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Unraveling the role of
cancer-associated fibroblasts
in B cell lymphoma
Prithviraj Mukherjee, Stephen M. Ansell and Patrizia Mondello*

Division of Hematology, Mayo Clinic, Rochester, MN, United States
Recent breakthroughs in research have sparked a paradigm shift in our

understanding of cancer biology, uncovering the critical role of the crosstalk

between tumor cells and the immune cells of the tumor microenvironment

(TME) in malignant transformation. Fibroblasts have long been viewed as ancillary

participants in cancer progression, often eclipsed by the prominence given to

malignant cells. Novel investigations, however, have increasingly acknowledged

the essential part played by the fibroblasts and their phenotypic doppelganger

cancer-associated fibroblasts (CAFs) in fostering immunosuppression and

promoting tumor progression. Here we review the cell-of-origin from which

CAFs derive and their altered programs compared to their normal counterpart.

We will also discuss the complex interplay between CAFs and the surrounding

immune cells of the TME in the context of solid tumors and B cell lymphomas,

with a focus on the “reprogrammable” role of CAFs in immunosuppression,

immuno-activation and immuno-avoidance, and their implications on drug

resistance. Finally, we will examine the existing and plausible therapeutic

approaches targeting CAFs as a strategy to enhance treatment response.
KEYWORDS
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1 Introduction

B cell lymphoma is a heterogenous group of tumors arising from the lymphocytes

within the lymphoid structures (1). These diseases include a variety of subtypes with

different clinical behavior, ranging from slow growing and indolent to fast and aggressive

diseases, reflecting probably the nature of their progenitor cell. Considerable effort has been

devoted to better understand the pathogenesis and progression of lymphoma. Seminal

studies have uncovered the genetic alterations and dysregulated molecular pathways

frequently involved in lymphomagenesis (2–4). Further investigation has applied

clustering methods combining genomic and transcriptomic to classify molecular

subtypes for personalized therapeutic approaches (5–9). However, a complex genetic

background is insufficient to promote malignant transformation (10). Recently, the

tumor microenvironment (TME) has demonstrated a fundamental role in enabling
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tumor development (11). The TME is composed by a plethora of

highly plastic cells that can display anti-tumor or immune

suppressive functions. The driver towards either immune fate is

likely influenced by the tumor genetics and altered crosstalk

between malignant and immune cells (12–15), however, recently

the stroma cells have emerged for their central role in facilitating the

formation of a pro-tumoral niche for the malignant cells (16). It is

now well accepted that the stroma is more than just a scaffolding of

the tissue and is involved in promoting and sustaining tumor

development. The stroma also comprises the extracellular matrix

(ECM) along with cytokine/chemokines and soluble factors, which

are equally involved in the tumor-TME interaction.

Over the past decade numerous studies have demonstrated that

many of the cellular and biochemical processes involved in the

formation of the TME are closely related to the process of wound

healing and inflammation (17, 18). One of the key players in the

tumor cell-microenvironment interaction are the fibroblasts, also

known as Cancer Associated Fibroblasts (CAFs) (19, 20). While

healthy unaltered fibroblasts have the ability to secrete several

growth factors and chemokines that are associated with wound

healing to maintain structural integrity (21), CAFs use the same

cytokines, soluble factors and degrading enzymes to remodel the

TME (19, 22, 23). CAFs have a highly plastic, trans-differentiable

phenotype that alters the biochemical and physical structure of the

TME, along with altered effects on the pharmacokinetics within the

TME (24, 25). For example, CAFs are able to secrete multiple pro-

inflammatory cytokines such as interferon-g (INF-g), tumor

necrosis factor (TNF-a), fibroblast growth factor (FGF) and

vascular endothelial factor (VEGF) (26–28). Although CAFs

display pro-tumorigenic effects leading to tumor progression,

sometimes CAFs can also exhibit tumor suppressing qualities

(Figure 1). One exception appears to be lymphoma where CAFs

seems to mainly favor immune-escape (29). The malignant cells

leverage these versatile properties of CAFs to promote tumor

survival, proliferation, and disease progression. (30, 31). Extensive

studies have been performed in solid tumors, while their

characterization and function in lymphoma has not been
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adequately explored yet. In this review, we discuss the origin and

