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T cells express an enormous repertoire of T cell receptors, enabling them to

recognize any potential antigen. This large repertoire undergoes stringent

selections in the thymus, where receptors that react to self- or non-danger-

associated- antigens are purged. We know that thymic tolerance depends on

signals and antigens presented by the thymic antigen presenting cells, but we still

do not understand precisely how many of these cells actually contribute to

tolerance. This is especially true for thymic dendritic cells (DC), which are

composed of diverse subpopulations that are derived from different

progenitors. Although the importance of thymic DCs has long been known,

the functions of specific DC subsets have been difficult to untangle. There

remains insufficient systematic characterization of the ontogeny and

phenotype of thymic APCs in general. As a result, validated experimental

models for studying thymic DCs are limited. Recent technological

advancement, such as multi-omics analyses, has enabled new insights into

thymic DC biology. These recent findings indicate a need to re-evaluate the

current tools used to study the function of these cells within the thymus. This

review will discuss how thymic DC subpopulations can be defined, the models

that have been used to assess functions in the thymus, and models developed for

other settings that can be potentially used for studying thymic DCs.
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Introduction

T cells undergo random somatic recombination of Variable (V), Diversity (D) and

Joining (J) gene segments to assemble their T cell receptors (TCR) (1). This rearrangement

theoretically allows 1018 possible TCRs to be generated, which must undergo strict selection

checkpoints in the thymus to purge non-functional TCRs as well as those than might

recognize self-antigens (2). The first checkpoint, positive selection, selects TCRs that

recognize major histocompatibility complex (MHC) molecules (3). The second, negative

selection, determines the self-reactivity of TCRs by displaying self-peptides on MHC
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molecules to thymocytes (4). Thymocytes that show strong self-

reactivity are deleted or further differentiate into regulatory T cells

(Treg) with immunomodulatory functions (2, 5, 6). These two

checkpoints are essential for shaping the T cell repertoire. Both

checkpoints require antigen presenting cells (APC) in the thymus

to interact with TCRs. Therefore, they play pivotal roles in achieving

the intricate balance between immunodeficiency and autoimmunity.

APCs in the thymus include the classical hematopoietic APCs,

and non-classical thymic epithelial cells (TEC) (7). The role of TECs

in supporting T cell development are well characterized relative to

hematopoietic APCs. Three lineages of hematopoietic APCs have

been identified in the thymus: dendritic cells (DC), macrophages

and B cells (8–10). Of these, there is evidence demonstrating that

DCs and B cells present antigens and participate in negative

selection (8, 11–13). Although it remains unclear if macrophages

participate in thymocyte selection, these cells can present antigens

ex vivo (14).

From the study of transgenic mouse models that lack thymic

DCs, we know that these cells play non-redundant roles in clonal

deletion of self-reactive CD4 T cells and induction of Tregs (15).

Despite the importance of thymic DCs, the lineage origins of these

cells are not well characterized. As a result, it is difficult to manipulate

individual DC subsets to untangle the functions of these subsets.

More recent studies that better define DC biology in the thymus and

other organs have been enabled by new technologies such as

transcriptomic profiling, allowing us to utilize mouse models to

manipulate these cells more accurately (Table 1).
Manipulating total DCs

The importance of thymic DCs was revealed by exploiting their

common expression of CD11c. One of these approaches is diphtheria

toxin- (DT) mediated cell knockout models (35, 36). Mice transgenic

for CD11c-cre and flox-stop- diphtheria toxin a chain (DTA), which

ablates all CD11c-expressing cells, have been used to study the

consequence on T cell development (15). In the thymi of these

mice, the majority of conventional DCs are depleted and negative

selection is severely impaired in the CD4 compartment. Using the

same model, another study demonstrated poor development of Treg

clones (37). In the CD11c-DTR model, where DCs are depleted upon

DT administration, thymic DCs were shown to support the

development of a prostate antigen-specific Treg clone (16).

Although CD11c is generally agreed to be a DC-specific marker, a

recent study showed that thymic macrophages also express CD11c, as

well as class II major histocompatibility complex (MHC II) and SIRPa,
which are canonical markers for conventional DC2s (cDC2) (14). This

is despite having transcriptional profiles that are clearly distinct from

DCs. This suggests that macrophages could be easily mistaken as DCs

in phenotypic characterization and the approaches exploiting CD11c

expression are likely also affecting macrophages. An alternative marker

that is thought to be exclusive to conventional DC (cDC) is the

transcription factor Zbtb46 (38). With a Zbtb46-DTR transgene,

depletion of close to 80% of thymic cDCs has been reported (17, 39).
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Defining DCs by phenotypic subsets

