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Introduction: Respiratory Syncytial Virus (RSV) is a significant cause of respiratory

illnesses worldwide, particularly in infants and elderly individuals. Despite the

burden RSV imposes, effective preventive measures are limited. The research

application of adeno-associated virus (AAV) in vaccine platforms has been

expanding, and its potential in prevention and treatment has garnered

much attention.

Methods: In this study, we explored the potential application of a recombinant

adeno-associated virus 5 (rAAV5) vector-based RSV vaccine, focusing on the

expression of the pre-fusion (Pre-F) protein structure. Through intramuscular

immunization in mice. The immunogenicity of the vaccine was evaluated in Balb/

c mice immunized intramuscularly and intranasal, respectively.

Results: The rAAV5-RSV-Fm vaccine demonstrated positive humoral and

induced antibody titers against RSV strains A and B for up to 120 days post-

immunization. Notably, intranasal administration also elicited protective

antibodies. Characterization studies confirmed the ability of the vac-cine to

express the Pre-F protein and its superior immunogenicity compared to that of

full-length F protein.

Conclusion: These findings underscore the potential application of rAAV5 vector

platforms in RSV vaccine development and further investigation into their

protective efficacy is warranted.
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1 Introduction

Respiratory syncytial virus (RSV) is a formidable adversary in the

realm of respiratory pathogens as RSV poses a significant global

health burden, particularly among vulnerable demographics such as

infants and elderly individuals. This single-stranded RNA virus,

belonging to the family Pneumoviridae, is notorious for causing

upper and lower respiratory tract infections, often leading to severe

complications such as bronchiolitis and pneumonia. Among children

under five years of age, RSV is one of the primary causes of

hospitalization, with infants under six months being especially

susceptible (1, 2). Furthermore, the elderly population, including

those aged 60 years and older, faces a RSV burden comparable to that

posed by seasonal influenza in adults over 65 years old. By the year

2022, the global incidence of severe RSV infections among individuals

aged 65 and above is estimated to reach a staggering 8.6 million (3, 4).

Despite its significant impact on public health, prophylactic

measures against RSV that are effective over long durations remain

elusive. Currently, therapeutic options are largely limited to

supportive care, leaving high-risk populations with minimal

options beyond symptomatic relief. Thus, the development of

preventive strategies is paramount for mitigating the burden of

RSV-related morbidity and mortality. Traditional methods of

acquiring immunity through natural infection fail to confer long-

term protection against RSV due to the ability of RSV to evade

immune memory responses (5), thus necessitating the pursuit of

active preventive measures such as vaccination.

To date, the arsenal of RSV vaccines remains sparse, with only

two prophylactic products receiving approval from the US Food

and Drug Administration (FDA) for individuals aged 60 and above

as of 2023: Arexvy from GSK and ABRYSVO from Pfizer (6–8).

These vaccines, which are based on recombinant protein constructs,

represent important advancements in RSV prevention. However,

further innovation is imperative to address the pressing need for

more efficacious and broadly protective vaccine formulations.

Central to the development of effective RSV vaccines are virus

surface glycoproteins, particularly the fusion (F) and attachment

(G) proteins, which serve as primary targets for host immune

responses. The F protein, in particular, holds promise as a vaccine

antigen due to its essential role in mediating viral fusion and its

relatively conserved nature across RSV strains (9–11). Notably, the

F protein exists in two conformational states—pre-fusion (Pre F)

and post-fusion (Post F)—with the former being the preferred

target for vaccine-induced immunity due to the exposure of

critical neutralizing epitopes (12, 13). Leveraging this knowledge,

recent vaccine candidates have focused on stabilizing the Pre F

conformation to improve immunogenicity and efficacy (14–16).

In parallel, the emergence of gene therapy vectors, particularly

recombinant adeno-associated virus (rAAV), has revolutionized

vaccine development by offering a versatile platform for antigen

delivery. rAAV vectors, which are derived from non-pathogenic

parvoviruses, boast attributes such as low immunogenicity, broad

tissue tropism, and safety, making them ideal candidates for vaccine
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delivery (17–20). Previous research has demonstrated the potential

of rAAV vectors in the development of vaccines against infectious

diseases, including the successful application of an rAAV5-based

vaccine against SARS-CoV-2 (21).

