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Multifunctional role of
DEAD-box helicase 41 in
innate immunity, hematopoiesis
and disease
Jing Ma and Susan R. Ross*

Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine,
Chicago, IL, United States
DEAD-box helicases are multifunctional proteins participating in many aspects of

cellular RNA metabolism. DEAD-box helicase 41 (DDX41) in particular has pivotal

roles in innate immune sensing and hematopoietic homeostasis. DDX41

recognizes foreign or self-nucleic acids generated during microbial infection,

thereby initiating anti-pathogen responses. DDX41 also binds to RNA (R)-loops,

structures consisting of DNA/RNA hybrids and a displaced strand of DNA that

occur during transcription, thereby maintaining genome stability by preventing

their accumulation. DDX41 deficiency leads to increased R-loop levels, resulting

in inflammatory responses that likely influence hematopoietic stem and

progenitor cell production and development. Beyond nucleic acid binding,

DDX41 associates with proteins involved in RNA splicing as well as cellular

proteins involved in innate immunity. DDX41 is also a tumor suppressor in

familial and sporadic myelodysplastic syndrome/acute myelogenous leukemia

(MDS/AML). In the present review, we summarize the functions of DDX helicases

in critical biological processes, particularly focusing on DDX41’s association with

cellular molecules and the mechanisms underlying its roles in innate immunity,

hematopoiesis and the development of myeloid malignancies.
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1 Introduction

RNA helicases are a large class of enzymes that play critical roles in RNA metabolism.

They are classified into helicase superfamily 1 (SF1) and SF2. Within SF2, DEAD-box

(DDX) helicases, which all contain a characteristic Asp-Glu-Ala-Asp (DEAD) motif,

participate in cellular processes such as transcription regulation, pre-mRNA splicing,

ribosome assembly, translation, RNA decay and innate immunity (1). Structurally, DDX

helicases contain a conserved helicase core comprised of two DNA recombination and

repair protein A (RecA)-like domains with motifs essential for ATP binding or hydrolysis,

nucleic acid binding, and coupled binding of nucleic acid and ATP (1, 2) (Figure 1A).
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Typically, the helicase core is flanked by variable N-terminal (NTE)

and C-terminal (CTE) extensions, which determine the protein’s

specific targets (3) (Figure 1A). The human genome encodes 42

DDX helicases, 37 of which share conserved helicase motif

structures, while 5 show divergence in these structures (4). The

motif signatures of DDX helicases sets the foundation for their

interaction with other molecules, thereby determining their

function in different cellular processes. Sequence conservation

highlights residues that are functionally important. Changes in

the composition of even a few amino acids can create distinct

isoforms, leading to altered or even loss of protein function.

Dysregulation of DDX helicase expression frequently leads to

cellular dysfunction and disease.

One DDX protein with diverse functions is DDX41. DDX41

was first studied because of its recognition of DNA or DNA/RNA

hybrids generated during infection, triggering anti-viral and

-bacteria immune responses (5–8). Phylogenetic analysis of

DDX41 nucleic acid and amino acid sequences among

mammalian and non-mammalian species indicates its

evolutionary conservation in innate immunity (9–15). For

example, fish DDX41 was found to have helicase domains similar
Frontiers in Immunology 02
to those in human DDX41, setting the foundation for testing

functional conservation (16) (see below).

Among the well-studied helicases, DDX41 also stands out for its

role in tumorigenesis. Cohort studies in MDS/AML identified

DDX41 germline and somatic lesions, indicating that DDX41 is a

tumor suppressor gene in myeloid malignancies (17). Germline

DDX41 mutations, predominantly frameshift mutations, lead to

haploinsufficient DDX41 expression due to loss-of-function (LOF)

alleles (18–20). Subsequently acquired somatic DDX41 mutations

of the unmutated allele enhance progression toward MDS/AML.

Moreover, deletions of chromosome 5q (del(5q)) involving the

DDX41 locus have been detected in patients with myeloid

neoplasms (MN). Such deletions also result in haploinsufficient

DDX41 expression and enhance progression to MDS and AML (18,

21, 22).

Screening for pathogenic variants in DDX41 holds great clinical

significance due to its critical role in disease progression. Germline

variants of DDX41 are the most prevalent mutations predisposing

adults to myeloid neoplasms (23–25). Analysis of different subtypes

of myeloid neoplasms (MNs) reveals the highest frequency of

DDX41 germline variants in secondary AML and high-risk MDS,
A

B

FIGURE 1

Domain structure of DDX helicases and DDX41. (A) Typical DDX helicases contain two conserved core domains, RecA-like domain 1 and RecA-like
domain 2. Two RecA-like domains harbor motifs essential for ATP binding and hydrolysis (red), for nucleic acid binding (blue), and for coordination
between ATP- and nucleic acid binding (white). The helicase core is flanked by an NTE and a CTE. (B) The long isoform of human DDX41 contains
622 amino acids. The helicase core is comprised of DEAD and helicase domains essential for ATP- and nucleic acid-binding. The Walker A and B
motifs in the DDX41 DEAD domain, corresponding to motif I and II, are indicated. Walker B motif contains the amino acid sequence D-E-A-D.
Germline and somatic DDX41 mutation sites in myeloid neoplasms are shown in light blue and dark blue, respectively, tyrosine sites critical for DNA
and STING binding are shown in violet and TRIM21 target lysines are shown in pink below the diagram. The alternative translation initiation site M127
located in the NTE is indicated by an arrow. Created with BioRender.com.
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followed by low-risk MDS, primary AML and MPN. Notably,

patients with germline DDX41 mutations are characterized by

long latency and favorable responses to treatment regimens

(26–28).