multifarious nature of CAFs in lymphoma. Furthermore, we

provide insights on ongoing investigation on therapeutic

strategies targeting CAFs.
2 Fibroblasts and CAFs

2.1 Cell-of-origin of CAFs

Fibroblasts are non-hematopoietic cells of mesenchymal origin,

with no specific surface biomarkers. They are usually identified as

CD45-CD90+ cells, but their associated markers vary depending on

the tissue in which they are located (32, 33). Their major function is

the formation of ECM, through the production of collagen and

fibronectin, which maintain structural integrity of the tissue and

cell-cell interactions (34). Additionally, fibroblasts can secrete

chemokines, cytokines and growth factors that are beneficial for

wound healing and tissue repair (35). Of note, fibroblasts are not

terminally differentiated and possess the capability to further

differentiate from adipocytes, chondrocytes, osteoblasts and CAFs

(36–40).

In contrast, our understanding of CAFs remains unclear (41). It

is generally accepted that CAFs can have numerous cellular sources

(42): CAFs can derive from activated fibroblasts, adipose tissue

reservoirs, or myofibroblast-like cells (43, 44). CAFs can also derive

from Endothelial to Mesenchymal transition (End-MT) and

Epithelial to Mesenchymal Transition (EMT), driven by TGF-b
signaling (24, 25, 30, 45). Other stromal cells (SCs) that can be the

potential source of CAFs are pericytes, telocytes as well as cancer

stem cells (CSCs). Each of these trans-differentiations is driven by a

variety of factors that work in coordination as shown in Figure 2.

The morphology of CAFs varies from stellate or cruciform to

spindle shape (29, 36–40). Like fibroblasts, CAFs do not have

specific markers. Typically they are identified as i) negative for

hematopoietic markers (CD45-), ii) negative for epithelial/

endothelial markers (CD31-), iii) high expression of a-Smooth

Muscle Actin (a-SMA+), Fibroblast Activation Protein (FAP+),

Podoplanin (PDPN+) and PDGFR a/b+ (22, 27, 28, 46, 47).
2.2 CAFs molecular classification

Single cell RNA-sequencing (scRNA-seq) has revealed that

CAFs are a heterogenous population. Cords et al. identified 9

different clusters of CAF in breast cancer. These groups were

classified as matrix CAF (mCAFs), inflammatory CAF (iCAFs),

vascular CAF (vCAFs), tumor-like CAF (tCAFs), heat shock protein

tumor like CAF (hsp-tCAFs), interferon-response CAF (ifnCAF),

antigen presenting CAF (apCAF), reticular like CAF (rCAF) and

dividing CAF (dCAF) (48), according to their unique gene

expression profile. mCAFs were the most abundant, while rCAFs

were the rarest. Notably, each cluster was defined by distinct gene

pathway enrichment. For instance, mCAFs were identified by high

expression of MMP11 and COL1A2, and upregulation of TGF-b
and KRAS signaling, and pathways linked to myofibroblasts and
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EMT formation. These authors also subdivided CAFs into two

broader groups: 1) the FAP+ group which included mCAF, iCAF,

tCAF, hsp-tCAF, ifnCAF, apCAF, and dCAF, and 2) the FAP-

group which included vCAFs and rCAFs. This reclassification

focused more on the functional heterogeneity rather than the

genomic features of CAFs.
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In lymphoma, the subtypes of CAFs have not been well defined

as in breast cancer. One of the main reasons being the challenge

associated with isolation of CAFs from lymph nodes (LN-CAFs)

and bone marrow (BM-CAFs) due to the overlap between

biomarkers of CAFs with other cell types. Single cell profiling of

the stromal population has been performed through non-lineage
FIGURE 2

Cellular progenitors of CAFs. Cellular subtypes with their respective markers along with associated signaling pathways and signaling molecules that
contribute to their trans-differentiation to Cancer Associated Fibroblasts (CAFs). Post differentiation CAFs are typically identified by their elevated
expression of a-SMA, FAP, PDPN and PDGFR-a/b.
FIGURE 1

