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Immune-based subgroups
uncover diverse tumor
immunogenicity and implications
for prognosis and precision
therapy in acute
myeloid leukemia
Tingting Chen, Yue Zhang, Danyang Zhang and Hebing Zhou*

Department of Hematology, Beijing Luhe Hospital Affiliated to Capital Medical University,
Beijing, China
Background: Although a considerable proportion of acute myeloid leukemia

(AML) patients achieve remission through chemotherapy, relapse remains a

recurring and significant event leading to treatment failure. This study aims to

investigate the immune landscape in AML and its potential implications for

prognosis and chemo-/immune-therapy.

Methods: Integrated analyses based on multiple sequencing datasets of AML were

performed. Various algorithms estimated immune infiltration in AML samples. A

subgroup prediction model was developed, and comprehensive bioinformatics

and machine learning algorithms were applied to compare immune-based

subgroups in relation to clinical features, mutational landscapes, immune

characterizations, drug sensitivities, and cellular hierarchies at the single-cell level.

Results: Two immune-based AML subgroups, G1 and G2, were identified. G1

demonstrated higher immune infiltration, a more monocytic phenotype, increased

proportions of monocytes/macrophages, and higher FLT3, DNMT3A, and NPM1

mutation frequencies. It was associated with a poorer prognosis, lower proportions

of various immune cell types and a lower T cell infiltration score (TIS). AML T-cell-

based immunotherapy target antigens, including CLEC12A, Folate receptor b, IL1RAP
and TIM3, showed higher expression levels in G1, while CD117, CD244, CD96, WT

and TERT exhibited higher expression levels in G2. G1 samples demonstrated higher

sensitivity to elesclomol and panobinostat but increased resistance to venetoclax

compared to G2 samples. Moreover, we observed a positive correlation between

sample immune infiltration and sample resistance to elesclomol and panobinostat,

whereas a negative correlation was found with venetoclax resistance.

Conclusion: Our study enriches the current AML risk stratification and provides

guidance for precision medicine in AML.
KEYWORDS

acute myeloid leukemia, tumor microenvironment, immune subgroups, prognosis,
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Introduction

Acute myeloid leukemia (AML) is a prevalent hematological

cancer characterized by the clonal expansion of undifferentiated

myeloid progenitor cells (1). It exhibits significant heterogeneity in

clinical courses and responses to therapy (2).

Although the standard treatment approach for AML has

demonstrated success in achieving complete remission, a notable

percentage of patients either struggle to endure intensive initial

treatment due to frailty or encounter relapse with highly resistant

disease (3, 4). Consequently, the chances of long-term survival

beyond a five-year period stand at a mere 31.7% (5), while the

likelihood of a complete recovery for individuals above 60 years of

age varies between 5% and 15% (6).

Therefore, it holds immense clinical significance to conduct

further investigation into the genomic characteristics and

therapeutic targets associated with AML.

It is widely acknowledged that immune cells within the tumor

microenvironment (TME) play a pivotal role in recognizing and

eliminating cancer cells through various immune mechanisms, a

phenomenon referred to as immunosurveillance (7). The

involvement of immune cells and stromal cells as major

components in leukemogenesis and disease progression has been

well established (8–10). Despite the growing body of research

highlighting the significance of immunotherapy for AML (11–14),

there is still limited clarity and a lack of comprehensive

understanding regarding the immune landscape and molecular

characteristics of the AML TME.

In this study, we aimed to investigate the immune landscape

within the AML TME using bulk RNA sequencing (RNA-seq) data,

along with somatic mutation and single-cell RNA data. We

identified key AML immune-related genes (IRGs), categorized

AML samples into two distinct immune subgroups, developed a

subgroup prediction model and compared these subgroups based

on clinical features, immune characteristics, mutation patterns,

drug responses, and cellular hierarchies. Our comprehensive

analysis yielded valuable insights into the immune landscape of

AML and highlighted its potential clinical significance for

prognostic stratification and personalized medicine approaches in

the treatment of AML patients.
Materials and methods

Data acquisition and preprocessing

The latest summary of 2,483 immune-related genes (IRGs) was

downloaded from the Immunology Database and Analysis Portal

(ImmPort, https://www.immport.org/home (15), last accessed on

May 5th, 2023) for further investigation.

We conducted a comprehensive search for publicly available

transcriptome data of de novo AML samples and normal whole

blood samples with clinical annotations. Our study included three

RNA-Seq cohorts:

TCGA cohort: We retrieved the expression profiles and clinical

information of 173 TCGA-LAML samples (16, 17) from the UCSC
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Xena database (http://xena.ucsc.edu/) (19), specifically from the

“cohort: TCGA Acute Myeloid Leukemia (LAML)”. The inclusion

criteria for this cohort stipulated that AML samples must have both

gene expression and phenotype data.

GTEx (18) cohort: A total of 337 normal whole blood samples

were sourced from the “cohort: GTEX” in the UCSC Xena database.

Inclusion criteria for the GTEx cohort included: 1) normal whole

blood samples; 2) availability of both gene expression RSEM

expected counts data and phenotype data within the same cohort.

Beat AML cohort: Gene expression data and clinical

information for the Beat AML cohort samples were obtained

from the online browser (http://www.vizome.org/) provided by

Jeffrey W. Tyner et al., as well as their original studies (20, 21).

Inclusion criteria for the Beat AML cohort included: 1) newly

diagnosed AML and 2) specimen type of either bone marrow or

peripheral blood. A total of 255 samples were included in this study.

Additionally, we incorporated a single-cell RNA sequencing

(scRNA-Seq) dataset, GSE116256 (22, 23), which included sixteen

de novo AML samples. The read count matrices, sample clinical

data, cell type annotation information, and cell type signature genes

for the scRNA-Seq dataset were obtained from the GEO database

and previous studies (22, 23).

The somatic mutation data of the TCGA cohort, identified using

MuTect2, were obtained in the mutation annotation format (MAF)

files and analyzed using the R package “maftools”. For our study, we

included somatic mutation data from a total of 166 samples from the

TCGA cohort that also had RNA expression profiles.

The somatic mutation data and the ex vivo drug sensitivity data for

the Beat AML cohort were obtained from the original studies (20, 21).
Immune infiltration analysis

We employed two algorithms, namely ESTIMATE (24) and

xCell (25), to quantify the immune and stromal scores in

heterogeneous AML samples using their transcriptome data.

These analyses were conducted using the R packages “estimate”

and “xCell”. Additionally, we utilized the CIBERSORT method (26)

to estimate the abundances of infiltrating immune cells in the

AML samples.

To calculate the T cell infiltration score (TIS), we adopted the

definition proposed by Rooney MS, et al. (27). In accordance with

their definition, the TIS is determined by summing the absolute

abundances of the following immune cell types: CD8+ T cell, CD4+

naïve T cell, CD4+memory T cell, T follicular helper cell, regulatory

T cell, and gd T cell.
Identification of AML subgroups with AML-
specific IRGs

The AML-specific IRGs were obtained using R package

“DESeq2”, identified as differentially expressed IRGs between

AMLs from the TCGA cohort and normal whole blood (WB)

samples from the GTEx cohort, satisfying the filtering criteria of

padj < 0.01 and |log2(Foldchange)| > 1.
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After filtering the AML-specific IRGs, retaining only the genes with

counts greater than 0 in at least 20% (35/173) of the AML samples in

the TCGA cohort, an unsupervised analysis was conducted in the

TCGA cohort. This analysis was based on the expression profiles of the

filtered genes, using the “ConsensusClusterPlus” R package (28).

Consensus clustering, known for its robustness and insensitivity to

random starts compared to traditional k-means and hierarchical

clustering algorithms, has been widely used to identify biologically

meaningful clusters (28). We explored a range of cluster numbers from

2 to 10 and selected the optimal number that yielded the most stable

consensus matrices and unambiguous cluster assignments across

multiple permutations of clustering runs (29, 30). The final clusters

corresponded to the intrinsic subgroups of AML that were identified.
The identification of key-AML-IRGs

We employed Weighted Gene Co-expression Network Analysis

(WGCNA) using the R package “WGCNA” to construct a scale-free

co-expression network (31). This analysis allowed us to identify

“AML-immune-specific” modules that exhibited a strong

correlation with immune scores in AML.