Another aspect of DDX41 role is its role in hematopoiesis.

DDX41 has been proposed to regulate hematopoiesis by multiple

different mechanisms: DDX41 regulates gene expression and is

required in stem cell differentiation and expansion (29, 30); DDX41

associates with spliceosome proteins and is involved in pre-mRNA

splicing (18, 30); DDX41 plays a crucial role in maintaining R-loop

homeostasis thereby affecting inflammatory signaling and genome

stability (31–33), and DDX41 regulates snoRNA processing such

that DDX41 LOF leads to defects in ribosome biogenesis (34–36).
2 Cellular functions of DEAD-box
RNA helicases

2.1 Genome stability

DEAD-box helicases play a pivotal roles in maintaining genome

stability. These helicases, which have high conservation of the core

domain responsible for substrate binding and unwinding, are

involved in recognizing cellular nucleic acids and proteins.

DEAD-box helicases are thought to protect genome stability

through this dual specificity. For instance, DDX1 is recruited to

DNA breaks to remove DNA/RNA hybrids, thereby allowing repair

to proceed (37–39). Similarly, DDX1 associates with the nuclear

RNA exosome, and this interaction is sensitive to DNA damage

(40). The RNA exosome targets aberrant transcripts produced upon

DNA damage and processes/degrades RNAs by its ribonuclease

activity (41). DDX1 acts as a cofactor in this process, facilitating

RNA exosome function by its helicase/RNA binding activities (42,

43)). Moreover, DDX1 promotes DNA/RNA hybrid formation

during antigen receptor recombination (44). DDX1 binding to G-

quadruplexes (G4) facilitates their resolution and R-loop formation,

resulting in the promotion of class switching recombination.

In contrast, DDX5 plays a role in limiting DNA/RNA hybrid

accumulation by resolving DNA/RNA hybrids, enabling proper DNA

repair at nearby double-strand breaks (DSBs) (45). DDX5’s

association with RNA is dependent on its helicase activity, and it

interacts with the DNA repair protein BRCA1, stimulating its

unwinding activity and facilitating DNA repair by homologous

recombination (45). DDX39B facilitates DNA repair by upregulating

BRCA1 expression (46) and rescuing DNA damage mediated by R-

loops (47). DDX21 shields cells from DNA damage and genome

instability by limiting the level of DNA/RNA hybrids (48). It has also

been suggested that DDX41 LOF mutations induce R-loop-dependent

DNA replication stress and genome instability (29, 32, 49). However,

the molecular mechanisms underlying DDX41’s role in maintaining

genome stability are still under exploration (see below).

These findings underscore the crucial function of DEAD-box

helicases in safeguarding genome stability by regulating DNA/RNA

hybrid levels. Depleting individual DDX proteins causes DNA

damage, which suggests that these helicases plays distinct, non-

redundant roles in promoting genome stability (38, 46, 48, 50–53).
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2.2 Splicing alteration and tumorigenesis

Apart from their role in regulating nuclear RNA involved in

genome maintenance, DDX helicases engage with splicing factors,

potentially modulating splicing of cellular proteins. For example, both

DDX42 and DDX46 interact with SF3B1, a core component of the

human spliceosome U2 small nuclear ribonucleoprotein (snRNP).

Disrupted binding to SF3B1 may lead to impaired assembly of the

pre-spliceosome. Structural analysis reveals that DDX42 and DDX46

bind to SF3B1 residues that are commonly mutated in cancer,

including the most frequently mutated residue K700 (54). Similarly,

Zhao et al. found that a K700E mutation in SF3B1 disrupts its

interaction with DDX42. Notably, overexpression of wild-type (WT)

DDX42 restored this interaction, rescuing the aberrant splicing

patterns induced by these mutations (55).

Recent studies have revealed DDX41’s protein interaction

network, showing its association with spliceosome U2 and U5

snRNPs. Mutations in DDX41 linked to AML/MDS disrupt these

interactions, leading to aberrant splicing patterns (18). Similarly,

investigations into DDX3X have highlighted its involvement in

splicing defects linked to cancer: DDX3X interacts with splicing

factors, modulating alternative splicing of cancer-related genes and

facilitating breast cancer adaptation to hypoxia and nutrient

deprivation (56). Although DDX3X has been implicated in breast

cancer development, contradictory evidence suggests its role as a

tumor suppressor. Specific deletion of DDX3X in hepatocytes

resulted in the development of liver tumors, accompanied by

disruptions in DSB repair pathways and compromised genome

integrity (57). Additionally, DDX3X appears to regulate the

proliferation and migration of melanoma cells by translational

repression of the oncogene MITF. DDX3X LOF is also associated

with melanoma progression (58).

Taken together, these data suggest that DDX helicases are

intricately associated with splicing machinery and may influence

alternative RNA splicing in the context of cancer-related mutations.