Immune-modulating functions of CAFs. Cancer Associated Fibroblasts (CAFs) can be tumor promoting or suppressing. Tumor promoting CAFs
typically facilitate tumor growth through processes related to wound healing such as angiogenesis (e.g. VEGF), anti-apoptotic factors, ECM
remodelling, and hypoxia. Tumor suppressive CAFs promote Hedgehog signaling.
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isolation. For example, the Immunological Genome Project defined

the gene expression of two populations of stromal cells and two

populations of endothelial cells (EC) in LNs: i) PDPN+ CD31-

fibroblastic reticular cells (FRCs), ii) PDPN- CD31-, double-

negative cells (DNCs), iii) PDPN+ CD31+ lymphatic endothelial

cells (LECs), and iv) PDPN- CD31+ blood endothelial cells (BECs)

(49). Rodda et al. identified nine clusters of non-endothelial origin

cells based on specific anatomical and differential expression

profiles of Ccl19hi T-zone reticular cells (TRCs), Ccl19lo TRCs

(Ch25h+ cells in follicle-T-zone interface), Cxcl9+ TRCs (T-zone),

marginal reticular cells (MRCs), perivascular (PvCs), CD34+ SCs,

Inmt+ SCs, and follicular dendritic cells (FDCs) (50). These nine

subsets were previously compiled into only two – FRC and DNC

subtypes. One of the key highlights of this study was the

identification of CXCL9+ TRCs and Nr4a1+ SCs as activated

subtypes in several niches. Additionally, this study suggests that

nodal SCs represent a transcriptionally distinct subtype which

favors niche-restricted immune functions.

Recently, Abe et al. transcriptionally defined distinct LN-CAF

subtypes. They identified 10 subclusters of BECs, 8 subclusters of

LECs and 12 subclusters of non-endothelial SCs (NESC) in

metastasis free lymph nodes (MFLNs). In lymphoma tissue, the

same clusters showed substantial differences. For example, there

was a higher proportion of BECs compared to MFLNs. Out of the

12 subclusters of NESCs, adventitial SCs (adv-SCs) proved to be a

subtype of interest. Immunofluorescence (IF) staining of human

follicular lymphoma (FL) LNs revealed localization of the Decorin+

fibroblasts, a strong marker for advSCs, SFRP4-SCs, SFRP2-SCs,

TNF-SCs and C7-SCs that were found distributed throughout the

adventitia, interfollicular regions (IFRs) and medulla. Moreover,
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this study also identified a CD70-CD27 focused interaction. CD70

is expressed in many adventitial SCs whereas CD27 is upregulated

in FL B cells. Four out of five CD27+ FL samples showed obvious

binding to CD70-Fc protein (51).
3 Functions of CAFs

3.1 Immunomodulatory role of CAFs

The immunomodulatory effect of CAFs seems to be critically

involved in favoring lymphoma cell growth and survival. However,

this is a bidirectional process. Indeed, malignant B-cells can also

promote the formation and expansion of CAFs (52–54). Besides

altering their cell surface marker expression, malignant B cells can

reprogram stromal cells to release cytokines, enzymes, and various

soluble factors (e.g., exosomes and liposomal vesicles), which foster

tumor progression and contribute to drug resistance (Figure 3).

Mourcin et al. identified a subset of perivascular lymphoid stromal

cells (LSCs) with high level of CD49a expression that display a pro-

tumoral cytokines profile supporting FL B cells. In turn, FL B cells

contribute to polarizing LSCs through TNF and TGF- activation

pathway (16). Another subset of LSCs in FL overexpresses CXCL12

which triggers FL B cell expansion. Interestingly, polarization of

CXCL12hi stromal cells is promoted by IL4-producing T follicular

helper cells, thus forming a pro-oncogenic IL4/CXCL12 loop (55).