Compared to the other hematopoietic APCs, DCs are relatively

well-characterized in the thymus. However, studies on thymic DCs

thus far have yet to piece together a clear picture of their

composition and functions. The earliest studies identified

phenotypic markers to distinguish three DC subsets in mice

which are still the canonical markers currently in use: CD8a+
cDC1, SIRPa+CD11b+ cDC2 and PDCA+SiglecH+ plasmacytoid

DC (pDC) (Figure 1) (40). cDC1s take up self-antigens expressed by

medullary TECs and display them for negative selection (13).

cDC2s are also known to participate in negative selection and to

generate regulatory T cells (Treg) in vitro (18). It is unclear yet

whether one subset contributes towards tolerance more than

another, or whether they are functionally redundant.
Controversies surrounding the
DC2 lineage

cDCs and pDCs are derived from common DC progenitors

that have lost monocyte-potential in the bone marrow (41). There

are currently no agreed phenotypic markers that specifically label

bona fide cDC2s. Commonly used markers such as SIRPa and

CD11b overlap with monocyte-derived cells (14, 42–44). While

the current gold standard to define macrophage and DC lineages is

by their differential dependence on the growth factors CSF1 and

FLT3, respectively, thymic cDC2s are often defined by only

phenotypic markers that do not exclusively label cDC2s. In the

thymus of Zbtb46-DTR mice, CD8a+cDC1s can be totally

depleted with DT, but around 20% of “SIRPa+cDC2s”

persist (17).

Recently, “monocyte-derived DCs” (mo-DC) were reported in

the thymus (45). These cells are transcriptionally similar to

monocytes but express cDC2 markers such as Itgax (CD11c),

Itgam (CD11b) and Sirpa. However, whether they are derived

from monocytes has not yet been determined. Another study

reported the presence of “CX3CR1+DCs” in the thymus that

migrate from the gut carrying microbiota antigens (21). In the

gut, CX3CR1+ mononuclear phagocytes are derived from

monocytes (46). An additional study reported the so called

thymic “transendothelial-DCs” (TE-DC) that can present blood-

borne antigens also express CX3CR1 (47). It is unknown if these

three described populations overlap, or how they are different, other

than their common expression of CX3CR1. It will be important to

clarify whether these “CX3CR1+DCs” contain DC-progenitor- or

monocyte-derived cells, and whether these cells belong to

macrophage or DC lineage (14, 48) (Figure 1).

Moreover, heterogeneity among cDC2s has been demonstrated,

at least in murine spleen. Splenic cDC2s can be subdivided into

Notch2- dependent Tbet+ cDC2A and KLF4-dependent RORgt+
cDC2B subsets (28, 29, 49). No study has directly compared

thymic cDC2s to these splenic subsets and thus heterogeneity of

thymic cDC2s remain unclear.
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Manipulating cDC1s

The transcription factors required for murine cDC1

specification are well defined, and thus there are multiple mouse

models that disrupt the development of cDC1s (50). The BATF3-

and IRF8-deficient models affect cDC1s (51–53). The thymi of these

mice have been characterized and a clear depletion of cDC1s can be

seen (16, 18). However, IRF8 deficiency also affects splenic B cells

and macrophages (54). It is yet unclear whether thymic B cells and

macrophages are impacted, and thus the changes in T cell

development observed in IRF8-deficient thymi cannot be solely

attributed to the depletion of cDC1s. Alternatively, there are the

CD103-DTR, XCR1-DTR or Clec9A-DTR models that utilize
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cDC1-specific promoters to drive DTR expression to deplete the

population (19–21). The integrin CD103 is a common marker used

to define intestinal DC1s (55). As this marker is also expressed by

thymic DC1s, the conditional CD103-DTR (CD11ccreCD103DTR)

model has been shown to efficiently deplete cDC1s in the thymus

(21). Thymic cDC1 depletion has not been characterized in XCR1-

DTR or Clec9A-DTR mice.
Manipulating cDC2s/mo-DCs

There are currently no mouse models with specific ablation of

the SIRPa+ DC population. This is likely due to the possibility that
TABLE 1 Summary of genetically modified mouse models for studying DC functions.

Model Full nomenclature Publication Thymus
assessed?