Based on this foundation, in the present study, we explored the

feasibility of utilizing an rAAV5 vector platform for the development

of an RSV vaccine. Specifically, we engineered rAAV5 vectors

encoding the wild type F protein (RSV-F), Pre-F protein (RSV-Fm)

and wild type G protein (RSV-G) of RSV respectively, then evaluated

their immunogenicity in a murine model. By assessing both of the

humoral and cellular immune responses elicited by intramuscular

and intranasal immunization routes identified the rAAV5-RSV-Pre-F

vaccine as the optimal design with positive immunogenicity. We

aimed to evaluate the potential application of rAAV5-based RSV

vaccines to confer effective and durable immunity against this

pervasive respiratory pathogen. In summary, this study represents a

step forward in the pursuit of innovative vaccine strategies against

RSV and underscores the potential application of rAAV-based

platforms for combating infectious diseases.
2 Materials and methods

2.1 Cells and virus

Human embryonic kidney cells 293T (HEK293T cells) (ATCC)

were cultured in Dulbecco’s modified Eagle’s medium (DMEM,

Gibco, USA) supplemented with 10% fetal bovine serum (FBS).

Hep-2 cells, live RSV subtype A (strain Long) and subtype B (strain

9320) virus (Hainan Tropical Infectious Diseases Biobank) was

obtained from the Guangdong Provincial Center for Disease Control.
2.2 Animals

Six- to eight-week-old specific pathogen-free female BALB/c mice

were purchased from Bestest. Animal research was approved by the

Guangzhou National Laboratory Animal Care and Use Committee

(Ethics number: GZLAB-AUCP-2022-10-A08). Mice were housed in

a temperature-controlled environment with a 12-h light-dark cycle

and provided commercial mouse food and water ad libitum.
2.3 Immunization protocols

In the first batch, mice (5 animals per group) were immunized

with rAAV5-based vaccines or PBS (control group) via

intramuscular (i.m.) injection in the hind leg on day 0. In the

second batch, mice (10 animals per group) were inoculated

intranasally by slowly pipetting a volume of 20 µl into one nostril

containing the final dose of vaccine. Sera were collected at various

time points after immunization for analysis. PBMCs were isolated

by split-red method and analyzed by flow cytometry.
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2.4 Construction of AAV5-based
vaccine plasmids

Three AAV-based vaccine candidates were tested: rAAV-RSV-F,

rAAV-RSV-F-m, and rAAV-RSV-G (GenBank: ACO83301.1 and

GenBank: URP22622.1). rAAV-RSV-F is an AAV5 vector that

expresses the codon-optimized, full-length RSV F protein under the

control of a CMV promoter. rAAV-RSV-Fm has two mutated sites

(N67I and S215P) based on rAAV-RSV-F (22). rAAV-RSV-G is an

AAV5 vector that expresses the codon-optimized, full-length RSV G

protein under the control of a CAG promoter. Each vaccine construct

included additional regulatory elements: a woodchuck hepatitis virus

posttranscriptional regulatory element (WPRE) and a bovine growth

hormone polyadenylation signal (poly-A). Western blots were using to

verify the expression of the target antigen of the plasmid. The target

gene plasmid was transfected into 293T cells with PEI (Polysciences,

24765-1) to express the target protein. Proteins were separated by

electrophoresis in SurePAGE 4%–20% polyacrylamide gels (Genscript:

M00655) and then transferred to poly-vinylidene fluoride (PVDF)

membranes. RSV-F (A2) antibody (1:2000 Sino Biological: 11049-

R302) and anti-HRSV-A G/major surface glycoprotein G antibody

(1:5000 3D3, Antibody system: RVV08502) followed by peroxidase-

conjugated anti-rabbit (Proteintech: SA00001-2), or anti-human

secondary antibodies (Jackson Immuno Research: 109-035-003),

respectively (1:10,000) were used for it.
2.5 Production and purification of the
recombinant AAV vectors