Similarly, in diffuse large B cell lymphoma (DLBCL) malignant B cells

release lymphotoxin, which activates stromal cells and modulates

their phenotype. In a reciprocal fashion, stromal cells release CLL19/

CCL21 chemoattractant for malignant cells (56). Altogether these
FIGURE 3

Functions of CAFs. Normal fibroblasts are engaged in several functions such as ECM remodelling, homeostasis, wound healing and immune
surveillance. However, CAFs can have a multifaceted role in contributing to the immune regulation within the TME. Associated markers and soluble
factors can vary with each of their respective functions.
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data support the existence of a circuit between fibroblasts and tumor

cells that provides homing and pro-survival signals.
3.2 Immunosuppressive role of CAFs

A recent study by Apollonio et al. used primary samples from

patients with DLBCL and ImHABcl6 mouse model, that recapitulates

the genetics and biology of DLBCL (57) to investigate the functions of

fibroblastic reticular cells (FRCs) in the TME (58). Transcriptional

analysis of DLBCL-FRCs revealed upregulation of genes involved in

proliferation (e.g., MKi67, CDK1, CDC20), metabolism (e.g., GYS2,

STC1, KIF20), cellular adhesion (e.g., ITGA8, ICAM1, VCAM), and

ECM (e.g., MMP9, MMP10, COL4A4). Gene set analysis showed

enrichment for inflammatory response (e.g., IFN type -I and II),

homing (e.g., ICAM) and antigen presentation signatures (e.g., MHC

class I and II), with concordant loss of homeostatic signaling. High-

definition imaging mass cytometry from 52 DLBCL samples revealed

an expanded PDPN+CD31- FRC population as compared to healthy

tissues. These FRCs showed a myofibroblastic morphology with

elevated expression of a-SMA. It is possible that FRCs are in part

responsible for hindering migration of tumor infiltrating

lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells in

DLBCL. Additionally, FRCs may be involved in limiting anti-tumor

immune response due to their decreased expression in CCL21 and

CCL19. Single cell profiling of CD45- cells from LN of ImHABcl6

mice identified 7 clusters of FRCs subsets. Pathway analysis showed

enriched fibroblast activation, ECM and IFN-response pathways.

This is in line with the suppressive role of FRCs, which create a

reticular meshwork limiting immune effector activity (57).

CAFs can also potentiate their immune-suppressive effect by

cooperating with myeloid-derived suppressor cells (MDSCs).

Studies in solid tumors have shown that MDSCs derived from

monocytes that are recruited to the TME by the CCL2-CCR2 axis

(59) and differentiate to MDSCs in response to IL-6 and GM-CSF,

whose production has been attributed to CAFs (60, 61). This

suggests that CAFs can recruit MDSCs in the TME, and together

they inhibit T cell function and proliferation (62, 63).
3.3 Inflammatory role of CAFs

We and others have shown that the composition of the TME

has prognostic implication in FL, DLBCL and other B cell

lymphomas (64, 65). Although the research focus has been

centered on T cells and macrophages, fibroblasts have recently

attracted the attention of the scientific community. Thomazy et al.

showed that the FRC meshwork in human FL has a higher

expression of the enzyme/adhesion molecule transglutaminase

(TG) compared to normal LNs (66). TG is normally expressed at

low levels in the paracortex of primary follicles, however its

expression was significantly upregulated in hyperplastic germinal

centers of the neoplastic LNs. Interestingly, implementation of

recombinant IL-4 (rIL-4) to the culture of FRCs induced 5 to 20-

fold increase of TG (66), suggesting a role of IL4 in the modulation

of FRCs. In a separate study, IL-4R expressing B cells interacted
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with CCL19+ FRCs to promote lymphoid formation (67, 68).

Following the interaction with B cells, FRCs release CXCL-13 (67,

68), a well-known B-cell chemoattractant (69), further contributing

to the lymphoid enlargement.

The expression of FDCs markers was found decreased in FL.

Specifically, Chang et al. compared the expression of CD21, CD23,

CD35, CXCL13, low-affinity nerve growth factor (LNGFR) and

CAN.42 by immunohistochemistry (70). Out of 35 FL, there was

partial to complete absence of FDC antigens in 31% of the FL cases.