Additionally, since DEAD-box helicases play critical roles in key

drivers of cancer, such as genome instability, cell cycle

dysregulation, aberrant cell growth, and programmed cell death,

it is not hard to imagine their involvement in cancer progression

(59, 60).
2.3 Pro- or anti-viral activities of
DDX helicases

DDX helicases also function in pathogen recognition and

replication by interacting with either viral genomes or cellular

factors. DDX60 is an antiviral factor that either promotes innate

immunity or directly targets viral components (61, 62). In Vesicular

Stomatitis Virus (VSV)- or Sendai Virus-infected cells, DDX60

promotes retinoic acid-inducible gene-I (RIG-I)-mediated type I

interferon (IFN) expression. RIG-I, an intracellular sensor of viral

RNA, activates downstream antiviral responses. DDX60 interacts

with RIG-I, and co-expression of DDX60 and RIG-I increased the

binding of RIG-I and DDX60 to dsRNA (61). Moreover, DDX60

exhibits RIG-I-independent antiviral activity by promoting
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degradation of VSV and Hepatitis C Virus RNA. DDX60 was found

to interact with core components of the RNA exosome, including

EXOSC1 and EXOSC4, leading to viral RNA degradation (62).

Additionally, DDX60 reduces viral translation by decreasing

ribosome occupancy on viral internal ribosome entry sites

(IRESs). DDX60 selectively targets type II IRES RNA, including

that of encephalomyocarditis virus and foot and mouth disease

virus, causing a net reduction in virus translation (63).

Although DEAD-box helicases play an important role in anti-

viral innate immunity, viruses often exploit them to evade immune

responses and enhance their replication. For instance, DDX5

promotes replication of the RNA virus Japanese encephalitis virus

by binding to its 3’ untranslated repeat (UTR); this action depends

on the helicase activity (64). Conversely, DDX5 dampens innate

immune responses to VSV infection by regulating viral RNA

methylation (65). RNA methylation is a post-transcriptional

modification involving transfer of a methyl group, and one of the

most common RNA methylation modifications is N6-

methyladenosine (m6A) (66). m6A methylation accounts for

important regulatory mechanisms in gene expression and a

diversity of physiological processes. DDX5’s P68HR domain, the

unique tail found C-terminal to the helicase core, interacts with the

RNA m6A methylase METTL3 and blocks methylation and nuclear

export of host antiviral transcripts, such as the type I IFN and IL-6

mRNAs (65). Similar to DDX5, DDX46 promotes VSV infection by

negatively regulating antiviral innate responses. Exclusively located

in the nucleus, DDX46 recruits the RNA demethylase ALKBH5 to

erase m6A modifications of antiviral gene transcripts, thus inducing

their nuclear retention and reducing their translation (67).
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3 DDX41 function in innate immunity

DDX41 is also involved in innate immune sensing. DDX41 was

initially identified as a DNA sensor in a small interfering RNA

(siRNA) screen targeting 59 members of the DEAD box and related

DExD/H helicases (68). DDX41 recognizes cytosolic DNA

originating from various sources and activates the Stimulator of

IFN Genes (STING)-TBK1-IRF3-type I IFN signaling pathway (68,

69) (Figure 2). STING is typically activated when cyclic GMP-AMP

synthase (cGAS) binds to double-stranded DNA (dsDNA), and

synthesizes 2’3’ cyclic GMP-AMP (cGAMP), which binds to STING

and activates it (70).

As a typical DDX helicase, the DDX41 helicase core is

comprised of two conserved RecA-like domains, flanked by a

NTE and a CTE (Figure 1B). The two core domains, DEAD and

helicase, harbor conserved sequence motifs involved in ATP-

binding and hydrolysis, in nucleic acid binding, and in the

coordination of ATP and nucleic acid binding sites (2, 71, 72)

(Figure 1B). Only the DEAD box domain is essential for DDX41

sensing of nucleic acids and cyclic dinucleotides (68, 72, 73). Motif I

(Walker A) and motif II (Walker B) are conserved in all helicase

superfamilies, and both Walker motifs in DDX41 are required for

binding DNA and DNA/RNA hybrids (68, 74) (Figure 1B). After

DDX41 binds nucleic acid, Bruton’s tyrosine kinase (BTK) binds

the DEAD domain and phosphorylates Tyr414 (75). BTK activity

facilitates DDX41 binding to STING and is required for STING-

mediated type I IFN responses. Co-IP experiments showed that

Tyr414 and another tyrosine residue, Tyr364, are required for DNA

and STING binding (75) (Figure 1B).
FIGURE 2

DDX41 in innate immunity. DDX41 recognizes cytosolic DNA or DNA/RNA hybrids generated during DNA virus and retrovirus infection via its DEAD
domain, followed by BTK binding the DEAD domain and phosphorylating Tyr414. This facilitates DDX41 binding to STING, triggering the STING-
TBK1-IRF3/NF-kB-type I IFN signaling pathway. Bacterial DNA or cyclic di-nucleotides (c-di-NMP), mitochondria DNA (mtDNA) and mitochondria
DNA/RNA hybrids (mt(DNA/RNA)) generated by damaged mitochondria, are also sensed by the DDX41 DEAD domain, leading to STING pathway
activation and production of type I IFNs and proinflammatory cytokines. Created with BioRender.com.
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In a mouse dendritic cell line, DDX41 depletion led to reduced

IFN production in response to poly (dA:dT) and HSV-1 infection,

but not to poly (I:C) (Figure 2) (68). DDX41 also triggers antiviral

responses after infection with adenovirus, a DNA virus that

replicates in the nucleus (76). In the mouse macrophage cell line

RAW 264.7, DDX41 recognized endosome-escaped adenovirus

DNA in the cell cytosol, a likely by-product of defective

adenovirus particles, triggering IRF3 activation and subsequent

type I IFN responses via the STING/TBK1/IRF3 pathway;

knockdown of DDX41 in these cells diminished both IRF3 and

STAT1/2 activation (77). In contrast, the same group showed that

in the mouse endothelial cell line MS1, activation of both IRF3 and

STAT1/2 occurred upon DDX41 knockdown during adenovirus

infection, even though high levels of STING were detected in both

cell lines (78). These data indicate cell-specific regulation of nucleic

acid sensing during antiviral responses may occur.