The three plasmids (AAV5-based vaccine plasmids, pAAV-RC

and pHelper) were co-transfected into 293T cells using PEI transfection

reagent for packaging the recombinant AAV vector. The transfected

cells were harvested 72h after transfection. Cells were treated with Lysis

buffer (50mM Tris-HCl, 150mM NaCl, 2mM MgCl2, PH=8.0) and

then subjected to 4 freeze–thaw cycles. Broad-spectrum unrestricted

nuclease was added and the supernatants were collected by

centrifugation at the end of incubation at 37°C. At the same time,

PEG8000 was added to a final concentration of 8%(w/v), subsequent

precipitation at 4°C overnight. The supernatants were removed by

centrifugation the next day. At the end of centrifugation, the precipitate

was resuspended using 10ml PBS and ultracentrifugation with

iodixanol density gradient. The titers of the rAAV5 vaccine were

determined by digital PCR (Bio-rad ddPCR Supermix for

Probes:186-3024) with the following primer pairs. Primer pair for

WPRE: forward 5’-ACAATTCCGTGGTGTTGTCGG-3′, reverse 5′-
AGGAAGGTCCGCTGGATTGA-3′ and TaqMan probe FAM-

ACCTGGAT-TCTGCGCGGGA-BHQ1.The purity of rAAV5 was

confirmed by Coomassie brilliant blue staining. SEC-HPLC method

and SRT SEC-500 column were used to detect the aggregates of rAAV5

vector. For the detection of the empty AAV capsid, the AEC-HPLC

method and BIA/CIMac™ AAV empty/full - 0.1 Analytical Column

were used to separate the empty capsid from the intact AAV5 vector

using the AAV empty/full capsid analytical column (23).
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2.6 In vitro infection and antigen
expression by flow cytometry

The surface expression of F protein on infected cells was

measured by immunofluorescence using flow cytometry. Cultured

293T cells were transduced with the rAAV5 vaccine, and 1×1011vg

of the virus were added. Forty-eight hours after AAV infection, the

cells were harvested and then stained with Alexa488-conjugated

D25 (Antibody system: RVV02809), 4D7(Antibody system:

RVV02817) and AM14 (Antibody system: RVV02801). rAAV5-

RSV-G vaccine using Alexa488-conjugated 3D3 (Antibody system:

RVV08502). The cells were then analyzed by flow cytometry.

Binding of the D25 anti-body indicated the presence of the

antigenic site F on the pre-fusion F protein, binding of 4D7

indicated a post-fusion RSV F or intermediate conformation, and

binding of AM14 indicated a trimeric form of pre-fusion RSV F.

Binding of 3D3 indicated correct expression of RSV-G protein (24).
2.7 Serum ELISA

The RSV-specific IgG antibodies were analyzed using an enzyme-

linked immuno-sorbent assay (ELISA). Briefly, 96-well microplates

were coated with RSV-F Protein (ECD, His-Tag sino

biological:11049-V08B) or RSV-G Protein (ECD, His-Tag sino bio-

logical:40041-V08H) (0.5 µg/mL) and incubated overnight at 4°C.

The next day, the plates were washed with PBST (PBS with 0.1%

Tween 20), followed by a blocking step with 2% skim milk for 1 h at

room temperature. Serially diluted mouse serum was added to the

wells, followed by incubation for 90 min at 37°C. After three washes,

horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG

(1:5000 Proteintech: SA00001-1) was added to the wells, followed

by incubation for 1 h at 37°C. After washing, the substrate 3,3,5,5-

tetramethylbenzidine (Invitrogen: 00-4201-56) was added to the

plates, and the reaction was stopped by adding 1 M H2SO4. The

absorbance at 450 nm was measured by an ELISA plate reader

(Biotec, Hercules, CA, USA). The endpoint serum dilution was

calculated with a curve to fit the analysis of optical density (OD)

values for serially diluted sera with a cut-off value of negative control.
2.8 Flow cytometry

Flow cytometry was used to determine the level of immune T

lymphocytes in the peripheral blood of mice after immunization.