The associations between individual genes and the trait of

interest (namely immune scores here) were determined using

gene significance (GS), which quantifies the correlation between

genes and clinical traits. Additionally, module membership (MM)

was defined to measure the relevance between module eigengenes

and gene expression profiles. Ultimately, genes exhibiting high GS

for immune scores and high MM in AML-immune-specific

modules were identified as “key-AML-IRGs” in AML patients.
The establishment of subgroup
prediction model

We utilized AutoGluon (v0.2.0), a Python library available at

https://github.com/awslabs/autogluon (32), to construct a

subgroup prediction model based on the expression profiles of

the key-AML-IRGs. AutoGluon is a powerful tool for automated

machine learning (AutoML) that focuses on automated stack

ensembling, deep learning, and real-world applications spanning

image, text, and tabular data. It enables easy-to-use and easy-to-

extend AutoML capabilities (source: https://auto.gluon.ai/dev/

index.html). Within the given resources, AutoGluon trains a

diverse range of models to leverage their collective predictions,

making it an effective strategy.

In this study, the models employed within the AutoGluon

framework include CatBoost, ExtraTreesEntr, ExtraTreesGini,

KNeighborsDist, KNeighborsUnif, LightGBM, LightGBMLarge,

L i g h tGBMXT , Neu r a lNe t F a s tA I , N eu r a tNe tTo r ch ,

RandomForestEntr, RandomForestGini, WeightedEnsemble, and

XGBoost models that aggregate full-layer results. For model training,

the TCGA cohort served as the training cohort, with the samples

randomly split into a training group and a test group using an 8:2 ratio.

The model with the best performance was selected. Subsequently, we
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validated the prognostic value of the established subgroup prediction

model by applying it to an independent cohort, namely the Beat

AML cohort.
Single-Cell Identification of
Subpopulations with bulk Sample
phenotype correlation analysis

The single-cell raw matrix data of 16 de novo AML samples from

GSE116256 were downloaded and imported using the “Seurat” R

package. Filtering parameters were set as min.cells = 3, percent.mt <

5, and nFeature_RNA < 3000 (Supplementary Figure S1). This

filtering process resulted in a final dataset containing 15,058 cells

and 18,515 genes.

Gene signatures for dataset GSE116256 were obtained from the

study by Galen et al. (23). To map the gene signatures of various

differentiation states to bulk samples from the TCGA and Beat

AML cohorts, we employed methods similar to those used in

previous studies (33). For each bulk sample, genes with a total

count below 35 across all samples were filtered out. The expression

data were then normalized using z-scores. We selected the top 100

genes with the greatest deviations from the mean expression to

serve as background genes. The mean expression of the signature

genes for each cell type was calculated, and signature scores for each

bulk sample were derived by subtracting the average expression of

the background genes from that of the signature genes.

To identify biologically and clinically relevant cell subsets in

single-cell RNA sequencing, we employed Scissor algorithm (34).

Scissor utilizes bulk data and phenotype information to accurately

and specifically identify cell subsets. The method integrates

phenotype-associated bulk expression data and single-cell data by

assessing the similarity between each single cell and each bulk

sample. It then employs a regression model optimized on the

correlation matrix with the sample phenotype to identify relevant

subpopulations (34).

In our study, we performed Scissor analysis using the

normalized expression profiles of 16 de novo AML samples from

GSE116256, along with the expression and subgrouping

information of the TCGA cohort. The subgrouping data of the

TCGA cohort was utilized as a binary variant, and Scissor analysis

was applied to the scRNA-Seq data of the 16 AML samples to

identify cells characterized by G1 or G2 subgroups. The results of

the Scissor analysis assigned labels of “BC” to background cells,

“Scissor+” to cells characterized by strong G1 signatures, and

“Scissor-” to cells characterized by strong G2 signatures.
Additional bioinformatic and
statistical analyses

ANOVA was employed to determine if there were significant

differences among more than two groups. This was followed by

Tukey’s HSD test to further compare the significance between each

pair of groups. The Kaplan-Meier method was employed to
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generate survival curves, and the log-rank test was conducted to

assess survival differences. These analyses were carried out using the

R packages “survival” and “survminer”. Additionally, multivariate

Cox regression analysis was performed to evaluate the significance

of each variable for survival, and the results were visualized using

the R package “survmine”.

PCA was utilized to visualize the dissimilarity between samples

belonging to the G1 and G2 subgroups.

The Robust Rank Aggregation (RRA) algorithm (35),

implemented using the R package “RobustRankAggreg”, was

employed to identify the most statistically relevant genes from the

differentially expressed gene (DEG) list of the G1 and G2 subgroups

in the TCGA and Beat AML cohorts. The RRA algorithm compares

the actual rankings of genes with the expected behavior of

uncorrelated rankings. It re-ranks the genes and assigns

significance scores based on their robustness (35). The genes

identified through this process were considered as robust DEGs

for further analysis (36).

Gene Set Enrichment Analysis (GSEA) (37) was performed

using the transcriptome data in conjunction with the hallmark gene

sets obtained from the Molecular Signatures Database (MSigDB)

(38). GSEA allows for the identification of biological pathways and

processes that are significantly enriched within the dataset,

providing insights into the underlying functional implications of

gene expression patterns (37).

The CytoTRACE algorithm was employed to assess the

differentiation status of Scissor-labeled cells using scRNA-Seq
Frontiers in Immunology 04
data GSE116256. CytoTRACE is a robust computational

framework for resolving single-cell differentiation hierarchies. It

captures, smooths, and calculates the expression levels of genes

highly correlated with single-cell gene counts in scRNA-Seq data.

After the calculation, each single cell is assigned a CytoTRACE

score representing its differentiation state within the dataset.

CytoTRACE scores range from 0 to 1, with higher scores

indicating lower differentiation levels and vice versa (39, 40).
Contact for resource and code sharing

All public data used in this study, along with key software and

algorithms, are listed in Table 1. Further information and requests

for resources and code should be directed to the Lead Contact,

Hebing Zhou (bjlhyyxyk@ccmu.edu.cn).
Results

Immune conditions are associated with
clinical characteristics in AML samples

We evaluated the infiltrating levels of immune and stromal cells

involved in AML TME by analyzing the transcriptome data of two

independent cohorts, the TCGA cohort (n = 173) and the Beat AML

cohort (n = 255) (please refer to Supplementary Tables S1, S2 for
TABLE 1 Key resources table.

RESOURCE SOURCE IDENTIFIER

Datasets

Immune-related genes (IRGs) ImmPort https://www.immport.org/home

TCGA-LAML RNA sequencing and clinical data Xena https://xenabrowser.net/datapages/

Somatic mutation data R version 4.3.0
https://www.bioconductor.org/packages/release/bioc/html/

maftools.html

GTEx RNA sequencing and clinical data Xena https://xenabrowser.net/datapages/

Beat AML RNA sequencing and clinical data Vizome http://www.vizome.org/

Somatic mutation data Bottomly, D., et al. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378589/

Ex Vivo Drug Sensitivity Data Bottomly, D., et al. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378589/

GSE116256 scRNA sequencing and clinical data GEO
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE116256

Software and Algorithms

AutoGluon Github https://github.com/awslabs/autogluon

Python 3.8
Python Software
Foundation (PSF)

https://www.python.org/

R version 4.3.0 R Core Team https://www.r-project.org

R package CIBERSORT Stanford http://cibersort.stanford.edu/

R package ConsensusClusterPlus Bioconductor
https://bioconductor.org/packages/release/bioc/html/

ConsensusClusterPlus.html

R package CytoTRACE Stanford https://cytotrace.stanford.edu/

(Continued)
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the baseline information of the samples). Two distinct algorithms,

namely ESTIMATE and xCell, were employed to enhance the

reliability of our findings. Based on Supplementary Figures S2A–

H, it is evident that in AML samples, the immune scores (red boxes)

were higher than the stromal scores (blue boxes), and the

cumulative proportion curves, generated using the geom_step()

function from the ggplot2 package, show that immune scores (red

lines) were consistently located to the right of stromal scores (blue

lines) in both ESTIMATE and xCell analyses (The scores for each

sample are provided in Supplementary Tables S3-S6) in the TCGA

and Beat AML cohorts. These results illustrated the dominant role

of immune infiltration in AML TME. The xCell algorithm was used

to estimate the abundance of infiltrating immune cells, and a

correlation network was generated (Supplementary Figure S2I),

presenting the comprehensive associations among different types

of immune cells in the TCGA cohort.