DC population
impacted

Observed T cell
development phenotype

CD11c-DTA CD11c-Cre/R-DTA (15) Yes Total DC Impaired CD4 negative selection

CD11c-DTR B6.FVB-1700016L21RikTg(Itgax-
HBEGF/EGFP)57Lan/J

(16) Yes Total DC Impaired development of MJ23 Treg clone

Zbtb46-DTR/
zDC-DTR

B6(Cg)-Zbtb46tm1(HBEGF)Mnz/J (17) Yes Total cDC /

Batf3-KO B6.129S(C)-Batf3tm1Kmm/J (16) Yes cDC1 cDC1 augment mTEC in central tolerance

IRF8-KO B6(Cg)-Irf8tm1.2Hm/J (16, 18) Yes cDC1 cDC1s were dispensable for MJ23 Treg clone

XCR1-DTR Xcr1tm2(HBEGF/Venus)Ksho (19) No cDC1 /

Clec9a-DTR Clec9aCre/CreRosaDTR (20) No cDC1 /

CD103-DTR CD103-LoxP-floxed stop
cassette + DTR x CD11c-Cre

(21) Yes cDC1 cDC1s were dispensable for microbiota-specific CD4
T cell development

IRF4-KO B6.129P2-Irf4tm1Mak/J (22–24) No cDC2 /

Zeb2-KO B6;129(Cg)-Zfhx1btm1.1Yhi (25) No cDC2, pDC /

NFIL3-C/EBP
mutant mice

(26) No cDC2, monocytes /

Mgl2-
DTR eGFP

B6(FVB)-Mgl2tm1.1(HBEGF/EGFP)

Aiwsk/J
(27) Yes CD301b+cDC2 Depletion of CD301b+ cDC2s impairs

clonal selection

IL4Ra-KO FVB/NJ-Il4raem1Amen/J (27) Yes CD301b+cDC2 /

CX3CR1-DTR B6N.129P2-Cx3cr1tm3(Hbegf)

Litt/J
(21) Yes CX3CR1+DC CX3CR1+DCs support microbiota-specific CD4 T

cell development

Notch2-cKO CD11ccre x B6.129S-
Notch2tm3Grid/J

(28) No Notch2-
dependent cDC2A

/

KLF4-cKO CD11ccre x B6.129S6-
Klf4tm1Khk/Mmmh

(29) No KLF4-
dependent cDC2B

/

BDCA2-DTR C57BL/6-Tg(CLEC4C-
HBEGF)956Cln/J

(16, 30, 31) Yes BDCA2+ pDC affect innate lymphocyte development; dispensable
for MJ23 Treg clone and activating iNKT2 cells

MHC II-KO B6.129S2-H2dlAb1-Ea/J (17) Yes cDC maturation Significantly reduced mature DC

CD40-KO B6.129P2-Cd40tm1Kik/J (17) Yes cDC maturation CD40-deficient DCs mature poorly

XCL1-KO (32) Yes cDC1 migration Impaired natural Treg generation

CCR2-KO B6.129S4-Ccr2tm1Ifc/J (33) Yes cDC2 migration Impaired blood-borne-antigen-specific T
cell development

CCR9-KO B6N.129-Ccr9tm1Lov/JmfJ (31, 34) Yes pDC migration affect peripheral antigen transport and innate
lymphocyte development
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this is a mixed population of cells with a similar phenotype but of

different lineages. This is also the case for DC2s in other organs,

where their phenotype and lineage origins are still under

debate (56).

The transcription factors IRF4 and ZEB2 are implicated in the

commitment of the cDC2 lineage (22–24, 57). Due to differences in

environmental cues, tissue-specific cDC2s have different

dependencies on IRF4. DC-specific IRF4 knockout depletes

cDC2s in the lung, but only a proportion of cDC2s in the spleen

and small intestinal lamina propria (22, 24). Knockout of Zeb2

depletes cDC2s, but also pDCs (25). To specifically deplete cDC2s, a

mouse model with mutations in the Zeb2 enhancer was developed

(26). Although B cells and pDCs are not impacted, monocytes are

deficient in this model. No assessment of thymic cDC2s in the

aforementioned mouse models have so far been reported.

Since the transcriptional regulation of cDC2s is difficult to

exploit, other approaches that employ other markers expressed by

thymic DC2s in DTR models have been developed, but none

achieve total depletion. The Mgl2-DTR model specifically targets

Mgl2/CD301b-expressing cells (58). These were found to be 30-60%

of the thymic cDC2s (30, 45). The cytokine receptor IL4R regulates

the maintenance of CD301b+ cDC2s and Il4Ra-deficient mice

exhibit the same degree of depletion as the CD301b-DTR mice

(27). CX3CR1-DTR is also a potential tool for depleting cDC2s (21).

Using this model, CX3CR1+DCs were shown to be crucial for the

development of microbiota-specific CD4 T cells.