Anticoagulated mouse blood samples were collected, and flow sample

preparation was performed after adding red blood cell lysate. The

cells were then stained with anti-CD3-Pe-Cy7 (biolegend: 100220),

anti-CD4-PerCp (biolegend: 100432), and anti-CD8-FITC

(biolegend: 100706). The cells were then permeabilized with

Cytofix/Cytoperm and subsequently intracellularly stained with

anti-IFN-g-PE (biolegend: 505808). The percentage of CD3+CD4+

and CD3+CD8+ T cells expressing IFN-g was quantified by flow

cytometry using Agilent Novocyte Advanteon. Analysis of flow

cytometric data was performed in FlowJo software version 9.6.1.
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2.9 Virus neutralization assay

Hep-2 cells were plated at a density of 2×104 cells/well in a 96-well

plate and grown at 37°C overnight. Mouse sera were heated at 56°C for

30min. Serial 4-fold dilutions (1:4–1:1024) ofmouse sera were separately

mixed with 100 TCID50 (50% tissue culture infective dose) of live RSV

subtype A (strain Long) and subtype B (strain 9320) virus (Hainan

Tropical Infectious Diseases Biobank), then incubated at 37°C for 2 h.

The cytopathic effect (CPE) was observed daily and recorded after 7 days.

Neutralizing titers of mouse sera that suppressed 50% of the CPE were

calculated by using the Reed–Muench method.
2.10 Statistical analysis

All values are presented as the mean ± SD. For the mouse

studies, ANOVA was used for statistical comparisons between

groups. IgG titer data were log10-transformed. Statistical

significance for IgG titer and IFN-g+ cell (%) data was calculated

using two-way ANOVA with Dunnett’s multiple comparisons. As

for neutralizing antibody data, one-way ANOVA was used if the

data passed the normality test; otherwise, the Kruskal-Wallis rank-

sum test was applied. Statistical analyses were performed using
Frontiers in Immunology 04
GraphPad Prism 8 (GraphPad Software Inc., San Diego, CA, USA).

The difference between groups is considered statistically significant

when p values < 0.05.
3 Results

3.1 Design and characterization of the
rAAV5-RSV-F, rAAV5-RSV-Fm, and rAAV5-
RSV-G vaccines

The rAAV5-RSV-F vaccine was constructed to express the full-

length wild-type F protein (wt F protein), while the rAAV5-RSV-

Fm vaccine was designed to produce the pre-fusion (Pre-F) protein

by introducing stabilizing mutations (N67I and S215P). It plays a

role in stabilizing the Pre-F structure by preventing the formation of

long helical strands in the RR1 structural region of the RSV-F

protein and stabilizing the apex (22). The rAAV5-RSV-G vaccine

encoded the full-length wild-type G protein (Figure 1A). As shown

by Western blot results, the protein expressed by the target gene

plasmid of the rAAV5-RSV-G vaccine correctly bound and was

tagged by the anti-HRSV-A G/major surface glycoprotein G

antibody (3D3, Antibody system) (Figure 1B). The F proteins
FIGURE 1

Design and characterization of the rAAV5-RSV-F, rAAV5-RSV-Fm, and rAAV5-RSV-G vaccines. (26-109: F2 subunit; 109-136: P27; 136-513: F1
subunit; CT, cytoplasmic tail; TM, trans-membrane domain). Genetic structure of the target gene plasmids in the rAAV5-RSV-F, rAAV5-RSV-Fm, and
rAAV5-RSV-G vaccines (A). Plasmid expression of the target antigen was experimentally validated by Western blotting (F protein and Fm Protein ~
55kDa, G protein ~90kDa) (B, C). The purity of the rAAV vaccines was verified by coomassie (VP1~87kDa, VP2~73kDa, VP3~62kDa) (D).
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expressed after transfection of the rAAV5-RSV-F and rAAV5-RSV-

Fm target gene plasmids were characterized by Western blotting.