Loss of CD23 expression was the most common event followed by

variable patterns of LNGFR and CAN.42. In contrast, CXCL13

expression pattern was similar in both neoplastic and reactive

follicles, but not in extrafollicular zones. Notably, the staining for

CD21, CD23, CD35, CXCL13 was negative in extrafollicular

stroma, suggesting that mature FDCs do not differentiate or

migrate to intrafollicular zones in FL.

Most recently, Radtke et al. reported a detailed molecular and

spatial atlas of FL TME (71). Their comprehensive multiomics

approach, including spatial imaging, bulk and scRNA-seq of

normal and malignant LNs from untreated FL patients, revealed

several distinguishing characteristics in high-risk FL patients.

Neoplastic follicles from high-risk early relapsed patients were

smaller, irregularly shaped and separated by a greater distance than

those from low-risk patients, which had a back-to-back follicle

distribution and a smaller distance of separation. Histological

analysis showed an increase in DC-SIGN+ myeloid cells and

desmin+ FRCs (CD21+ CD23+ CD35+) in high-risk patients.

Additionally, spatial imaging analysis revealed that these FRCs were

positive for CD49a and CXCL13. Gene set analysis of patients who

relapsed early compared to those with late relapse revealed an

enrichment for BCR (B-cell Receptor) signaling pathways, ECM

remodeling, fibrosis, MMPs, collagen deposition and glucose

metabolism. These findings uncovered the occurrence of stromal

desmoplasia, and abnormal follicular growth patterns in FL patients

with poor prognosis. Bulk RNA seq from early relapse LNs identified

high expression of TGF-b, CCL4, CCL5 and CXCL13 genes, which

are linked to cell recruitment within the TME. Paired scRNA-seq

confirmed upregulation of CXCL13-CXCR5 gene set, suggesting

lymphocyte infiltration within the TME. In line with prior

observations (72, 73), IRF4+ B cells were found in close association

with the DC-SIGN+ myeloid cells, T cells and vimentin+ cells.

Collectively, these data highlight the importance of stromal FDC

and FRC phenotype cells in stromal modulation and suggest their

potential prognostic role in newly diagnosed FL.
3.4 Role of CAFs in immuno-
avoidance/evasion

Malignant cells achieve immune evasion by several strategies

including 1) restriction of antigen presentation through

downregulation or loss of MHC I-II, co-stimulatory immune

molecules, and adhesion molecules (CD54/I-CAM), 2) reducing

immunogenicity and 3) inducing T cell exhaustion (74–77). In this

regard, the stromal cells assist malignant cells in further promoting

immune escape. CAFs are responsible for forming an immune
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barrier by virtue of their ability to secrete both myeloid and

lymphoid like chemokines, TGF-b being one of the most

important as mentioned previously (78). In mice, BM-CAFs have

shown to attract tumor associated macrophages (TAMs), by

secreting CCL2 which binds to CCR2 on monocytes (79, 80).

Once recruited within the TME, BM-CAFs are known to drive

M2-like TAM differentiation through secretion of GM-CSF, M-CSF

and IL-6 (78, 81). M2-like TAMs promote immune evasion by

blocking anti-tumor Th1 cells (82). Additionally, the GM-CSF

released in the TME can support immune-evasion by promoting

PD-L1 expression on extranodal natural killer (NK) cells/

cytotoxic T cells (83). Lastly, lymphoma neovascularization has

shown to act as a functional barrier that facilitates immune

tolerance. Microdissection of the endothelium identified increase

expression of TIM-3, which was correlated to a poor prognosis

(84, 85).
4 Therapeutic strategies for CAFs

In the context of immunotherapy CAFs have gained attention

for their immunomodulatory functions. CAFs can influence

immune cell recruitment, activation, and function within the

TME. Additionally, CAFs increase drug resistance through

multiple mechanisms including dysregulation of glycolysis and

secretion of soluble molecules/exosomes (22). Therefore, targeting

CAFs in combination with other immunotherapy has been an

ongoing effort and has emerged as a promising strategy to

enhance clinical responses.