Our lab also carried out an siRNA screen in a mouse

macrophage cell line, to identify nucleic acid sensors that respond

to retroviruses (79). One of the sensors identified was DDX41. We

went on to show that during infection with retroviruses like murine

leukemia virus (MLV) and human immunodeficiency virus (HIV),

DDX41 primarily senses the DNA/RNA hybrid generated during

the initial step of viral reverse transcription, particularly in dendritic

cells, the initial targets of MLV infection, and that this then

activated the STING pathway (5) (Figure 2). Upon virus

infection, DDX41 binds STING, leading to phosphorylation of

TBK1 and IRF3, and the production of type I IFN. Furthermore,

mice with targeted knockout of DDX41 in dendritic cells were more

highly infected with MLV than WT mice, confirming its anti-viral

activity in vivo. Both in vitro and in vivo experiments showed that

DDX41 functioned independently of cGAS to activate STING.

Recent studies also suggest that DDX41 can sense DNA/RNA

hybrids released from damaged mitochondria during infection by

other RNA viruses (6) (Figure 2). Influenza A virus infection causes

mitochondrial damage and DDX41 recognizes mitochondrial DNA

(mtDNA) and DNA/RNA hybrids released into the cytosol and

triggers antiviral immune responses (6, 80). Independent of

infection, in a model of misfolded mutant Superoxide dismutase

(SOD1)-driven amyotrophic lateral sclerosis (ALS), damaged

mitochondria-released mtDNA and mt(DNA/RNA) hybrids

activated the cGAS-STING and DDX41-STING pathways,

respectively (81). Additionally, DDX41 sensed R-loops, DNA/

RNA hybrid structures, and triggered type I IFN responses and

ISG (ISG15 and CXCL10) production in Myocyte-specific enhancer

factor 2A (MEF2A)-depleted myocytes. MEF2A is a transcription

factor potentially regulating inflammation (82).

In addition to its role in sensing viral nucleic acids, DDX41

triggers IFN responses during bacterial infections (Figure 2).

Bacterial cyclic dinucleotides (CDNs), including the secondary

messengers cyclic di-GMP (c-di-GMP) or cyclic di-AMP (c-di-

AMP), act as PAMPs which are directly sensed by DDX41 in both

human and mouse cells. Upon activation, DDX41 triggers the

activation of the STING pathway (73) (Figure 2).

In non-mammalian species, Ddx41 also plays a critical role in

innate immune signaling and the response to viral infection and

DNA or RNA stimuli. Sequence analysis reveals high homology in
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Ddx41 among fish species (14, 16, 83–85). The crystal structure of

zebrafish Ddx41 revealed a binding surface for both dsDNA and

CDNs in the DEAD domain and highlighted a critical tyrosine

phosphorylation site at Tyr405. This site corresponds to Tyr414 in

human DDX41, mutation of which abrogates nucleic acid binding,

although whether this is also the case for Tyr405 has not been tested

(84). A study of Mandarin fish Ddx41 showed that both the DEAD

and helicase domains interact with STING, while, similar to

mammalian DDX41, only the DEAD domain is responsible for

dsDNA binding (14).

Overexpression of ddx41 in a mandarin fish cell line attenuated

DNA or RNA virus infection, accompanied by cytokine production;

activation of the type I IFN and NF-kB promoters was also observed

in reporter assays (14, 85). Two studies showed that co-expression

of ddx41 and sting in fish cells challenged by DNA or a RNA virus

had synergic effects on STING signaling compared to over-

expression of sting only (14, 16). Moreover, reporter assays

showed that after DNA stimulation, co-microinjection of ddx41

and sting expression vectors in zebrafish embryos enhanced

activation of the IRF3, NF-kB and IFN-I promoters compared to

that single expression vectors (84). Type I IFN and IFN-stimulated

gene (ISG) expression was also increased upon RNA stimulation by

ddx41 and sting expression vector-co-microinjection (84). In

mammals, in addition to IRF3 and NF-kB, activated STING also

activates signal transducer and activator of transcription 6 (STAT6),

inducing expression of chemokines such as CCL20 (86, 87). In

zebrafish, Stat6 was required for CCL20 production upon DNA

stimulation, suggesting a similar signaling pathway (84).

Collectively, these data indicate that fish Ddx41 senses DNA,

RNA or viral infection, thereby activating STING-dependent

immune responses.

Following stimulation with DNA or DNA virus infection, fish

cell lines and tissues exhibited increased Ddx41 expression (14, 16,

83). In addition, bacterial infection, or lipopolysaccharide (LPS)

treatment induced expression of ddx41 in peripheral blood cells and

spleen tissue of Clark’s anemonefish. One possibility is that LPS

triggers mitochondrial damage, leading to mtDNA release into the

cytosol, thereby inducing ddx41 expression (85).

In contrast, DDX41 is not IFN-inducible in mammals, and its

expression is not induced by viral infection or LPS in mammalian

cells (5, 6, 68). It is possible that the fish DNA sensing system differs

from that in mammals (88). Ddx41-Sting-mediated signaling has

not yet been fully demonstrated in vivo in fish (14, 16, 84).

How DDX41 binding triggers STING activation in mammalian

cells is not yet fully understood. STING is known to be activated by

cGAMP which is synthesized by cGAS upon binding dsDNA (89).