The proteins expressed by the rAAV5-RSV-F and rAAV5-RSV-Fm

target gene plasmids correctly bound to the RSV-F (A2) antibody

(Sino Biological:11049-R302) (Figure 1C). The G protein is a

transmembrane glycoprotein. The ectodomain is post

translationally modified by 4-5 N-linked glycans and 30-40 O-

linked glycans, which account for ~60% of the molecular weight of

the mature glycoprotein (25, 26), and has many sites of

glycosylation, hence the apparent band tailing.

Three plasmid transfection methods were adopted to improve

rAAV packaging; iodixanol was used to purify the rAAV, and virus

titers were determined by ddPCR. The purity of the capsid protein

directly reflected protein impurity. SDS–PAGE combined with

Coomassie brilliant blue staining is the most intuitive method for

the detection of impure AAV proteins. This method can be used to

not only identify AAV but also determine its purity by observing the

number of protein staining bands (usually three bands for the VP1,

VP2, and VP3 proteins, and sometimes the AAP protein). The ratio of

VP1: VP2: VP3 was 1:1:10 (Figure 1D). The aggregates of the rAAV5-

RSV-F, rAAV5-RSV-Fm and rAAV5-RSV-G vaccines were 2.05%,

1.3% and 1.92%, respectively. And the percentage of empty capsid of

the three rAAV5-RSV vaccines were 3.36%, 1.96% and 3.7%,

respectively, while the industry standard is less than 30% (27). Both

were indicating that the rAAV5 viral vector platform could produce

highly purified rAAV vaccines (Supplementary Figures S1, S2).
3.2 Recognition of conformational regions
of F protein in the rAAV5-RSV-Fm vaccine

Due to the challenges in RSV Pre-F expression and purification,

many studies have aimed to increase Pre-F expression in different

cells or its stability while purifying the Pre-F antigen structure. This

study is the first to report the expression of the Pre-F anti-gen

through the rAAV vector. The constructed rAAV5-RSV-F and

rAAV5-RSV-Fm vaccines were used to infect 293T cells in vitro

for protein characterization. The conformation of the

transmembrane form of RSV F was assessed using flow

cytometry. Infected cells were stained with conformational

indicator antibodies (D25, 4D7, and AM14) and analyzed by flow

cytometry. The D25 antibody bound with the antigen site F of the

pre-F protein (28), while the binding of AM14 indicates the trimeric

form of pre-fusion RSV F (22). The binding of 4D7 confirms the

existence of post-fusion RSV F (29, 30). These results showed that

the binding rates of rAAV5-RSV-F to the 4D7, D25 and AM14

antibodies were 29.7%, 20.1% and 19%, respectively, in rAAV5-

RSV-F-infected cells, suggesting that the rAAV5-RSV-F vaccine

mainly expressed post-fusion RSV F or intermediate conformation

protein. However, the binding rate of the rAAV5-RSV-Fm protein

to the 4D7 antibody was only 4.76%, indicating that the rAAV5-

RSV-Fm vaccine had little or no effect on the F protein structure in

cells infected with the rAAV5-RSV-Fm vaccine. The D25 antibody

binding rate was 33.5%, and the AM14 antibody binding rate was

43.3%, which indicates that the rAAV5-RSV-Fm vaccine can

successfully express the Pre-F trimer protein structure (Figure 2).
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These results showed that the rAAV vector can be used to

successfully induce pre-fusion RSV F expression. The rAAV5-

RSV-G vaccine has also been validated for its ability to accurately

express the RSV-G protein. (Supplementary Figure S3).
3.3 The rAAV5-RSV-Fm vaccine induced an
effective antibody response in BALB/c mice

To confirm whether the rAAV-RSV vaccine could effectively

induce specific anti-bodies against RSV, BALB/c mice were

immunized with different doses of the rAAV5-RSV-F, rAAV5-

RSV-Fm and rAAV5-RSV-G vaccines by intramuscular injection,

while the control group was treated with PBS. Mouse sera were

collected 15, 60, 90 and 120 days after immunization for IgG analysis

(Figure 3A). IgG is the most abundant anti-body produced by the

body and is the most important for defending against foreign antigen

infection. rAAV5-RSV-Fm and rAAV5-RSV-G induced a humoral

immune response in mice as early as 15 days after immunization in a

dose-dependent manner. The antibody titer of rAAV5-RSV-Fm and

rAAV5-RSV-G in the 2×1011vg group exhibited a significant

elevation compared to the control group, respectively, on day 15.