Subsequently, we analyzed the distribution of immune scores

among AML subtypes across both cohorts and found a significant

association between immune scores and AML subtypes (ANOVA:

the TCGA cohort: p = 2.2e-10; the Beat AML cohort: p = 3.9e-6).

The following Tukey’s HSD test further revealed that samples of the

M4 andM5 subtypes tended to display exhibited consistently higher

immune scores compared to other subtypes, while samples of the

M3 subtype showed comparatively lower immune scores in both

cohorts (Figures 1A, B).

Also, we plotted the distribution of immune scores according to

risk categories in the TCGA and Beat AML cohorts. As illustrated in

Figures 1C–E, although the immune scores were significantly different

among different risk categories in both TCGA and Beat AML cohorts
Frontiers in Immunology 05
according to ANOVA (the TCGA cohort: p = 0.04; the Beat AML

cohort (ELN2008): p = 0.043, Beat AML cohort (ELN2017): p = 0.025),

the distribution preferences varied. Further analysis with Tukey’s HSD

test revealed that, in the TCGA cohort, samples classified as favorable

tended to have lower immune scores compared to those classified as

intermediate/normal (Figure 1C), consistent with Haiment Yang et al.’s

research (41). On the other hand, in the Beat AML cohort, Tukey’s

HSD test indicated that no significant differences between paired

groups based on 2008 European Leukemia Net (ELN)

recommendations (Figure 1D), while samples classified as the

adverse group exhibited relatively higher immune scores compared

to the favorable group based on 2017 ELN recommendations

(Figure 1E). Therefore, we cannot make assumptions about risk

levels based solely on immune scores in AML samples.

To explore the potential association of overall survival (OS)

with immune scores, we performed Kaplan-Meier survival analysis

between immune score-high and low groups in both cohorts.

Immune scores were ranked in descending order, with the top

25% classified as ‘immune score-high’ and the bottom 25% as

‘immune score-low.’ In the TCGA cohort, higher immune scores

were significantly associated with poorer prognosis (p = 0.0058)

(Figure 1F; Supplementary Table S7), which is consistent with the

findings of Haiment Yang et al. (41). However, in the Beat AML

cohort, no statistically significant differences in overall survival (OS)

were observed between the immune score-high and -low groups

(Figure 1G; Supplementary Table S8) (p = 0.96). These findings

demonstrate the limitations of the prognostic value of immune

scores in AML and suggest the need for additional biomarkers to

fully predict prognosis in AML.
TABLE 1 Continued

RESOURCE SOURCE IDENTIFIER

Software and Algorithms

R package DESeq2 Bioconductor
https://bioconductor.org/packages/release/bioc/html/

DESeq2.html

R package ESTIMATE SOURCEFORGE https://sourceforge.net/projects/estimateproject/

R package maftools Bioconductor
https://bioconductor.org/packages/release/bioc/html/

maftools.html

R package RobustRankAggre CRAN
https://cran.r-project.org/web/packages/RobustRankAggreg/

index.html

R package Scissor Github https://github.com/sunduanchen/Scissor

R package Seurat CRAN https://cran.r-project.org/web/packages/Seurat/index.html

R package survival CRAN https://cran.r-project.org/web/packages/survival/index.html

R package survminer CRAN
https://cran.r-project.org/web/packages/survminer/

index.html

R package WGCNA CRAN https://cran.r-project.org/web/packages/WGCNA/index.html

R package xCell Github https://github.com/dviraran/xCell
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Subgroups defined by AML-specific IRGs
possess significant prognostic value in AML

We studied differences in immune landscapes between AML

samples and normal WB samples using the TCGA-GTEx cohort,

which includes 173 AML samples from the TCGA cohort and 337

normal WB samples from the GTEx cohort. After applying cut-off

criteria of padj < 0.01 and |log2(Foldchange)| > 1, 911 genes among

the 2483 IRGs downloaded from ImmPort (please see the “Materials

and methods” section for details) were differentially expressed

between AML and normal WB samples in the TCGA-GTEx cohort

(Supplementary Figure S3A, Supplementary Table S9).

We aimed to classify AML samples into distinct immune groups

based on the 911 AML-specific IRGs. Initially, we filtered the 911
Frontiers in Immunology 06
genes by retaining only the 850 genes whose count was greater than

0 in at least 20% (35/173) of the AML samples in the TCGA cohort

(n = 173). Subsequently, we performed consensus clustering based

on the expression matrix of these 850 AML-specific IRGs. With the

range 2 to 10, we selected k=2 for our study based on several

observations (42–44). When k=2, we observed that intragroup

correlations were high while intergroup correlations were low

(Supplementary Figure S3B). Additionally, the cluster-consensus

scores at each k showed high values for k=2, indicating strong

stability of the two clusters (Supplementary Figure S3C). These

findings suggest that dividing the samples into two clusters based on

the 850 AML-specific IRGs is well-supported. Figures illustrating

the cluster-consensus scores, cumulative distribution function

(CDF), and Delta area plot are provided in the Supplementary
FIGURE 1

Immune scores of AML samples in the TCGA and Beat AML cohorts. Immune score distributions for AML subtypes (A, B), risk categories (C–E), and
survival analysis of high and low immune score samples in TCGA (n = 173; immune scores-high: top 25% samples, n = 43; bottom 25% samples,
immune scores-low: n = 43) (F) and Beat AML (n = 255; immune scores-high: top 25% samples, n = 64, immune scores-low: bottom 25% samples,
n = 64) (G) cohorts. Asterisks indicate statistical significance (*p < 0.05; **p < 0.01; ***p < 0.001).
frontiersin.org
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Files as Supplementary Figures S3C–E, which resulted in the

separation of the TCGA cohort (n = 173) into two immune

subgroups, namely G1 (n = 77) and G2 (n = 96) (Supplementary

Table S10). According to the results of PCA analysis, classifying

AML patients as G1 or G2 by these 850 AML-specific genes could

roughly divide the patients into two parts, and this further

confirmed two remarkably different subtypes (Figure 2A).

Kaplan-Meier survival analysis was performed between G1 and

G2, revealing that G1 had a significantly poorer prognosis compared

to G2 (n = 173; G1: n = 77, G2: n = 96) (p = 0.00095, Figure 2B). To

evaluate whether G1 and G2 grouping could significantly affect AML

prognosis as an independent risk factor, we performed multivariate

Cox regression analysis based on clinical characteristics age, gender,

subtype, risk category and group. The results revealed that older age

was associated with a worse prognosis (HR = 1.04, 95% CI = 1.02 –1.1,

p < 0.001) while G2-grouping (HR = 0.43, 95% CI = 0.26 – 0.7,

p < 0.001) was correlated with amore favorable prognosis (Figure 2C).
Establishment and validation of a grouping
prediction model

To better understand in the total of 2483 IRGs, which ones are

associated with immune status in AML patients, we performed

WGCNA based on the IRGs expression matrix and immune score

levels of 173 AML samples from the TCGA cohort. We constructed
Frontiers in Immunology 07
a scale-free co-expression network (Figure 3A) after excluding two

outlier samples (Supplementary Figure S4A). Eight gene modules

were generated with a power of 4 (Supplementary Figure S4B;

Figure 3B). Among these modules, the blue and red modules

showed the strongest correlation with sample immune scores

(|r| = 0.61, p < 0.001; |r| = 0.88, p < 0.001, respectively) and were

considered as “AML-immune-specific” modules (Figure 3B;

Supplementary Tables S11, S12).

Using GS and MM measures, we identified “key-AML-IRG” by

selecting IRGs in the two “AML-immune-specific” modules. As

shown in Figures 3C, D, IRGs in both modules exhibited strong

correlations between GS and MM (blue module IRGs: cor = 0.92,

p < 0.001; red module IRGs: cor = 0.81, p < 0.001), denoting that

these 314 IRGs, which were significantly associated with immune

score, were also crucial elements of immune-score associated

modules. Therefore, we considered these 314 IRGs as “key-AML-

IRGs” in AML patients.