The lack of mouse models with effective cDC2 depletion

highlights the need to clarify the identity of the SIRPa+ myeloid

cells in the thymus. The possibility that there are cDC2s, mo-DCs
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and macrophages with similar phenotypes implicates that the

thymic cDC2s described in previous studies could in fact be

comprised of a mixture of populations. The populations of

different lineages should be targeted using different approaches. It

will also be beneficial to map thymic cDC2s to the well-defined

subsets of splenic cDC2s, which could allow existing models such as

the Notch2- and Klf4- conditional knockout to be adapted for

studying their functions (28, 29).
Manipulating pDCs

pDCs express the unique surface marker CLEC4C/BDCA2 and

this has been utilized for DTR transgenic models (59). There is

efficient depletion of thymic pDCs in this model and they were

found to be required for the development of microbiota-specific

innate lymphocytes (16, 30, 31).
Defining DCs by activation status

Circulating DCs, or immature DCs are known to undergo

maturation upon uptake of an antigen and home to lymph nodes

to activate T cells (60). This maturation process refers to the

activation of developmentally mature and functional DCs, and not

the differentiation of uncommitted progenitors into DCs. Mature

DCs upregulateMHC II as well as the costimulation molecules CD80,

CD86 and CD40. Mature DC homing to the thymus was first

explored in 2006, and it was found that immature DCs are
FIGURE 1

Thymic DCs are composed of various subsets that are derived from different progenitors. Thymic seeding progenitors (TSP) are suggested to give
rise to thymic monocytes, pre-DC and pDCs in addition to common myeloid progenitors (CMP). Multiple CX3CR1+ cDC2-like populations have
been described, and it is yet unclear whether they are derived from monocytes, or pre-DC, and whether they are CSF1- or FLT3-dependent.
Overlapping Markers expressed by DC2s and macrophages (marked by asterisks), such as CD11c, MHC II, SIRPa, CD11b and CX3CR1, increase the
difficulty to distinguish the cells apart.
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preferentially recruited to the thymus compared to immunogenic

LPS-induced mature DCs (61). The authors propose that preferential

recruitment of immature and tolerogenic DCs is a safety checkpoint

in central tolerance, since DCs that mature with danger signals can

lead to undesirable deletion of danger-associated thymocytes.

Using RNA sequencing, the transcriptional changes that take

place during maturation of thymic CD8a+ cDC1s were found to

resemble maturation of tolerogenic DCs in the periphery (62).

Another study reported that both cDC1s and cDC2s undergo

maturation in the thymus, and mature cDC1s are transcriptionally

very similar to cDC2s (17). Unlike peripheral DCs that become less

phagocytic upon maturation, this study suggested that thymic mature

DCs are as efficient as immature DCs in the uptake of antigens. Other

than antigen presentation, mature DCs have also been found to

promote thymic atrophy via the Jagged-Notch2 axis (63). However, it

has not been fully resolved whether all DC maturation takes place in

the thymus or some mature DCs are recruited (17, 63).
Manipulating DC maturation

Thymic mature DCs are found to depend on cognate MHC II-

TCR interactions with CD4 single positive (SP) thymocytes and CD40-

mediated costimulation signal (17). Thymic DCs that are deficient for

MHC II or CD40 mature poorly. However, CD4 single positive

thymocytes are absent in MHC II-deficient mice and it is difficult to

study the function of mature DCs with such great impact on the CD4

compartment (64). Further, removing MHC II or CD40 directly affects

the antigen presentation capacity of all DCs in the thymus, not just

mature DCs. Although there are available approaches to block DC

maturation, none of these can be used to address whether mature and

immature DCs are functionally distinct, or how mature DC1s are

different to DC2s given their transcriptional similarity.
Defining DCs by site of development
and source of antigen

The majority of DCs originate from the bone marrow, but early

thymic progenitors that enter the thymus can retain multipotency

and give rise to DCs (65). This means DCs in the thymus can be

either derived from a progenitor in the thymus or enter the thymus

as functional DCs. This different origin of DCs can fundamentally

impact their function. The unique thymic microenvironment may

influence DCs to acquire specialised functions, while a migrated DC

can carry antigens that are derived peripherally (66, 67). Therefore,

it is desirable to know where a DC has come from when studying

their function in the thymus.