One set of experiments suggested that upon DNA stimulation,

DDX41 interacts with cGAS and produces dsDNA through

DDX41’s strand-annealing activity, thereby activating cGAS and

increasing 2’3’-cGAMP levels. When no stimuli exist, DDX41’s

unwinding activity took over and produced ssDNA, thus

inactivating cGAS-STING-IFN pathway (8). However, other

research has suggested that it is DDX41 direct binding to STING

activates it and that this pathway functions independently of cGAS

(5, 6, 75). Moreover, DDX41 has not been shown to act through

cGAS in fish during RNA sensing (90, 91).
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DDX41-mediated responses can be abrogated by protein

degradation. During DNA virus infection or DNA stimulation,

the E3 ligase TRIM21 negatively regulates expression of DDX41

protein by binding to its DEAD domain. TRIM21 targets Lys9 and

Lys115 of DDX41, leading to K48 ubiquitination, targeting DDX41

protein for degradation (92). This process likely exists as a means of

dampening or turning off the innate immune response.
4 DDX41 in hematopoiesis and
myeloid dysplasia

4.1 The role of DDX41 in hematopoiesis

We showed that Ddx41 germline knockout (KO) in mice led to

early embryonic lethality, highlighting a role for Ddx41 in

development (5). In contrast, Ddx41 KO in dendritic cells or

macrophages had no impact on cell development or survival, and

only affected anti-viral innate immunity. When we depleted Ddx41

in mouse hematopoietic stem cells using the VavCre-loxP system

and a floxed allele of Ddx41, the mice were born with hematopoietic

defects and died within a few days of birth (30). Ddx41 depletion

caused anemia and a reduction in common myeloid progenitor cells

(CMPs) in mouse embryos, whereas megakaryocyte–erythroid

progenitor cells (MEPs) or common lymphoid progenitor cells

(CLPs) were not affected (Figure 3A). In BM transplant studies,

adult mice that received cells carrying monoallelic Ddx41mutations

had normal hematopoiesis, while those receiving biallelic mutations

BM cells showed hematopoietic defects (30, 35). We performed

whole transcriptome sequencing of embryonic mouse

hematopoietic stem and progenitor cells (HSPCs). Ddx41

depletion in HSPCs resulted in upregulation of genes involved in

blood vessel development and vasculogenesis, and downregulation

of genes enriched in inflammation, immune response, and

leukocyte differentiation (Figure 3A). Differentially expressed

transcription factors were overrepresented in Gene Ontology

terms related to embryonic development and cell differentiation

in KO verses WT HSPCs. Moreover, alternative splicing was also

observed in Ddx41-depleted HSPCs. Further research is needed to

elucidate the biological significance of DDX41-mediated gene

differential expression and alterative splicing in hematopoietic

stem cell differentiation.

Recent research has underscored the indispensable role of

Ddx41 in erythrocytic development in zebrafish (Figure 3B).

Zebrafish with a ddx41 containing a premature stop codon at

Tyr410, leading to the deletion of the helicase domain and C-

terminal region, were used to study its role in erythropoiesis (29).

Ddx41 was found to play a crucial role in preventing genomic stress

and promoting proper erythropoiesis, particularly in the expansion

of erythroid progenitors (Figure 3B). Transcriptome analysis

revealed both mis-expression and alternative splicing in genes

associated with the cell cycle in ddx41 mutant erythroid

progenitors. Further analysis indicated that Ddx41-regulated

Ataxia-telangiectasia-mutated (ATM) and -Ataxia-telangiectasia

and Rad3-related (ATR) expression were critical for normal

expansion of erythroid progenitors.
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As mentioned above, DDX41 binds both DNA and DNA/RNA

hybrids, contributing to innate immune signaling. R-loops, formed

during transcription when the nascent RNA anneals with the

template DNA strand, comprise a DNA/RNA hybrid and a

displaced single strand DNA. R-loops have the potential to

disrupt DNA replication, DNA repair and transcription, posing a

threat to genome integrity and function (80). DDX41 possesses

DNA-RNA unwinding activity and consequently, DDX41 has been

implicated in both normal hematopoiesis and AML/MDS in

preventing the deleterious effects of pathological R loops.

Weinreb et al. were the first to report a role for Ddx41 in

constraining R-loop levels during zebrafish hematopoiesis

(Figure 3B) (31). As described above, they established a

hypomorphic ddx41 mutant with deletion of the helicase domain

(Figure 1B), with greatly diminished but not completely absent

expression. Expression of this hypomorphic ddx41 led to the

aberrant accumulation of R-loops, which, in turn, promoted a

substantial increase in the production of zebrafish HSPCs. The

disrupted R-loop homeostasis in the ddx41 mutant resulted in

higher inflammatory signaling that depended on activation of the

cGAS-STING pathway and elevation of type I IFNs and their target

genes in the ddx41mutants (Figure 3B). This suggests that zebrafish

Ddx41 negatively regulates R-loop formation and restricts

inflammatory signaling during hematopoiesis, highlighting its

importance for HSPC maintenance. Interestingly, this association

between inflammation and hematopoiesis in ddx41-depleted cells

extends from zebrafish to humans. Notably, Reactome Pathway

analysis highlighted the immune response pathway in DDX41-low

CD34+ HSPCs from MDS patients; there was a strong correlation

between upregulation of genes involved in innate immune response

and high counts of BM blasts (31).
4.2 DDX41’s role in genomic stability
and transcriptional regulation

In addition to its role in inflammation, it has been shown that in

K562 leukemic cells, DDX41 deficiency leads to accumulation of R-

loops and DNA replication defects (32). Unlike splicing factors that

tend to favor exon inclusion or exclusion, DDX41-deficient cells did

not have a particular bias toward any specific alternative splicing

event (32). In this model, DDX41 binding to 5’ splice sites (SS)

increased R-loop formation, thereby stalling RNA polymerase II

and creating a potential barrier to DNA replication (93, 94).