Utilizing the AutoGluon algorithm, we constructed an AML

subgroup predicting model based on the expression matrix of the

314 key-AML-IRGs (Please refer to Supplementary Table S13 to see

the model details). AML samples from Beat AML samples were

classified as G1 or G2 subgroups using this model. Survival analysis

revealed that in the Beat AML cohort, samples classified as G2

group had a more favorable prognosis compared to G1 (p = 0.043,

Figure 3E), demonstrating the prognostic value of the AML

subgroup predicting model.
FIGURE 2

The identification of AML-specific IRGs and corresponding G1, G2 subgroups. (A) PCA analysis demonstrated that AML samples classified as G1 and
G2 subgroups were roughly separated as two groups by the expression profiles of 850 AML-specific genes; (B) Kaplan-Meier survival analysis
revealed significantly extended overall survival for G2 subgroup samples (n = 173; G1: n = 77, G2: n = 96) (log-rank test, p = 0.00095); (C) The
multivariate Cox regression showed the subgroups as an independent risk factor, with “G2” associated with a favorable prognosis (p < 0.001).
Asterisks indicate statistical significance (***p < 0.001).
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Overall comparison between G1 and G2
We compared the G1 and G2 subgroups in the TCGA and Beat

AML cohorts to enhance our understanding of the two subgroups

of their biological and pathological characteristics.

In both cohorts, G1 had a higher proportion of samples

belonging to the M4 or M5 subtypes, whereas G2 had a higher

proportion of samples belonging to the M1 or M3 subtypes (the

TCGA cohort: p = 2.64e-7, the Beat AML cohort: p = 0.0002;

Supplementary Tables S14, S15; Figures 4A, B). Moreover, within

the TCGA cohort, G2 exhibited younger ages and a greater

proportion of samples classified as “Favorable”, consistently

indicating its correlation with a more favorable prognosis

compared to G1 (p = 0.019, p = 0.005, respectively; Table 2,

Figures 4C, D). However, no specific distribution preferences for

“age” or “risk category” were observed between G1 and G2 in the

Beat AML cohort (Table 3). Additionally, G2 showed a higher

percentage of BM blast counts compared to G1 (p < 0.001) in the

Beat AML cohort, while no significant difference in the BM blast
Frontiers in Immunology 08
counts between the two subgroups was observed in the TCGA

cohort (Tables 2, 3).

A total of 1605 and 1715 DEGs were identified between the G1

and G2 subgroups in the TCGA and Beat AML cohorts, respectively

(Supplementary Tables S14, S15). Instead of simply intersecting the

DEGs from both cohorts, we implemented the RRA algorithm to

address substantial heterogeneity and potential errors arising from

differences in technological platforms and statistical methods. This

approach allowed us to select 154 robust DEGs with an RRA score <

0.05, as these genes were more likely to be true DEGs based on their

|log2(FoldChange)| values (Supplementary Table S16).

Supplementary Figures S5, S6 display the 154 robust DEGs

between the two groups in the TCGA and Beat AML cohorts.

Please note that the number of genes shown in each heatmap is

slightly less than 154, with 139 and 131 genes displayed,

respectively. Subsequently, we performed enrichment analysis of

drugs/compounds and identified 317 drugs/compounds that may

exhibit differential effectiveness in G1 and G2, and the top 20 drugs/

compounds were 9cRA, arsenite, vinylidene chloride, magnesium,

Betamethasone-d5, panobinostat, phorbol acetate myristate,
FIGURE 3

The identification of AML-immune-specific modules and key-AML-IRGs. (A) Construction of a scale-free co-expression network using the IRGs
expression matrix of AML samples and their immune scores through WGCNA; (B) Generation of eight gene modules; designation of blue and red
modules as “AML-immune-specific” due to their strong correlation with sample immune scores (|r| = 0.61, p < 0.001; |r| = 0.88, p < 0.001,
respectively); (C, D) Correlation analysis between gene significance (GS) and module membership (MM) within the blue and red modules; (E) Kaplan-
Meier analysis demonstrated the sustained favorable prognosis of G2 samples compared to G1 samples in the validation cohort (the Beat AML
cohort) after subgroup predicting (n = 255; G1: n = 214, G2: n = 41) (log-rank test, p = 0.043). WGCNA, weighted gene co-expression network
analysis; IRG, immune-related genes.
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Diethylhexyl Phthalate, sodium bichromate and ethylnylestradiol

(Table 4; Supplementary Table S17).

We conducted GSEA to compare pathways between the G1 and

G2 subgroups using 50 hallmark gene sets from the MSigDB

database. The results, depicted in Figures 4E, F (please see

detailed information in Supplementary Tables S18, S19),

demonstrated that the G2 subgroup exhibited significantly higher

activity in various immune processes compared to G1. Specifically,

the “inflammatory response” pathway was consistently identified as

the most significantly altered pathway in both cohorts. Additionally,

several classical tumor-related pathways, such as “TNFa signaling

via NFkB”, “oxidative phosphorylation”, “IL6 JAK STAT3

signaling”, “P53 pathway” and “KRAS signaling up”, showed

higher activity in G2 in both cohorts (Figures 4E, F;
Frontiers in Immunology 09
Supplementary Tables S18, S19). Overall, the GSEA results

unveiled a less malignant level of samples classified as G2.
Immune characterization of G1 and G2

Subsequently, we compared the immune characterization of G1

and G2.

In both cohorts, G1 exhibited consistently elevated immune

infiltration (estimated by immune score) compared to G2 (both p <

0.001; see Figures 5A, B).

Our findings about the abundances of infiltrating immune cells

using xCell suggested that higher levels of monocytes and

macrophages were associated with G1, whereas higher levels of T
FIGURE 4

Overall comparison between G1 and G2. Subtype distribution in the TCGA (A) and Beat AML (B) cohorts across G1 and G2 subgroups; (C) In the
TCGA cohort, the G1 subgroup consisted of relatively older individuals compared to the G2 subgroup; (D) Comparison of risk category distribution
between the G1 and G2 subgroups in the TCGA cohort; GSEA analyses conducted between the G1 and G2 subgroups in the TCGA (E) and Beat
(F) AML cohort.
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TABLE 3 The baseline characteristics of G1 and G2 subgroups in the Beat AML cohort.

Variables G1 (n = 214) G2 (n = 41) P value

Gender
Male 105 14

1.13E-01
Female 109 27

Median age (range), y 61(2-87) 56(7-85) 5.17E-01

Median bone marrow blast (rage), % 69(1-98) 85.55(21-97) 3.47E-04

FAB Subtypes

M0 2 2

2.00E-04

M1 3 4

M2 5 1

M3 3 6

M4 21 1

M5 25 2

M6 0 0

M7 2 0

NA 153 25

Risk Category (ELN2008)

Favorable 48 11

4.78E-01

Intermediate-I 34 6

Intermediate-II 39 6

Adverse 45 11

NA 48 7

(Continued)
F
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TABLE 2 The baseline characteristics of G1 and G2 subgroups in the TCGA cohort.

Variables G1 (n = 77) G2 (n = 96) P value

Gender
Male 41 44

4.14E-01
Female 36 52

Median age (range), y 61(21-81) 54(18-88) 1.86E-02

Median bone marrow blast (rage), % 37(0-98) 34.5(0-97) 7.48E-01

FAB Subtypes

M0 6 10

2.64E-07

M1 13 27

M2 13 28

M3 1 13

M4 24 11

M5 19 2

M6 0 2

M7 0 3

NA 1 0

Risk Category

Favorable 2 28

5.12E-03
Intermediate/Normal 56 45

Poor 17 23

NA 2 0
The bolded p-values in the table indicate statistically significant differences in the baseline characteristics between the G1 and G2 subgroups (p < 0.05). NA, Not Available.
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TABLE 4 TOP20 drugs/compounds exhibiting differential effectiveness in G1 and G2 subgroup (based on the expression data of 154 robust DEGs).