As time progressed to day 60, the serum antibody titer in rAAV5-

RSV-F or rAAV5-RSV-Fm immunized mice reached nearly 300000.

The conversion to logarithms is close to 5.4, which was monitored

and remained stable until day 120, at which point the immune effect

was better than that of the rAAV5-RSV-G vaccine (Figures 3B–D).

Consistent with this result, we analyzed neutralizing antibodies

60, 90 and 120 days after immunization. The results showed that the

sera from rAAV5-RSV-F- and rAAV5-RSV-Fm-immunized mice

neutralized both subtype A and subtype B of live RSV. The sera of

mice immunized with rAAV5-RSV-Fm showed better neutralizing

activity, and there was a quantitative effect. The neutralizing

antibody titer of mice immunized with rAAV5-RSV-Fm in the

high-dose group reached 1:256 on day 120 (Figure 3E). Combined

with the results of IgG detection by ELISA, these findings indicate

that the vaccine could induce an effective antibody response.
3.4 Induction of cell-mediated immune
responses by the rAAV5-RSV-Fm vaccine

In the immune system, the levels of the antiviral factor

interferon g (IFN-g) represent helper T-cell activity. To evaluate

the cellular immunity of mice immunized with the rAAV5-RSV

vaccine, we isolated peripheral blood mononuclear cells (PBMCs)

from mice immunized with the rAAV5-RSV vaccine. Flow

cytometry was used to analyze the expression of IFN-g in CD4+

and CD8+ T cells (Figure 4). Cytokine IFN-g secretion from CD4

cells and CD8 cells was upregulated compared to control after being

immunized with the rAAV5-RSV-Fm and rAAV5-RSV-G vaccines.

Moreover, the expression of IFN-g in the high dose group was

significantly greater than that in the low-dose group. The results of

combination with neutralizing antibodies suggested that the

rAAV5-RSV-Fm vaccine could effectively induce a powerful

systemic humoral and cell-mediated immune response in mice.
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3.5 Effective immunogenic responses
elicited by intranasal administration of the
rAAV5-RSV-Fm vaccine

For respiratory vaccines, early nasal IgA antibodies produced by

mucosal immunization are the most abundant mucosal antibodies

and play important roles in the effective neutralization of upper

respiratory viruses. We selected the rAAV5-RSV-Fm vaccine

expressing the pre-F construct for mucosal immunization, which

showed good humoral immunity after intramuscular

immunization. In the intramuscular immunization experiment
Frontiers in Immunology 06
described above, a dosage of 1×1011 vg demonstrated significant

efficacy. Consequently, in anticipation of clinical application of the

vaccine, dosages of 5×1010 vg and 1×1011 vg were selected for the

experiment involving mucosal immunization.

Blood samples were collected in 15, 30 and 60 days after

vaccination (Figure 5A). The rAAV5-RSV-Fm vaccine increased

the levels of specific IgG antibodies on day 60 after intranasal

administration (Figure 5B). Sera samples obtained from mice 60

days after immunization effectively displayed elevated levels of

neutralizing antibody titers against both RSV subtype A and

subtype B strains. Specifically, mice immunized with rAAV5-
FIGURE 2

The percentage of cells transfected with the rAAV5-RSV-F and rAAV5-RSV-Fm vaccines that expressed membrane-associated forms of the RSV F
protein bound by D25, 4D7, or AM14 was determined (A, B). (n=3) Statistical significance was calculated via two-way ANOVA with Dunnett’s multiple
comparisons. P values were adjusted for multiple comparisons. **p < 0.01, ***p < 0.001.
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RSV-Fm in the 1×1011 vg dose group exhibited a neutralizing