However, inhibition of DDX41 expression showed an anti-

proliferative effect in K562 cells, which is the opposite to what

Polprasert et al. observed in the same cell line (18). Unrepaired

DNA damage persisted through mitosis, gradually accumulating in

aged HSCs, priming cells into a premalignant state, a phenomenon

frequently observed in the bone marrow of patients with DDX41

mutations (32, 95).

In line with Shinriki et al.’s findings, Mosler et al. proposed a

model in which the absence of DDX41 impedes the progression of

replication forks, triggering replication stress response (49).

Differing from the observations of Shinriki’s group, which

suggested that DDX41 prevents R-loop accumulation primarily
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by influencing R-loop formation rather than resolution, Mosler

and colleagues proposed that DDX41 directly bound to and

unwound DNA/RNA hybrids at the promoters of active genes.

In their study, over-expression of DDX41 carrying pathogenic

mutations in either the DEAD (L237F/P238T) or helicase

(R525H) domains (Figure 1B) led to reduced efficiency in

unwinding R-loops in an in vitro assay. Additionally, the

enforced expression of pathogenic variants of DDX41 resulted in

the accumulation of DNA damage in DDX41-deficient human

HSPCs. Thus, these findings suggest that DDX41 functions in

genome integrity as well as in RNA splicing. Future advancements

in this area may determine how preventing R-loops formation

promotes hematopoietic differentiation and proliferation by

DDX41, as well as the effect of specific mutations on this process.
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4.3 Impact of DDX41 mutations on
ribosome biogenesis and snoRNA
procession in disease pathogenesis

It has also been suggested that DDX41 affects hematopoiesis

and myeloid neoplasia through altering ribosome function (34, 35).

Over-expression of DDX41 R525H in human hematopoietic cells

caused a ribosomopathy phenotype (34). The mutant DDX41

retained RNA-binding activity but exhibited lower ATPase

activity, functioning in a dominant-negative manner (34). In

human cord blood derived CD34+ cells, overexpression of DDX41

R525H also led to growth inhibition. Gene set enrichment analysis

revealed downregulation of ribosomal genes in cells expressing

DDX41 R525H; cell cycle genes regulated by the retinoblastoma

(RB) – eukaryotic transcription factor (E2F) axis were down-
A

B

FIGURE 3

DDX41 in hematopoiesis. (A) Ddx41 depletion in mouse hematopoietic system leads to myeloid differentiation defects and reduced erythrocyte
levels. Mouse embryonic HSPCs lacking Ddx41 showed differential gene expression and mRNA alternative splicing (AS). Mouse myeloid progenitor
cell lines harboring pathogenic mutations of Ddx41 had disrupted granulocytic/monocytic differentiation. AS-generated mRNAs and gene expression
changes contribute to diverse protein isoforms. BM cells from adult DDX41-deficient mice are defective in snoRNA processing, leading to reduced
ribosome biogenesis. (B) In zebrafish, HSPCs are produced via endothelial-to-hematopoietic transition (EHT). Ddx41 defects in embryos lead to R-
loop accumulation which promotes HSPC production. The aberrant accumulation of R-loops induces activation of the cGAS-STING pathway and
production of type I interferons. During erythropoiesis, Ddx41 defects also lead to improper erythrocyte expansion and maturation. Created with
BioRender.com.
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regulated as well, suggesting that cell cycle inhibition by this mutant

is RB-dependent. RB, a key regulator and main binding partner of

E2F, is linked to abnormal proliferation and genomic errors

generated during the cell cycle (96). Whether both functions are

required for the mutant DDX41’s effects on hematopoiesis

is unclear.

Chlon and colleagues also found small nucleolar RNA

(snoRNA) processing defects associated with the R525H

mutation. They crossed Ddx41R525H conditional knock-in (KI)

mice with Ddx41floxed and Rosa26-CreERT2 mice, generating

mice with combined LOF and R525H mutations upon tamoxifen-

inducible Cre activation. Lineage-negative (Lin-) BM cells from

Ddx41-/- or Ddx41KI/- mice were immortalized, then analyzed by

deep sequencing: They found that Ddx41 is required for snoRNA

processing (35) (Figure 3A). snoRNAs are short, non-

polyadenylated, non-coding RNAs that guide snRNPs to catalyze

chemical modifications of ribosomal RNA (rRNA) and transfer

RNA (tRNA) and are thereby important in ribosome biogenesis and

protein synthesis (97) (Figure 3A). The mutant Ddx41 may have

caused defects in processing of snoRNAs due to incomplete removal

of introns from host genes.