Category ID Name Source p-value
q-value
FDR
B&H

Hit Count in
Query List

Hit Count
in Genome

Hit in Query List

Drug CID000005538 9cRA Stitch 3.97E-08 2.59E-04 33 1735

COL2A1,CDKN2B,
ONECUT2,CNTN4,LAMB4,

CES1,PDK4,CYP26A1,
CLEC7A,POU1F1,POU3F3,

LAMC3,ADAMTS5,
RUNX1T1,SIX3,EDN3,

KRT23,PPARGC1A,HOXB6,
THBS1,HOXB8,PI3,CADM1,

IGF2,SLC10A2,CD14,
BRINP2,CCR1,FGF10,PAX2,

NCR2,HBE1,CX3CR1

Drug ctd:C015001 arsenite CTD 1.15E-07 4.60E-04 32 1723

COL2A1,NDNF,NMNAT2,
FAM163A,PDK4,PENK,
POU3F3,GRIK3,GPC6,

HNMT,AQP9,LEP,CD163,
TMTC1,HOXB6,THBS1,
HOXB8,HOXC10,CD14,

IL1R2,VCAN,PITX1,NR0B1,
MKX,KCNN2,DGKI,CCR1,
MAFB,SNAP25,MLPH,

FOXF2,FOXC2

Drug ctd:C029297
vinylidene
chloride

CTD 1.58E-07 5.24E-04 29 1476

NDNF,MYO7A,NCF1,
CLEC7A,MECOM,B3GALT5,
POU3F3,CAMK1,EPB41L3,
SLC7A7,PTGFR,POSTN,
DEFB1,PPARGC1A,GDA,

TMTC1,SERPINA1,CADM1,
SLC10A2,FBP1,SLC11A1,

CD14,KCNE1,ATRNL1,IFI30,
C2,CCR1,IRX2,MLPH

Drug CID000000888 magnesium Stitch 2.21E-07 5.94E-04 27 1325

COL2A1,PRSS2,LAMB4,
NMNAT2,HK3,MYO7A,

PDK4,LAMC3,GRIK3,REN,
RASL12,LGSN,AQP9,IGF2,
FBP1,SLC11A1,KCNE1,

SMPDL3A,VCAN,KCNN2,
DGKI,C2,SNAP25,MLPH,
MARCO,PRL,EPHA3

Drug CID000003003 Betamethasone-d5 Stitch 2.76E-07 6.12E-04 27 1340

COL2A1,PRSS2,LAMB4,
SPOCK1,PDK4,CYP26A1,
PENK,HPSE2,LAMC3,REN,
LGSN,LEP,CD163,EDN3,
CD300C,POSTN,DEFB1,

PPARGC1A,SERPINA1,IGF2,
SLC10A2,CD14,SCGB3A2,
IL1R2,VCAN,HBE1,PRL

(Continued)
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TABLE 3 Continued

Variables G1 (n = 214) G2 (n = 41) P value

Risk Category (ELN2017)

Favorable 70 16

2.85E-01

Favorable/Intermediate 9 1

Intermediate 63 10

Intermediate/Adverse 3 3

Adverse 69 11
The bolded p-values in the table indicate statistically significant differences in the baseline characteristics between the G1 and G2 subgroups (p < 0.05). NA, Not Available.
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TABLE 4 Continued

Category ID Name Source p-value
q-value
FDR
B&H

Hit Count in
Query List

Hit Count
in Genome

Hit in Query List

Drug ctd:C496932 panobinostat CTD 8.78E-07 1.20E-03 26 1333

GABRB2,ONECUT2,
NMNAT2,FAM163A,

MECOM,POU3F3,GRIK3,
RUNX1T1,EPB41L3,SIX3,
GPC6,HNMT,IGF2,OLFM3,

SCGB3A2,SMPDL3A,
UNC5C,IFI30,MAFB,PAX2,
SNAP25,IRX2,PID1,EPHA3,

WDR72,FOXC2

Drug CID000004792
phorbol

acetate myristate
Stitch 6.89E-06 4.01E-03 25 1399

COL2A1,PRSS2,LILRB3,
CES1,PENK,LILRA6,

POU1F1,HPSE2,CAMK1,
PTAFR,PTGFR,CD163,

EDN3,KRT23,PPARGC1A,
PI3,CD14,IL1R2,SMPDL3A,
VCAN,DGKI,TRPV4,CCR1,

SNAP25,PRL

Drug ctd:D004051
Diethylhexyl
Phthalate

CTD 1.10E-04 2.19E-02 25 1654

NMNAT2,HK3,PDK4,
CYP26A1,CLEC7A,REN,LEP,
LGALS2,KRT23,PPARGC1A,

GDA,HOXB6,THBS1,
IGF2BP1,CADM1,IGF2,
SLC10A2,KCNE1,NR0B1,

KCNN2,PAX2,PRL,CX3CR1,
EPHA3,WDR72

Drug ctd:C016104
sodium

bichromate
CTD 1.98E-04 3.02E-02 24 1615

CDKN2B,PRSS2,HK3,
SIGLEC9,CYP26A1,CLEC7A,
B3GALT5,CAMK1,SLC7A7,
CD163,LGALS2,TCF23,GDA,
SERPINA1,SLC10A2,FBP1,
CD14,SMPDL3A,NR0B1,
KCNN2,IFI30,CCR1,

RAB39A,MAFB

Drug CID000003285 ethylnylestradiol Stitch 1.07E-05 4.85E-03 23 1251

COL2A1,CYP26A1,PENK,
POU1F1,REN,TYMP,LGSN,
AQP9,LEP,EDN3,KRT23,

PPARGC1A,SERPINA1,PI3,
IGF2,SCGB3A2,IFI30,CCR1,

FGF10,SAGE1,HBE1,
PRL,CX3CR1

Drug CID000145068 nitric oxide Stitch 3.15E-06 2.73E-03 22 1075

CASP5,REN,PPP1R17,
PTAFR,SLC7A7,GPC6,LGSN,

TLR8,LEP,EDN3,
PPARGC1A,THBS1,PI3,
SLC7A3,SLC11A1,CD14,

IL1R2,VCAN,TLR5,KCNN2,
HBE1,PRL

Drug CID000000813 potassium Stitch 4.10E-06 3.22E-03 21 1008

GABRB2,SPOCK1,PENK,
REN,CAMK1,SLC7A7,LEP,
EDN3,KCNH6,TCF23,
SLC7A3,FBP1,SLC11A1,

KCNE1,KCNN2,TRPV4,C2,
SNAP25,HBE1,PRL,CX3CR1

Drug CID000004920 17-isoprogesterone Stitch 3.83E-05 1.29E-02 21 1170

COL2A1,GABRB2,GABRE,
CYP26A1,PENK,HPSE2,

GRIK3,REN,TYMP,PTGFR,
LEP,KRT23,PPARGC1A,

THBS1,IGF2,SCGB3A2,IFI30,
C2,HBE1,PID1,PRL

(Continued)
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cells, NK cells, B cells, and mast cells were associated with

G2 (Figure 5C).

The assessment of abundances of immune cells between the two

subgroups using CIBERSORT was consistent with results

mentioned above. G1 demonstrated relatively higher cell

proportions of monocytes, and G2 showed higher cell

proportions of B memory cells, naïve B cells, activated mast cells,

resting NK cells, activated and resting CD4+ T memory cells, CD8+

T cells, and T follicular helper cells (Figures 5D–F and

Supplementary Tables S20, S21). Moreover, TIS were substantially

elevated in G2 compared with G1 in both datasets (p < 0.001,

Figures 5G, H), primarily due to an increase of activated CD4+

memory T cells and CD8+ T cells in G2 (Figures 5D, E).
Frontiers in Immunology 13
The expression levels of target antigens in AML T-cell-based

immunotherapy, as summarized by Naval Daver et al. (13), were

compared between the G1 and G2 subgroups. Figure 5I illustrates

that the trends of antigen expression levels were consistent in the

TCGA and Beat AML cohorts. Notably, among the antigens with

statistically expression differences in both cohorts, CD117, CD44,

CD244, CD96, WT, and TERT exhibited higher expression levels in

G2 compared to G1; while CLEC12A, Folate receptor b, IL1RAP,
and TIM3 showed higher expression levels in G1 compared to G2. It

