilizing polymer carriers with mitochondrial targeting

potential, such as amphiphilic polymers linked by disulfide bonds,

shows advantages in cost-effectiveness and safety compared to other

strategies. For example, Zhou and colleagues employed a charge
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reversal strategy to prepare lipid-polymer hybrid nanoparticles

(LPNP) with triphenylphosphonium (TPP), using a polyethylene

glycol (PEG) layer to conceal the positive charge of LPNPs for

enhanced accumulation in tumor tissue. These LPNPs exhibited a

nearly neutral z potential of +7.4 mV at pH 2.4 but regained a

positive charge (z potential of +17.2 mV) upon encountering

reduced glutathione (GSH) in cancer cells, causing the PEG layer

to shed and allowing precise mitochondrial targeting. This design

ensured the controlled release of paclitaxel (PTX) within

mitochondria rather than the cytoplasm, enhancing anticancer

efficacy (172). Similarly, the Momekova team developed a drug

nanocarrier loaded with curcumin by combining two types of

triblock copolymers—poly(ethylene glycol)-poly(e-caprolactone)-
poly(ethylene glycol) (PEG-PCL-PEG) and TPP-modified poly(2-

(dimethylamino)ethyl methacrylate) (PDMAEMA)—to construct

an initially positively charged outer layer, with the external PEG

layer concealing the positive charge in the biological environment.

Once internalized into cells, the PEG chains in lysosomal conditions

degrade, exposing the positively charged core and facilitating

lysosomal escape of the nanocarrier through the “proton sponge

effect.” TPP-driven mitochondrial targeting release enhanced the

cytotoxicity of curcumin (173).

In another example, a polymer developed by combining specific

mitochondrial targeting ligands and dichloroacetate can activate

mitochondrial oxidative stress to promote cell death in

osteosarcoma models. Although the specific mechanism of

mitochondrial affinity is not clear, adjusting the polymer

properties can enhance cellular uptake and mitochondrial

targeting. A study demonstrated that fluorinated amphiphilic

molecu les produced by the fluor inat ion react ion of

phosphatidylethanolamine (PE)-PEG and fluorocarbon chains

(Fn) enhance the polymer’s cellular uptake and mitochondrial

localization, showing potential for cancer treatment. Notably,

PEG2k-F7 displayed exceptional cellular internalization abilities,

with its potential-independent mitochondrial co-localization

increasing drug efficacy. In vitro and in mouse models, PEG2k-F7

nanomicelles carrying anticancer drugs significantly reduced tumor

size, confirming the application value of this mitochondrial

targeting strategy in therapy (174). Zhang and colleagues

developed a polymer nanomedicine design combining

mitochondrial targeting, using long cyanine monomers (a family

member of rhodamine DLCs) and dimethylacrylamide (DMA)

copolymer, further functionalized with tumor-targeting cRGD

peptide (targeting anb3 integrins) to prepare cRGD-P(DMA-co-

CSMA) nanoparticles. These nanoparticles exhibited natural

mitochondrial targeting through cyanine base-dependent

accumulation without directly modified mitochondrial targeting

ligands. In a melanoma model, dual-targeted nanoparticles loaded

with the immunomodulator R848 precisely triggered mitochondrial

damage and tumor antigen release through a mild photothermal

effect, synergizing with PD-L1 immunotherapy to effectively inhibit

primary and metastatic tumors, showcasing the potential of

polymer nanomedicine in cancer therapy (175). This study
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highlights the potential of novel nanomedicine strategies combining

mitochondrial targeting polymers and photothermal effects in

enhancing cancer treatment efficacy, especially when used in

conjunction with immunomodulators and PD-L1 inhibitors. By

utilizing anionic polypeptide poly(g-glutamic acid) (g-PGA) and

designed amphiphilic cationic b-sheet peptides, negatively charged

peptide-peptide nanoparticles were successfully developed,

effectively encapsulating the anticancer drug Lonidamine (LND)

and demonstrating mitochondrial targeting capability. These

peptide-based nanoparticles (LND-mPoP-NPs) increased LND

loading by reducing peptide coating concentration, thus lowering

nonspecific toxicity while retaining mitochondrial targeting ability.

Further studies showed that this new formulation of nanoparticles

(h-LND-mPoP-NPs), while maintaining a negative z potential,

could effectively deliver drugs near the mitochondria. In tumor

treatment applications, this optimized nanomedicine demonstrated

stronger efficacy and tumor growth inhibition compared to the free

drug (176). Additionally, another study designed and synthesized a

new type of mitochondria-targeted multifunctional nanoparticle

(MNPs) based on chitosan derivatives, achieving targeted release of

anticancer drugs. These smart chitosan nanoparticles feature

multiple functions such as stealth, hepatocyte targeting, multi-

stage pH response, lysosomal escape, and mitochondrial
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localization. Guided by the tumor physiological environment,

through stepwise shedding of functional groups, these

nanoparticles effectively promote intracellular drug delivery and

mitochondrial localization, enhancing antitumor effects while

reducing the toxicity of anticancer drugs (16).
5 Current challenges and future
directions in mitochondrial-
targeted nanotherapeutics