The characterization of developmental origin of DCs began with

parabiotic mice experiments. The cDC1s were found to be resident,

while the other two subsets were found to be migratory (8, 33, 34, 68,

69). These experiments elegantly demonstrate the thymic residency of

cDC1s. For the cDC2s and pDCs, such parabiotic experiments only

demonstrate that cells from the periphery have migrated into the

thymus. It is still possible that a proportion of thymic cDC2s and pDCs
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develop intrathymically. Recently, single-cell transcriptomic

characterization of human thymus-seeding progenitors suggest that

they give rise to pDCs and monocytes (70, 71). Further, a rearranged

Tcrd locus can be detected in a proportion of human thymic

monocytes, pDCs and cDC1s, suggesting an origin via uncommitted

thymocytes (70). However, the exact origins of thymic DCs are yet to

be demonstrated using in vivo experimental models.
Manipulating DC by migration
and antigen

DCs rely on chemokine receptors to migrate throughout lymphoid

organs and tissues (72). The unique pattern of chemokine receptor

expression determines where subsets migrate and serve as good

markers for defining these subsets. cDC1s express XCR1 and they

co-localise with XCL1-expressing mTECs in the medulla of the thymus

(32). This facilitates the transfer of antigens from mTECs to cDC1s to

be efficiently presented or cross-presented to thymocytes (13). cDC2s

and monocyte-derived cells express CX3CR1, CCR2 and CCR5,

whereas pDCs express CCR9 (21, 33, 34, 47, 73–75). These two

subsets are reported to transport antigens from the periphery,

including introduced exogenous antigens and microbial antigens (21,

33, 34). All these chemokine receptors can be manipulated to affect

their migration into the thymus and localization within the thymus.

In XCL1-deficient mice, which lack the ligand of XCR1, the co-

localization of cDC1 and mTEC is impaired, leading to defective

generation of thymic Tregs (32). CCR2-deficient mice display a

marked reduction in thymic SIRPa+DC2s and leads to impaired

negative selection of blood-borne-antigen- and tumor-antigen-

specific T cells (33, 74). No decrease in SIRPa+DC2s are seen in

CCR5- or CX3CR1-deficient mice (33). When all three chemokine

receptors are knocked out or blocked with inhibitors, CX3CR1+DC

migration is completely ablated (21). Microbial DNA is present in

the thymus as long as mice express one of the three chemokine

receptors, suggesting that CX3CR1+DCs can utilize all three

for migration.

In CCR9-deficient mice, significantly fewer pDCs are found in

the thymus (31, 34). Consequently, peripheral antigen transport is

reduced and innate-like thymocyte development is impaired,

similar to BDCA2-DTR mice. The downside to manipulating

chemokine receptor expression is that thymocytes rely on some of

the same receptors, such as CCR9, for migration, their normal

development will be affected (76).

Blocking APC migration into the thymus impacts thymic

selection partly by removing the antigens they are supposed to

present. Therefore, manipulating antigens in peripheral tissues is

another approach for studying the functions of the migratory DCs.

This can be achieved by introducing non-endogenous antigens at a

specific site. For example, by coating the fluorescent protein FITC on

the skin, thymus homing DCs have been shown to transport antigens

from the skin (61). Otherwise, antigens like ovalbumin (OVA) can be

introduced by tissue-specific expression, such as the Cmy promoter

in cardiomyocytes, or the insulin promoter in pancreatic b cells (61,

77, 78). Because OVA is not an endogenous antigen, TCR transgenic
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OT-I CD8+ or OT-II CD4+ T cells that recognise OVA have to be

introduced (3, 79). With these approaches, the migratory potential of

thymic DCs into different tissues and their roles in the development

or deletion of the cognate T cells can be studied.
Final comments

Despite the known importance of thymic DCs in tolerance, DC

defects have yet to be implicated in autoimmune diseases. This

presents the conundrum of whether this is because they are not

involved, or because there are very limited tools to study them. The

biggest roadblock to studying thymic DC functions is our incomplete

understanding of their ontogeny and how subsets relate to each other.

Due to the unique purpose of the thymus and its specialized

microenvironment, assumptions made based on DC phenotypes in

other secondary lymphoid organs are often inaccurate. Single-cell

transcriptomic analyses of thymic myeloid cells revealed that non-

DCs also express CD11c and presented the issue of cDC2 lineage

heterogeneity. The phenotype of thymocytes and all hematopoietic

APCs should be carefully evaluated in models that are thought to only

impact DCs, to better interpret the reported changes in T cell

development. This is also important when comparing different

models to tease out the function of specific subsets. To further

understand the origins and developmental regulation of thymic

DCs, experimental approaches such as lineage tracing models are

needed. It also remains beneficial to leverage existing understanding

of (peripheral) DC biology and study the thymus phenotype in

models previously used for assessing DCs in other organs. Having

established and validated models for manipulating DC subsets can be

used to answer the question of whether these subsets are functionally

redundant and how each of them contribute to tolerance under

normal and autoimmune settings.
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