should be mentioned that in Figure 5I, the expression levels of

CD44 were presented instead of CD44v6. These suggested that

different antibody choices may be warranted in immunotherapy for

samples classified into the G1 or G2 subgroups.
TABLE 4 Continued

Category ID Name Source p-value
q-value
FDR
B&H

Hit Count in
Query List

Hit Count
in Genome

Hit in Query List

Drug CID000000450 17alpha-estradiol Stitch 1.75E-04 2.76E-02 21 1303

GABRB2,GABRE,PENK,
HPSE2,TYMP,LGSN,PTGFR,
AQP9,LEP,EDN3,THBS1,
SERPINA1,PI3,IGF2,

SCGB3A2,IFI30,CCR1,FGF10,
SAGE1,PRL,CX3CR1

Drug ctd:D007545 Isoproterenol CTD 1.60E-05 6.64E-03 20 1015

COL2A1,LILRB3,NCF1,
PENK,REN,PTGFR,LEP,
CD163,POSTN,KCNH6,

DEFB1,TCF23,PPARGC1A,
GDA,TMTC1,CD14,KCNE1,

VCAN,CCR1,PRL

Drug CID000001117 sulfate Stitch 4.24E-04 3.25E-02 20 1292

COL2A1,PRSS2,LAMB4,
SPOCK1,CES1,HPSE2,
LAMC3,GPC6,POSTN,

DEFB1,THBS1,CADM1,IGF2,
EFNB3,VCAN,HRC,C2,
FGF10,MLPH,MARCO

Drug CID000002900 isocycloheximide Stitch 1.10E-05 4.88E-03 19 905

COL2A1,PRSS2,LAMB4,
PENK,CASP5,LAMC3,
PTAFR,PI15,LEP,KRT23,
THBS1,IGF2,CD14,IL1R2,

VCAN,C2,SNAP25,
HBE1,PRL

Drug ctd:D012906 Smoke CTD 6.08E-05 1.33E-02 18 937

OLAH,CDKN2B,IL31RA,
SPOCK1,PDK4,SLC7A7,LEP,
PPARGC1A,GDA,THBS1,
SERPINA1,CD14,IL1R2,
EVA1A,VCAN,MARCO,

CX3CR1,FOXC2

Drug ctd:C042720
mercuric
bromide

CTD 3.37E-04 3.20E-02 18 1076

GABRB2,ONECUT2,PRSS2,
PPP1R17,RUNX1T1,

EPB41L3,SLC7A7,SIX3,
HNMT,PI15,POSTN,THBS1,
OLFM3,SMPDL3A,DGKI,
MAFB,CDH6,FOXC2

Drug CID000003715 indomethacin Stitch 4.20E-06 3.22E-03 17 690

PRSS2,LAMB4,HPSE2,
LAMC3,REN,PTAFR,PTGFR,
EDN3,TMTC1,THBS1,IL1R2,

VCAN,TRPV4,C2,IRX2,
HBE1,PRL
The bolded q-values (FDR B&H) in the table indicate a statistically significant difference in the effectiveness of the drugs/compounds between the G1 and G2 subgroups (q < 0.05).
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FIGURE 5

Immune characterization of the G1 and G2 subgroups. (A, B) Boxplots demonstrated higher immune scores for G1 subgroup samples compared to
G2 subgroup samples in both TCGA (A) and Beat AML (B) cohorts; (C) Estimation of infiltrating immune cell abundances in AML samples from TCGA
and Beat AML cohorts; (D, E) Abundance profiles of each tumor microenvironment (TME) infiltrating cell within G1 and G2 subgroups in TCGA
(D) and Beat AML (E) cohorts; (F) Stacked barplots depicted distinct relative proportions of 22 immune cell types between G1 and G2 subgroups in
TCGA and Beat AML cohorts; (G, H) TIS significantly increased in G2 subgroups compared to G1 (p < 0.001) in both cohorts; (I) The expression levels
of AML T-cell-based immunotherapy target antigens in the G1 and G2 subgroups in the TCGA and Beat AML cohorts. Asterisks indicated statistical
significance (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001); “ns” denoted no significance. TIS, T cell infiltration score.
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Mutational landscapes between the
subgroups in the TCGA and Beat
AML cohorts

Given the strong association between immune infiltration and

mutations in tumors, additionally, the high frequencies of

mutations in multiple genes in AML patients and their

relationship with AML prognosis, we conducted an investigation

into the mutational landscape of G1 and G2 in both cohorts.

Oncoplot displaying the ranking of the top 20 frequently

mutated genes in G1 and G2 was generated for G1 and G2 in the

TCGA cohort. FLT3, DNMT3A, and NPM1 emerged as the top 3

genes with the highest mutation frequencies across all AML
Frontiers in Immunology 15
samples. These genes exhibited a mutation preference in G1

compared to G2 (p-values of 0.006, 0.030, and < 0.001,

respectively; Table 5; Figures 6A, B). In addition, it is worth

mentioning that mutated FLT3 (ITD) and mutated NPM1 are

also leukemia-specific target antigens in AML, which are

associated with CD8+ T-cell responses (13).

As for the Beat AML cohort, according to the gene mutation

data from the clinical information (20, 21), FLT3, DNMT3A, and

NPM1 also showed high mutation frequencies. Similarly, these

genes exhibited higher mutation preferences in G1. However, the

statistical difference was only observed for DNMT3A and NPM1 in

the Beat AML cohort (p values of 0.019 and 0.035, respectively;

Table 5; Figure 6C).
FIGURE 6

Comparison of mutational landscapes between the subgroups in the TCGA and Beat AML cohorts. (A) Oncoplot displaying the top 20 frequently
mutated genes within G1 and G2 subgroups in the TCGA cohort; (B, C) Proportions of FLT3, DNMT3A, or NPM1 mutated samples in TCGA (B) and
Beat AML (C) cohorts. Asterisks indicated statistical significance (*p < 0.05; **p < 0.01; ***p < 0.001; “ns” denoted no significance.
TABLE 5 Mutation frequencies of FLT3, DNMT3A and NPM1 in the G1, G2 subgroups in the TCGA and Beat AML cohorts.

Cohorts FLT3 DNMT3A NPM1

TCGA

G1 27/71 (38.03%) 24/71 (33.80) 21/71 (29.58)

G2 17/95 (17.89%) 17/95 (17.89%) 6/95 (6.32%)

Overall 44/166(26.51%) 41/166 (24.70%) 27/166 (16.27%)

P value (G1 vs. G2) 0.006 0.030 <0.001

Beat AML

G1 58/214 (27.10%) 31/87 (35.63%) 65/214 (30.37%)

G2 9/41 (21.95%) 2/24 (8.33%) 10/41 (24.39%)

Overall 67/255 (26.27%) 33/111 (29.73%) 75/255 (29.41%)

P value (G1 vs. G2) 0.622 0.019 0.035
The bolded p-values in the table indicate statistically significant differences in mutation frequencies between the G1 and G2 subgroups (p < 0.05).
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FIGURE 7

Drug sensitivity analyses within the G1 and G2 subgroups in the Beat AML cohort. (A) Heatmap illustrating treatment responses of the subgroups to
various small-molecule inhibitors based on Beat AML ex vivo drug screen data. Drug responses were quantified by scaled AUC values, where blue
signified sensitivity and red denoted resistance; (B–D) Pearson correlation analyses assessing associations between sample immune scores and
scaled AUC values of elesclomol (B), panobinostat (C), and venetoclax (D); (E–G) Pearson correlation analyses evaluating correlations between
sample TIS and scaled AUC values of elesclomol (E), panobinostat (F), and venetoclax (G); (H–J) Pearson correlation analyses on pairs of scaled AUC
values: (H) elesclomol and panobinostat, (I) elesclomol and venetoclax; (J) panobinostat and venetoclax; (K–L) Expression levels of BCL2 and MCL1
in the TCGA (K) and Beat AML (L) cohorts. AUC, Area under the dose-response curve; TIS, T cell infiltration score. Asterisks indicate statistical
significance (**p < 0.01; ***p < 0.001, ****p < 0.0001).
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Drug sensitivity analyses in the Beat
AML cohort

We predicted the responses of G1 and G2 AML samples to 122

small-molecule inhibitors according to the ex vivo drug sensitivity

data from the Beat AML cohort (20, 21) (Figure 7A; Supplementary

Table S22). G1 exhibited a higher sensitivity to elesclomol and

panobinostat and a less sensitivity to venetoclax (|FoldChange| >

1.5, p < 0.05, Figure 7A).

The application of Pearson correlation analysis to the drug scaled

AUC values and sample immune scores revealed that, the scaled AUC

values of elesclomol and panobinostat displayed a positive correlation

with sample immune scores (cor = 0.481, p = 3.97e-9; cor = 0.698, p =

2.24e-9, respectively) (Figures 7B, C), whereas the scaled AUC values of

venetoclax and sample immune scores were negatively correlated (cor

= -0.521, p = 1.22e-7) (Figure 7D). These suggest that higher sample

immune infiltration levels are associated with resistance to elesclomol

and panobinostat, while sensitivity to venetoclax.