5.1 Overcoming low drug
loading efficiency

5.1.1 Self-assembly of amphiphilic
small molecules

To enhance drug encapsulation efficiency, some studies have

adopted a “self-assembly” strategy involving the coupling of

hydrophilic TPP with hydrophobic drugs to form amphiphilic

TPP-drug derivatives. These derivatives self-assemble into

nanoparticles at high concentrations, such as the TPP-PEG-biotin

self-assembled nanoparticles successfully synthesized by Baskaran
FIGURE 6

Graphical abstract: Progress in mitochondrial-targeted nanomedicine showcases overcoming biological barriers, strategic design, and subcellular
validation techniques. Adapted from (154).
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Purushothaman and colleagues, which enhanced stability,

circulation time, and tumor tissue accumulation. These

nanoparticles respond to cleavable PEG in the tumor

microenvironment, allowing for disassembly without affecting

cellular uptake and processing. In vitro and in vivo studies

demonstrated that TPP-PEG-biotin nanoparticles, due to high

mitochondrial accumulation, showed therapeutic effects

surpassing that of free drugs, offering a straightforward method

for the mitochondrial-targeted delivery of hydrophobic anticancer

drugs (177). Furthermore, Khatun and others developed a

b ioreduc ib le methoxy po lye thy lene g lyco l (mPEG)-

triphenylphosphonium (TPP) conjugate-based bioreactive

nanocarrier system, mPEG-(ss-TPP)2, as a vehicle for

mitochondrial drug delivery. This amphiphilic mPEG-(ss-TPP)2

self-assembles in aqueous media to form core-shell structured

nanoparticles (NPs) with good colloidal stability, efficiently

encapsulating the hydrophobic anticancer drug doxorubicin

(DOX). Studies on the anticancer efficacy and mitochondrial

targeting capability of DOX-loaded mPEG-(ss-TPP)2 NPs

indicated that bioreducible DOX-loaded mPEG-(ss-TPP)2 NPs

could rapidly release the drug, enhance mitochondrial uptake,

and achieve better therapeutic effects compared to non-

bioreducible NPs (178). This showcases the potential of TPP-drug

derivatives in improving drug encapsulation efficiency and

achieving mitochondrial-targeted delivery, while also offering new

avenues for therapeutic effects beyond traditional drug

delivery methods.

5.1.2 Self-assembly of small molecule-
polymer conjugates

By coupling amphiphilic compounds like TPP-Dox with

polymers, Khatun and colleagues demonstrated a strategy to avoid

trapping these compounds within nanocarriers. This not only

facilitated their self-assembly into mitochondria-targeted

nanoparticles but also enhanced the uptake efficiency by tumor

cells. They employed a bioreducible disulfide bond-based linking

method to prepare polymers with mitochondrial targeting capability,

forming a novel multifunctional bio-activatable mitochondria-

targeted nanocarrier. These nanocarriers self-assembled in aqueous

media, forming core-shell structured nanoparticles with good

colloidal stability, effectively encapsulating the hydrophobic

anticancer drug doxorubicin (DOX). The DOX-loaded

nanoparticles exhibited rapid drug release and enhanced

mitochondrial uptake capabilities, leading to better therapeutic

effects than non-bioreducible nanoparticles (178). Additionally,

Zhou and colleagues reported an improved strategy for enhancing

the anticancer efficacy of paclitaxel through redox-triggered

mitochondrial targeting. They designed a lipid-polymer hybrid

nanoparticle (LPNP) containing TPP, with a PEG4000 layer on the

surface to ensure high tumor accumulation. The nanoparticles

regained surface charge under the reducing conditions inside

cancer cells, achieving rapid and precise mitochondrial localization.

This straightforward mitochondrial targeting nano-platform
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displayed high anticancer activity, offering a valuable strategy for

the development of nanocarriers for other drugs (94).
5.2 Overcoming premature drug release

Wang and colleagues implemented an innovative strategy to

address the issues of premature drug release and nonspecific

distribution by synthesizing drugs in situ within mitochondria,

thereby enhancing therapeutic efficiency and reducing toxicity.

They utilized the copper-catalyzed azide-alkyne cycloaddition

(CuAAC) reaction, initially creating a zirconium-based metal-

organic framework (MOF) to stabilize copper nanoparticles (Cu

NPs) as catalysts and introducing the mitochondrial targeting TPP

moiety through amide coupling. Based on this, they conducted in

situ synthesis using a resveratrol (Rsv) precursor, known to

effectively induce apoptosis. This in situ synthesis method not

only verified Rsv’s mitochondrial targeting effect within cells but

also demonstrated significant antitumor activity with minimized

side effects in a tumor-bearing mouse model (179). Additionally,

another study explored a strategy of loading DNAzymes onto

metal-organic frameworks (MOFs) as a new pathway for

synchronizing in situ cancer drug synthesis with DNAzyme-based

gene therapy. This bimetallic MOF was capable of releasing copper

and zinc ions inside cancer cells to catalyze the CuAAC reaction for

chemotherapeutic drug synthesis and activate the cleavage activity

of DNAzymes, thus achieving precise cancer therapy (180).
6 Summary

This review delves into the significant advancements in

mitochondrial-targeted nanotherapeutics, an increasingly vital

area for treating ailments associated with mitochondrial

dysfunction, including cancer and neurodegenerative diseases. It

discusses the latest developments in nanotechnology for drug

delivery, focusing on the engineering of nanocarriers such as

liposomes, polymer nanoparticles, and inorganic nanoparticles, all

specifically designed for effective mitochondrial targeting. The

review stresses the critical need to optimize the physicochemical

properties of nanomedicines and to overcome biological barriers,

thereby enhancing both delivery mechanisms and therapeutic

outcomes (Figure 6). It also underscores the importance of

developing non-toxic targeting ligands and employing innovative

strategies that ensure site-specific drug release within mitochondrial

compartments. Furthermore, the review advocates for the use of

advanced physicochemical techniques to accurately assess

mitochondrial dynamics and drug delivery efficacy. The

incorporation of cutting-edge scientific methods such as

metabolomics, proteomics, and machine learning is emphasized

as essential for unraveling the complex mechanisms of action of

mitochondrial-targeted therapies and for pushing the boundaries of

their clinical applications. This comprehensive approach aims to
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pave the way for more precise and effective mitochondrial-targeted

treatments in the future.
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