antibody titer of 1:500 on day 60 (Figure 5C). These results

suggest that the vaccine elicited a robust antibody response

following mucosal immunization with a dosage of 1×1011 vg. On

day 30 and 60, 5 mice of each group were sacrificed, and

bronchoalveolar lavage fluid (BALF) was collected to determine

specific IgG and IgA levels (Figures 5D, E). The levels of specific IgG

and IgA at Day 30 in the lung lavage fluid of the vaccinated mice

were significantly greater than those in the control and AAV shell

groups, indicating that the immunized mice exhibited

mucosal immunity.
4 Discussion

Viral vector vaccines, particularly those based on AAV vectors,

have emerged as promising tools for eliciting robust immune
Frontiers in Immunology 07
responses against infectious diseases. The safety profile and ability

to confer long-term antigen expression with just a single dose make

the AAV vector platform highly attractive for vaccine development

(31, 32). This platform ensures long-term expression of target

antigens at high levels and provides stable immune effects with

only a single dose immunization. Moreover, during out-breaks of

new infectious diseases, the DNA sequence encoding pathogenic

proteins can be swiftly replaced within this vaccine platform to

rapidly produce vaccines for epidemic control. Our previous success

in developing SARS-CoV-2 vaccines using the rAAV5 vector

platform underscores its potential applicability in combating

various infectious diseases (21). In this study, we extended our

investigation to evaluate three rAAV5-RSV vaccine candidates that

target RSV, with a focus on their efficacy in inducing neutralizing

antibodies. Our preliminary results highlight the effectiveness of the

rAAV5-RSV-Fm vaccine in eliciting high levels of neutralizing

antibodies, thereby demonstrating the promising application of
FIGURE 3

Serum RSV-specific and neutralizing antibody titers induced by recombinant vaccines. (B–D) The serum IgG titer 15, 30, 60, 90 and 120 days after
immunization was determined by ELISA. (E) Neutralizing activity against RSV subtypes (A, B) was assessed at day 120 after immunization; the data are
presented as the mean ± SD of antibody titer. (n = 5 per group). Statistical significance was calculated via two-way ANOVA with Dunnett’s multiple
comparisons (B–D). P values were adjusted for multiple comparisons. Statistical significance was calculated via Kruskal-Wallis rank-sum test (E).
*p < 0.05, **p < 0.01, ***p < 0.001.
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this adeno-associated viral vector vaccine platform in RSV

vaccine development.

The RSV F and G proteins harbor distinct antigenic epitopes

and have been the subject of numerous vaccine studies. While the G

protein facilitates virion attachment to host cells (9), its role in

inducing neutralizing antibodies remains limited. Our data indicate

that the rAAV5-RSV-G vaccine expressing the full-length G protein

elicits high levels of anti-G IgG antibodies in humoral immunity.

However, neutralizing antibody tests suggest that it can-not

neutralize viruses. This result is consistent with animal studies on

vaccines targeting the G protein in which neutralizing antibodies

were barely detectable but still provided protection against RSV

infection in a mouse model (33, 34). The protective mechanism of

the G protein may involve activating the complement system or

anti-body-dependent cytotoxicity (ADCC) rather than

neutralization. However, further investigations, including

challenge experiments in animal models, are warranted to fully

elucidate the protective efficacy of the rAAV5-RSV-G vaccine.

In contrast, the RSV F protein, with its various conformational

states, is a more versatile antigenic target. Different vaccine
Frontiers in Immunology 08
modalities targeting the F protein have demonstrated varying

degrees of success in inducing the production of neutralizing

antibodies (35, 36). These vaccines contain either a pre-fusion F

conformation or a post-fusion conformation. However, due to

conformational changes that result in the loss of important

epitopes such as site Ø, immune responses induced by the F

protein differ between these two states. Multiple findings suggest

that targeting the pre-fusion state is superior for eliciting

neutralizing antibodies compared to targeting the post fusion

state (22, 37). In this study, we selected two mutation sites (N67I

and S215P) to stabilize the SC-DM (Pre-F) protein structure (22).