Moreover, apart from a weak negative correlation between the

scaled AUC values of elesclomol and sample TIS (cor = -0.201, p =
Frontiers in Immunology 17
1.98e-2) (Figure 7E), the scaled AUC values of panobinostat were

negatively correlated with sample TIS (cor = -0.446, p = 5.73e-4)

(Figure 7F), while those of venetoclax displayed a positive

correlation with sample TIS (cor = -0.379, p = 2.09e-4)

(Figure 7G). These findings associated higher TIS values with

sensitivity to panobinostat and resistance to venetoclax.

Pearson correlation analysis on pairs of scaled AUC values

among the three mentioned drugs revealed positive correlations

between the sensitivity of AML samples to elesclomol and

panobinostat (cor = -0.51, p = 8.29e-5) (Figure 7H), and negative

correlations between the sensitivity to elesclomol and venetoclax

(cor = -0.371, p = 4.03e-4) (Figure 7I), as well as to panobinostat and

venetoclax (cor = -0.572, p = 3.36e-6) (Figure 7J). These findings

suggest that elesclomol or panobinostat, particularly panobinostat

due to its stronger correlation with sensitivity to venetoclax, may

serve as potential alternative treatment options for AML patients

who are resistant to venetoclax.

Additionally, in both cohorts, G1 showed a significantly lower

BCL2 expression and higher MCL1 expression, as depicted in

Figures 7K, L.
FIGURE 8

Integrated analyses with scRNA-Seq dataset GSE116256. (A, B) Estimation of enrichment of malignant cell types within G1 and G2 subgroups in the
TCGA (A) and Beat AML (B) cohorts; (C) Barplots illustrating proportions of malignant/normal cells in Scissor+ and Scissor- cells; (D) Barplots showing
proportions of Scissor+/Scissor- cells in malignant and normal cell populations; (E) Stackplot depicting the proportions of malignant and normal cell
types in G1-featured (Scissor+) and G2-featured (Scissor-) cells; (F) Differentiation state comparison of malignant Scissor+ and Scissor- cells (higher
predicted order implied less differentiation); (G) t-SNE plots displaying the differentiation state, the distribution of cell type, Scissor label and MCL1
expression. t-SNE, t-distributed stochastic neighbor embedding. Asterisks indicate statistical significance (**p < 0.01; ***p < 0.001; ****p < 0.0001).
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AML subgroups correlate with
cellular hierarchies

To explore the relationship of AML subgroups with cellular

hierarchies, we referred to single-cell RNA-Seq (scRNA-Seq) data

reported by Galen et al. (23) to pinpoint gene signatures of diverse

differentiation states. Scaled enrichment scores for each cell type

were calculated among samples of the TCGA and Beat AML

cohorts. As shown in Figures 8A, B; Supplementary Tables S23,

S24, G1 and G2 enriched distinct cell-type signatures. In both

cohorts, G1 showed significantly higher cell-type enrichment scores

for cDC-like, monocyte-like and promonocyte-like cells and lower

cell-type enrichment scores for progenitor-like cells, suggesting a

more monocytic phenotype for the G1 samples.

Next, we used Scissor to label G1- and G2- featured cells as

Scissor+ and Scissor- cells, which included 2,560 and 2,344 cells,

respectively. According on the refined prediction results for each

cell in the original study (22), Scissor+ cells exhibited a relatively

higher proportion of malignant cells and a lower proportion of

normal cells compared to Scissor- cells (Figure 8C); within the

malignant cell population, the Scissor+ cells were more abundant

than the Scissor- cells, whereas the opposite was observed in the

normal cell population (Figure 8D) (Supplementary Table S25).

Also, we analyzed the distribution of different cell types in both

groups based on the cell type annotation provided in the original

study (23). The proportions of each cell type in the two groups were

calculated (Figure 8E). Notably, Scissor+ cells exhibited higher

proportions of cDC-like, HSC-like, monocyte-like, and monocyte
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cells compared to Scissor- cells. Scissor- cells had higher

proportions of GMP and GMP-like cells, as well as various

normal cell types including cDC, cytotoxic T-lymphocyte (CTL),

early erythroid, HSC, late erythroid, NK, plasma, proB, progenitor,

promonocyte, and pDC cells. Interestingly, among the normal cells,

all the Scissor labeling plasma and late erythroid cells were

categorized as Scissor-, and no Scissor+ cells were detected.

These findings indicate high malignancy and a more monocytic

phenotype in Scissor+ cells, whereas less malignancy and a more

immune-activated phenotype in Scissor- cells. These findings were

approximately consistent with our cell type analyses in the bulk

cohorts (namely TCGA and Beat AML), as mentioned above.

Subsequently, the differentiation states of both Scissor+ and

Scissor- malignant cells were analyzed. As shown in Figure 8F, the

total differentiation state of the malignant Scissor+ cells was found

to be higher compared to the malignant Scissor- cells. Moreover, the

more differentiated malignant Scissor+ cells exhibited predominant

proportions of monocyte-like cells, characterized by a higher

expression level of MCL1 (Figure 8G).

Next, we categorized the samples as G1-featured or G2-featured

based on their Scissor+ or Scissor- cell proportions, utilizing two

criteria: 1) The combined number of Scissor+ and Scissor- cells

should constitute more than 20% of the total detected cells in each

sample, and 2) The FoldChange of Scissor+/Scissor- (or Scissor-/

Scissor+) cell proportions in the sample must exceed 1.5 (|log2

(FoldChange)| > 0.59). Consequently, we identified five G1-featured

samples (AML870, AML419A, AML556, AML328, and AML921A)

and four G2-featured samples (AML916, AML707B, AML1012, and
TABLE 6 Sample labeling based on the Scissor+ and Scissor- cell proportions.

Sample
Total cell
number

Scissor+
cell number

Scissor-
cell number

Scissor+
cell proportion

Scissor-
cell proportion

log2
(FoldChange)

Label

AML870 342 71 3 0.21 0.01 4.56 G1-featured

AML419A 1057 333 49 0.32 0.05 2.76 G1-featured

AML556 2270 716 151 0.32 0.07 2.25 G1-featured

AML328 1070 177 57 0.17 0.05 1.63 G1-featured

AML921A 3727 867 281 0.23 0.08 1.63 G1-featured

AML916 929 2 356 0.00 0.38 -7.48 G2-featured

AML707B 1507 12 636 0.01 0.42 -5.73 G2-featured

AML1012 1040 40 297 0.04 0.29 -2.89 G2-featured

AML420B 476 17 115 0.04 0.24 -2.76 G2-featured

AML329 468 95 78 0.20 0.17 0.28 Neither

AML475 372 27 33 0.07 0.09 -0.29 Neither

AML722B 78 4 5 0.05 0.06 -0.32 Neither

AML371 750 121 160 0.16 0.21 -0.40 Neither

AML210A 730 76 113 0.10 0.15 -0.57 Neither

AML314 162 2 6 0.01 0.04 -1.58 Neither

AML997 80 NA 4 NA 0.05 NA Neither
NA, Not Available.
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AML420B) (arranged in descending order of their |log2

(FoldChange)| values in Table 6). Among the G1-featured

samples, except for AML870, all the other samples exhibited

DNMT3A mutations. AML419A and AML328 showed FTL-3

mutations, and AML419A and AML556 showed NPM1

mutations. In contrast, the G2-featured samples did not exhibit

DNMT3A, FLT3, or NPM1 mutations [Supplementary Table S26

(22)]. These results further supported our previous comparison of

mutation landscapes between G1 and G2 in the bulk RNA cohorts,

indicating that DNMT3A, FLT3, and NPM1 mutations were more

frequent in G1.
Discussion

The tumor microenvironment (TME) encompasses a wide

array of cell types (45), which are now recognized for their crucial

roles in cancer pathogenesis. The AML TME serves a dual role. It

plays a crucial role in supporting and facilitating leukemogenesis,

while also exerts inhibitory effects on the proliferation of abnormal

blasts, potentially impeding their progression into overt leukemia

and promoting their elimination (46).