CAFs are known for their contribution in cancer progression by

supporting the growth of cancer stem-like cells through paracrine

secretion of growth factors (86–89). Similarly, the close association

of CAFs to malignant cells may lead to increased tumor growth and

proliferation and may display a protective role from immune

surveillance (90). Typically, chemotherapy induces cytotoxicity

along with recruitment of cytotoxic immune cells (91–94). CAFs

activity in the TME can render these therapies ineffective by

blocking immune infiltration. CAFs can also assist in immune

escape of malignant cells from chemotherapy or radiotherapy by

their close association to CSCs. CSCs represent a quiescent or slow-

growing cell population that lays dormant within the tumor,

making it elusive to chemotherapy treatments (95, 96).

In lymphoma, LN-CAFs can secrete increased pyruvate levels,

which help in the reduction of reactive oxygen species (ROS),

augment cell-cell interaction and the citric cycle which is

important for malignant cell survival (97). Moreover, LN-CAFs in

lymphoma can also secrete exosomes containing the pyrimidine

transporter protein ENT2 (98), which contains miR-4717, a

microRNA thought to be responsible for upregulation of PD-1

expression (99). In DLBCL, CAFs were found to express PD-L1,

thereby reducing the cytotoxic activity of CD8+ T cells (100–102).

In contrast, in adult T-cell leukemia/lymphoma (ATLL), CAFs

promote CD4+ T cell proliferation via FGF7-FGF1 and PDGFA-

PDGFRA/B signaling (102). These CAFs were classified into two

subgroups - EGRhigh and EGR low of which EGRhigh seemed to
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promote NK and T-cell efficacy, suggesting a potential benefit of

CAF-directed therapy in ATLL.

Although the underlying mechanisms of CAFs formation remain

enigmatic, their altered pathways have been explored in

hematological malignancies as promising therapeutic targets.

Therapy directed against CAFs can be categorized in i) antibodies,

ii) secreted factors, and iii) cytokines/chemokines. The effect of TGF-

b signaling in CAFs formation was explored by two groups. Pan et al.

reported that TGF-b promotes a phenotypic differentiation of bone

marrow mesenchymal stem cells (BM-MSCs) into CAF-like cells

(103). Accordingly, inhibition of TGF-b lowered BM-CAFs

activation (104, 105). BM-CAFs differentiation from BM-MSCs was

also shown to be dependent on SDF-CXCR4 pathway in multiple

myeloma (MM) (106, 107), while CXCR4 inhibitors (e.g., BL-8040)

resulted in CAFs removal with promising clinical responses (108,

109). LOX/LOX2 signaling, related to ECM and collagen formation

in the TME (110), is also upregulated in hematological malignancies

(111). For example, LOX2 was found to be closely related to the

process of myofibrosis/CAF formation in myeloproliferative

neoplasms (MPN) (112). Thus, LOX and LOX2 inhibitors may

represent promising therapeutic strategies. Additionally, targeting

the CD70-CD27 axis has shown promise in FL as blocking CD27

decreased the number of malignant B cells (51).

Finally, CAFs seem sensitive to anti-angiogenic drugs (e.g.,

bevacizumab, sorafenib, sunitinib), as they secrete a number of

angiogenic growth factors such as VEGF (113). Crawford et al. show

that CAFs from anti-VEGF resistant TIB6 murine lymphoma

demonstrated drug response by revascularization of PDGF-C in

both in-vitro and in-vivo experiments (114).
5 Conclusion

In conclusion, CAFs are a multi-faceted subset of cells within

the lymphoma TME that can have varied sources of origin like

fibroblasts, MSCs and EMT. The interaction between CAFs and

immune cells in lymphoma is complex and multifactorial and may

play a critical role in tumor progression and/or relapse and

treatment resistance. Understanding the mechanisms underlying

the action of CAFs and their interactions with the surrounding

TME is crucial for developing more effective therapies to enhance

anti-tumor immune responses in lymphoma.
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