Our study focused on stabilizing the pre-fusion conformation of the

F protein, which is known to elicit potent neutralizing antibodies.

For the first time, we employed the rAAV5 vector platform to

deliver the Pre-F protein sequence and compared it with the

original full-length F protein sequence. Our results showed

successful binding of rAAV5-RSV-Fm vaccine-derived proteins

with the D25 antibody but minimal binding with the 4D7

antibody, indicating successful stabilization of the Pre-F protein

structure using the rAAV5 vector platform. Conversely, proteins
FIGURE 4

The rAAV5-RSV vaccine induced a protective cell-mediated immune response in mice at Day 75 after immunization. The rAAV5-RSV-Fm and rAAV5-
RSV-G vaccines increase the IFN-g levels in CD4+ (A, D) and CD8+ (B, C) T cells (n = 5 per group). Statistical significance was calculated via two-
way ANOVA with Dunnett’s multiple comparisons. P values were adjusted for multiple comparisons. *p < 0.05, **p < 0.01, ***p < 0.001.
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derived from the rAAV5-RSV-F vaccine exhibited increased

binding with the 4D7 antibody, suggesting the expression of more

post-F conformation proteins. In vivo immunization studies at a

dose of 2×1011 vg from day 15 to day 120 revealed that the rAAV5-

RSV-Fm vaccine induced anti-F IgG antibodies, the levels of which

peaked on day 60 and remained stable thereafter; additionally, high

levels of neutralizing antibodies against both the RSV A and B

strains were observed upon administration of the rAAV5-RSV-Fm

vaccine, thus confirming its effectiveness in inducing the desired

immunogenicity. In addition, the rAAV5-RSV-Fm vaccine was

inoculated into mice intranasally to verify its mucosal immune

effect. The results showed that the rAAV5-RSV-Fm vaccine could

induce the protective antibodies by intramuscular or

mucosal vaccination.

This research, however, is subject to several limitations. The

limitations mainly exist in two aspects. Firstly, there is a constraint

pertaining to the novelty of the RSV-Pre F protein configuration. The

current inquiry concentrates on validating the feasibility of expressing

the Pre-F protein configuration via the rAAV vector. Nonetheless, for
Frontiers in Immunology 09
sustained inquiry, the creation of an autonomously developed Pre-F

protein configuration warrants exploration. Secondly, there exists a

necessity for refinement in the validation experiments of

immunogenicity concerning animal vaccines. Further investigation is

warranted to delineate alterations in T-helper cell subtypes subsequent

to vaccination, alongside the execution of challenge experiments to

corroborate the protective efficacy of the rAAV5-RSV vaccine.

In conclusion, this study provides valuable information and

techniques for further R&D of RSV vaccines using the rAAV5

vector platform. The distinct advantages of the rAAV5-RSV-Fm

vaccine, which induces potent immune responses, underscore

the potential application of this adeno-associated viral vector

vaccine platform for combating RSV and other infectious

diseases. Future research endeavors will focus on evaluating

the protective efficacy of enhanced rAAV5-RSV-Pre F vaccines

and elucidating their underlying mechanisms in protecting

against RSV infection, thereby paving the way for the

development of effective preventive strategies against this

significant respiratory pathogen.
FIGURE 5

(A) Serum RSV-specific and neutralizing antibody titers induced by the recombinant AAV RSV-Fm vaccine. (B) Serum IgG titers at 15, 30 and 60 days after
immunization were determined by ELISA. (C) Neutralizing activity against RSV subtypes A and B was assessed in 60 days after immunization. (D, E) Specific
IgG and IgA antibodies in BALF from mice treated with recombinant AAV RSV-Fm were analyzed. The data are presented as the mean ± SD of antibody titer
(n = 5 per group). Statistical significance was calculated via two-way ANOVA with Dunnett’s multiple comparisons (B, D, E). P values were adjusted for
multiple comparisons. Statistical significance was calculated via Kruskal-Wallis rank-sum test (C). *p < 0.05, **p < 0.01, ***p < 0.001.
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