Haiment Yang et al. (41) reported significant differences in

immune scores among different AML subtypes and cytogenetic risk

categories, with higher immune scores correlating with poor

prognosis using the TCGA-LAML transcriptome data. To

investigate further, we examined immune and stromal scores in

AML samples from two independent cohorts: the TCGA and Beat

AML cohorts. Our results underscored the important role of

immune infiltration in the AML TME. Consistent with Haiment

Yang et al’s (41) results, we observed higher immune scores in AML

subtypes M4 and M5 compared to other subtypes. However, in

contrast to the TCGA cohort, the differences in overall survival

between immune score-high and -low groups were not significant in

the Beat AML cohort. Additionally, the relationship between

sample immune scores and cytogenetic risk category was not

consistent in the TCGA and Beat AML cohorts.

To further investigate the impact of immune conditions on

AML samples at genetic and clinical levels, we focused on a set of

AML-specific IRGs that effectively distinguished AML samples

from normal whole blood samples. Utilizing the expression

profiles of these AML-specific IRGs, we performed consensus

clustering analysis, which led to the identification of two distinct

immune subgroups (G1 and G2) within the TCGA cohort. Among

the AML-specific IRGs, we identified key-AML-IRGs that exhibited

strong associations with AML immune scores. Subsequently, we

developed a subgroup prediction model incorporating the

expression profiles of these key-AML-IRGs. The developed model

was then applied to predict the subgroups in an independent cohort,

namely the Beat AML cohort. The Scissor algorithm was employed

to assign G1 or G2 features to individual AML cells in the scRNA-

Seq dataset GSE116256.

Significant differences were observed between the G1 and G2

subgroups in various aspects, including clinical features, immune

characterization, mutational landscapes, drug sensitivities, and

putative differentiation trajectories at the single cell level.
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The G1 subgroup exhibited higher immune infiltration and a

more monocytic phenotype, associated with poorer prognosis,

lower TIS, and higher proportions of monocytes/macrophages. In

contrast, the G2 subgroup displayed lower immune infiltration and

a more granulocytic phenotype, associated with better prognosis,

higher TIS, and higher proportions of various immune cells.

Furthermore, the expression levels of several target antigens in

AML T-cell-based immunotherapy differed significantly between

the G1 and G2 subgroups. This suggests that different antibody

choices may be warranted in immunotherapy for samples classified

into the G1 or G2 subgroups.

FLT3, DNMT3A, and NPM1 exhibited the highest mutation

frequencies in G1. FLT3 and DNMT3A mutations in AML are

associated with reduced survival, while the prognostic significance of

NMP1 mutations depends on the presence or absence of an FLT3

mutation and its allelic ratio (47–52). Treatment options for patients

with different mutation patterns of these genes vary accordingly.

According to the ELN guidelines, patients with an NPM1 mutation

in the absence of an FLT3 mutation falling into the favorable risk

category should not undergo allogeneic hematopoietic cell transplant

(HCT) at first remission due to the high risk of potentially fatal

infection caused by immunosuppression and graft vs. host disease,

which highlights the impact of NPM1mutation on immune conditions

in AML (52). Furthermore, mutated FLT3 (ITD) and NPM1 are

leukemia-specific target antigens in AML, associated with CD8+ T-

cell responses (13).

The drug sensitivity analysis in the Beat AML cohort suggested

higher sensitivity of elesclomol and panobinostat in G1, while

higher sensitivity of venetoclax in G2.

Elesclomol is a copper ionophore that targets mitochondrial

metabolism and is being explored for cancer therapy (53–57). Our

GSEA analysis in the TCGA cohort show up-regulated oxidative

phosphorylation in the G1 subgroup (Figure 4E; Supplementary

Table S18), suggesting a higher mitochondrial metabolic activity in

this subgroup, which supported the higher sensitivity of elesclomol

in G1.

Panobinostat, a histone deacetylase inhibitor (HDACi) used in

treating hematological malignancies and solid tumors (58), triggers

the type I interferon (IFN) pathway and promotes AML cell

differentiation and therapeutic advantages (59). Jessica M.

Salmon, et al. (59) suggested that up-regulated genes after

panobinostat treatment were associated with type I IFN and IFN

gamma (IFNg) responses, p53 pathway, and cytokine signaling,

including IL6 and TNFa in AML, which were consistent with our

GSEA result (Figures 4E, F; Supplementary Tables S18, S19).

Additionally, previous studies have shown panobinostat’s role in

immune and inflammatory-related activities in antitumor processes

across various cancer types (58, 60–63), corroborating our findings

of a negative/positive correlation between immune scores/TIS with

sample sensitivity to panobinostat (Figures 7C, F). Notably,

panobinostat also appeared in our enrichment analysis of the top

10 differentially affected drugs/compounds between the two

subgroups (Supplementary Table S17).

Venetoclax, an FDA-approved BCL2 inhibitor, has demonstrated

efficacy in improving clinical outcomes for AML patients (64). Our

findings indicated that the G1 subgroup, which had a higher
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proportion of M5 subtype samples and FLT3 mutation frequency,

exhibited lower BCL2 expression, higherMCL1 expression, and greater

resistance to venetoclax compared to the G2 subgroup. Earlier studies

have also shown that M5 AML cases are more likely to be refractory to

venetoclax treatment compared to non-M5 cases (65). Patients with

monocytic AML have a median overall survival (OS) of 3.0 months,

contrasting with 17.3 months for non-M5 AML subtypes.

Furthermore, the enhanced expression of MCL1 in FLT3-ITD AML

cells makes themmore dependent onMCL1 for survival than on BCL2

during venetoclax treatment, leading to their survival advantage in this

therapeutic context (66, 67).

By integrating analyses with the scRNA-Seq dataset

GSE116256, our findings and inferences were not only reinforced

but also expanded to the single-cell level. The more differentiated

malignant G1-featured cells were predominantly monocyte-like

cells, which characterized by elevated MCL1 expression levels,

could be one of the reasons explaining the resistance of G1

subgrouped samples to venetoclax in the bulk cohorts. Notably,

normal plasma cells and late-stage erythroid cells represented G2

characteristics, as indicated by their consistent labeling as Scissor-

(or BC). It has been reported that in breast tumors, higher plasma

cell (PC) infiltration in biopsy specimens before neoadjuvant

chemotherapy was associated with pathological complete response

in breast tumors. Moreover, elevated PC levels exhibited a positive

correlation with favorable outcomes in patients with hormone

receptor-negative breast cancer (68). Within our investigation,

normal PCs were linked to G2, which was characterized by

improved prognostic indicators and heightened immune

activation, suggesting the potentially important role of PCs in

both AML development and therapeutic strategies. In addition,

myeloid neoplasms with erythroid differentiation was proved to be

more resistant to venetoclax owing to their diminished reliance on

the antiapoptotic protein BCL2 (69), a finding that aligns

synergistically with our observations showing normal erythroid

cells were G2-featured, associated with higher sensitivity

to venetoclax.

While we conducted a thorough investigation into the genetic

and clinical characterizations for immune-based subgroup

classification, further research is essential to fully elucidate our

findings and enhance their clinical relevance for risk stratification

and personalized medicine. It should be noted that although RNA

raw count data is ideal for differential gene expression analyses

using DESeq2, we used preprocessed RSEM norm_count data from

Xena to improve comparability between cohorts and mitigate batch

effects (19). While this normalization addresses technical variations,

it may compromise DESeq2’s ability to detect differential genes.

However, our primary objective was not to identify marker

genes distinguishing AML samples from normal counterparts, but

to clarify the relationship between the TME and the genetic/clinical

characteristics of AML. By incorporating three independent AML

cohorts, we validated our findings from both genetic and clinical

perspectives at sample and cellular levels. The consistent, strongly

correlated results across these diverse cohorts reinforce our

conclusions. Therefore, despite the study’s limitations, we believe

our findings provide a solid foundation for future investigations.

Future work should involve multimodal analyses combined with
Frontiers in Immunology 20
laboratory examinations and clinical trials to validate and extend

our findings. Evaluating the efficacy of alternative treatment

decisions, such as selecting target antibodies in immunotherapy

or drugs/compounds in chemotherapy, on patients with different

immune conditions (classified into different subgroups) requires

careful in vitro and in vivo assessment.

In summary, our study provided valuable insights into the

immune landscape within AML TME. We successfully established

immune-based molecular subgroups that not only encompass the

clinically and genetically defined AML entities but also enhance the

current prognostic classification systems. This framework holds

great promise for better understanding the immune status and the

associations between genotype, phenotype, and cellular hierarchies

in AML, ultimately guiding informed decisions for AML therapy.
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