Mice with monoallelic mutations Ddx41 (+/- or R525H/+) in

their HSCs did not exhibit hematopoietic defects, while those with

biallelic mutations (-/- or R525H/-) showed impairment of

hematopoiesis (Figure 1B) (35). Decreased abundance of mature

snoRNA, reduced protein synthesis, and ribosome defects were

detected in the cells harboring biallelic mutations (both -/- and

R525H/-). What is noteworthy about the R525H mutation is that it

is not a complete loss-of-function mutation, and the ribosome

defects were less profound in Ddx41R525H/- than in Ddx41-/- bone

marrow cells. The residual activity in the R525H mutant may allow

mutant HSCs to persist because of the low protein translation

demands in these cells. Furthermore, Chlon et al. observed

dysregulation of snoRNA processing in the BM cells of DDX41

mutant MDS patients. This suggests a snoRNA-related role of

DDX41 in MDS pathogenesis.
4.4 DDX41 interaction with proteins
involved in RNA splicing

DDX41’s capacity to bind various nucleic acids (dsDNA, pre-

mRNA, DNA/RNA hybrids and R-loops) may enable its involvement

in numerous essential biological activities. However, it is clear that

DDX41’s interaction with cellular proteins also plays a role in its

disease-modifying function in myeloid neoplasms. To identify DDX41

interacting proteins, Polprasert and colleagues conducted mass

spectrometry analysis of proteins bound to overexpressed human

DDX41 (18). The interacting proteins were categorized into different

functional groups, including heterogeneous nuclear ribonucleoproteins

(hnRNP), NONO-SFPQ proteins, which are telomere repeat-

associated proteins, and splicing-associated proteins/complexes,

including spliceosomal, serine-arginine rich (SR) and exon junction

complex proteins. Interestingly, mutations in spliceosome proteins are

frequently found inmyeloid neoplasms, but they appear to be mutually

exclusive with DDX41 mutations in MDS/AML patients (18).
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Additionally, the DDX41 R525H mutant exhibited reduced binding

to these spliceosomal proteins, particularly the major components in

U2 and U5. While splicing alterations have been detected with

complete loss of DDX41, different splicing patterns with the R525H

mutant have not yet been shown (30–32, 98).

Shinriki’s group also carried out MS analysis of DDX41-

interacting proteins and found that it binds to NineTeen complex

(NTC) (32). NTC components not only facilitate spliceosome

assembly, but also play a role in transcriptional elongation.

Aberrant splicing or paused transcription elongation has been

linked to leukemogenesis in hematopoietic cells (99). By

coordinating RNA splicing and transcriptional elongation,

DDX41 may also help maintain genomic stability.
4.5 DDX41 mutations in
myeloid neoplasms

Familial cases of AML/MDS cases have been extensively

investigated, revealing both inherited and somatic mutations in

DDX41. DDX41 is one of the most highly mutated genes in familial

AML/MDS; other genes include tet methylcytosine dioxygenase 2

(TET2), RUNX1, GATA2 and the tumor suppressor gene TP53,

which is mutated in many cancers (100–104). TET2 silences gene

expression by methylation while RUNX1 and GATA2 are

transcription factors important for hematopoietic stem cell

differentiation (100–103). DDX41 germline mutations typically

result in frameshift alterations leading to loss-of-function, such as

the mutation hotspot D140Gfs, while somatic mutations commonly

involve missense alterations, resulting in hypomorphic proteins that

may retain some function or may play a dominant role in

carcinogenesis, such as the most commonly acquired mutation

R525H (21, 25, 26, 35, 105) (Figure 1B). Complete loss of Ddx41

is incompatible with hematopoietic stem cell viability and biallelic

loss of function germline mutations of DDX41 are rarely found in

patient cohorts (30, 105, 106). Moreover, germline DDX41

knockout in mice leads to early embryonic lethality (5).

The M1I mutation is one of the most prevalent germline

mutations in the Caucasian population (18, 23, 24) (Figure 1B).

Unlike the D140G mutation, M1I results in the loss of the

methionine start codon and produces a truncated protein through

use of an alternative translational initiation site (21, 34) (Figure 1B).

Both isoforms of DDX41 have been detected in AML cell lines, and

revealed changes in the subcellular localization of the truncated

protein compared to WT DDX41; the truncated protein isoform is

reduced in the nucleus and increased in the cytoplasm compared to

the full-length isoform (19, 34). This observation raises the

possibility that a decrease in the amount of nuclear DDX41

causes functional defects in DSB repair, transcription or splicing.

In contrast, the R525H mutant retains residual DDX41 function

and is compatible with HSC survival (35). Patients with myeloid

neoplasms harboring either M1I germline or R525H somatic

mutations did not exhibit differences in overall survival to other

patients (21). Nevertheless, there may be a broader range of

phenotypes associated with the M1I mutation, necessitating

further investigation in larger cohorts (107).
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To discriminate the activities of WT Ddx41 and disease-

associated variants of Ddx41, Kim et al. utilized a mouse

hematopoietic progenitor cell line, which can be differentiated to

neutrophils or macrophages, depending on the culture media (108).

They studied the function of missense germline mutations G173R,

R293H, G610S, missense somatic mutation R525H, and nonsense

germline mutation K331del by transducing individual variants into

Ddx41+/- progenitor cells (28) (Figure 1B). Despite maintaining

nuclear localization similar to WT Ddx41, all the variants displayed

attenuated transcript regulatory activity, with G173R and K331del

being the most defective. G173R and K331del were also inactive in

promoting granulocytic differentiation compared to WT, while

R525H retained partial activity. The Ddx41 disease variants may

have disrupted the balance of monocytic and granulocytic lineage

during myeloid differentiation (Figure 3A). This approach has the

potential to uncover the structure/function relationship in patient

derived DDX41 mutations.
4.6 DDX41 in solid cancers

Aberrant DDX41 expression has been observed in solid tumors,

but its precise function has yet to be determined (109, 110).

Notably, higher levels of DDX41 were found in many types of

solid tumors; in hepatocellular carcinoma, elevated expression of

DDX41 correlated with increased tumor grade (111) while in clear

cell renal cell carcinoma, increased DDX41 was associated with

tumor growth and poor prognosis (112). In breast cancer, lower

patient survival rate was linked to higher expression of DDX41 and

endogenous DDX41 in a breast cancer cell line promoted cell

growth and colony forming capacity (113). Furthermore,

pathogenic germline variants of DDX41 have also been identified

in solid cancers such as laryngeal, breast, and prostate cancer, either

alone or concomitant with hematopoietic malignancies (23, 114,

115). These data indicate that DDX41 is an oncogene in many types

of solid tumors.

However, a study in HeLa cells indicated an opposite role for

DDX41 in tumorigenesis, as overexpression of DDX41 in these cells

suppressed proliferation and induced apoptosis (116). RNA-seq

analysis showed that expression of certain oncogenes were up- or

down-regulated in response to DDX41 over-expression.

Interestingly, the direction of regulation of these oncogenes

(DDX41-overexpressing HeLa vs. WT HeLa) was consistent with

their regulation in the cervical and endocervical squamous cancer

(CESC) dataset (normal vs. cancer). This suggested a potential

tumor suppressor role for DDX41 in some solid tumors. Moreover,

the regulation of immune-associated genes in the DDX41-

overexpressing HeLa cells correlated with findings from the CESC

dataset analysis, indicating a potential link between DDX41 and

tumor immunity.
5 Conclusions

DDX helicases family play multiple roles in different cellular

processes. Among these, DDX41 in particular emerges as a versatile
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protein with multiple functions. It binds nucleic acids and proteins

and participates in essential biological activities, such as innate

immunity, genome integrity, RNA splicing and regulation of gene

expression (5, 6, 68, 69, 73, 75, 80). The DDX41 core DEAD and

helicase domains harbor important motifs and binding sites for

sensing pathogen nucleic acids and initiating STING-mediated type

I IFN responses (68, 74, 75). Although DDX41 recognizes cytosolic

DNA and initiates the STING-TBK1-IRF3-IFN I signaling pathway,

during infection with retroviruses such as MLV and HIV, DDX41

primarily senses the DNA/RNA hybrids generated during viral

reverse transcription (5, 75). Furthermore, during Influenza A

virus infection, DDX41 senses mtDNA and DNA/RNA hybrids

released from damaged mitochondria, thereby eliciting antiviral

immune responses (6, 80). Studies on fish Ddx41 suggest

conservation in core domains between fish and mammalian

DDX41, as well as similarities in triggering STING-mediated

signaling (14, 16, 83–85).

Beyond its immune sensing functions, DDX41 has been

identified as a tumor suppressor gene in myeloid neoplasms. Both

inherited and sporadic mutations in DDX41 have been identified in

patients with myeloid neoplasms (18, 24, 25). In zebrafish models,

ddx41 hypomorphic mutations disrupt proper erythropoiesis, while

in mouse embryos, hematopoietic depletion of Ddx41 reduces

myeloid progenitors without affecting erythroid progenitors (29,

30). Mechanistically, ddx41 depletion leads to aberrant

accumulation of R-loops, which is linked to elevated

inflammation during hematopoiesis and DNA replication stress

(31). Moreover, DDX41 lesions induced pre-mRNA splicing defects

in both patient cells and mouse HSPCs (18, 30). Over-expression of

mutant DDX41 R525H altered its interaction with major

components of the U2 and U5 spliceosomes (18). In addition,

DDX41 regulates snoRNA processing and ribosome biogenesis

(35). Dysregulation of these processes by reduced function of

DDX41 may contribute to MDS/AML.

Gene testing approaches assist in diagnosing myeloid neoplasias

by identifying heterozygous germline pathogenic variants in DDX41,

along with additional somatic variants from malignant myeloid cells

(117). These approaches facilitate early diagnosis and clinical

monitoring of individuals carrying familial DDX41 pathogenic

variants (118). Patients with DDX41 pathogenic germline variants

showed improved response to treatment and prolonged overall

survival, including responses to the drug lenalidomide (18, 119),

intensive chemotherapy (23, 120), and hypomethylating agents (24).

However, donor-derived leukemia has been reported in allogeneic

hematopoietic stem transplantation (HSCT) recipients when donors

carry pathogenic germlineDDX41 variants (121–123). Therefore, it is

beneficial to identify familial variants of DDX41 to avoid unexpected

outcomes of treatment. Research on DDX41 sheds light on potential

therapeutic target molecules and pathways in AML cell with DDX41

mutations. For instance:

• DDX41 deficiency-induced R-loop elevation leads to DNA

damage, suggesting agents targeting DNA damage might impede

disease progression (124).

• ATR, a protein promoting cell survival under DNA damage

conditions, emerges as a promising therapeutic target due to AML

cells dependency on ATR signaling in DDX41 deficiency (49).
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Given that ATR activation is linked to DDX41-/STING-mediated

IFN signaling in response to cellular stress, ATR kinase inhibitors

may alleviate deleterious inflammation in neuroinflammatory and

proliferative diseases (82).

• Loss of DDX41-induced inflammatory signaling contributes to

hematopoietic expansion, indicating a potential therapeutic

pathway for therapeutic intervention (125).

Although the mechanisms underlying DDX41’s tumor

suppressor function have been elucidated to some extent, the

structural and functional consequences of pathogenic variants of

DDX41 remain unclear. Moreover, how DDX41 and other cellular

factors precisely control physiological R-loops has yet to be

determined. Lastly, it is important to elucidate downstream

regulators that mediate the global changes in pre-mRNA splicing,

and to understand the dynamics of DDX41 interacting with

the spliceosome.
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