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outcomes and immunotherapy
responses in melanoma
Zaidong Deng1†, Jie Liu1†, Yanxun V. Yu1,2*

and Youngnam N. Jin1,2*

1Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University,
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Background: Immunotherapy has revolutionized skin cutaneous melanoma

treatment, but response variability due to tumor heterogeneity necessitates

robust biomarkers for predicting immunotherapy response.

Methods: We used weighted gene co-expression network analysis (WGCNA),

consensus clustering, and 10 machine learning algorithms to develop the

immunotherapy-related gene model (ITRGM) signature. Multi-omics analyses

included bulk and single-cell RNA sequencing of melanoma patients, mouse bulk

RNA sequencing, and pathology sections of melanoma patients.

Results: We identified 66 consensus immunotherapy prognostic genes (CITPGs)

using WGCNA and differentially expressed genes (DEGs) from two melanoma

cohorts. The CITPG-high group showed better prognosis and enriched immune

activities. DEGs between CITPG-high and CITPG-low groups in the TCGA-SKCM

cohort were analyzed in three additional melanoma cohorts using univariate Cox

regression, resulting in 44 consensus genes. Using 101 machine learning

algorithm combinations, we constructed the ITRGM signature based on seven

model genes. The ITRGM outperformed 37 published signatures in predicting

immunotherapy prognosis across the training cohort, three testing cohorts, and

a meta-cohort. It effectively stratified patients into high-risk or low-risk groups

for immunotherapy response. The low-risk group, with high levels of model

genes, correlated with increased immune characteristics such as tumor mutation

burden and immune cell infiltration, indicating immune-hot tumors with a better

prognosis. The ITRGM’s relationship with the tumor immune microenvironment

was further validated in our experiments using pathology sections with GBP5, an

important model gene, and CD8 IHC analysis. The ITRGM also predicted better

immunotherapy response in eight cohorts, including urothelial carcinoma and

stomach adenocarcinoma, indicating broad applicability.
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Conclusions: The ITRGM signature is a stable and robust predictor for stratifying

melanoma patients into ‘immune-hot’ and ‘immune-cold’ tumors, enhancing

prognosis and response to immunotherapy.
KEYWORDS

skin cutaneous melanoma, immunotherapy, tumor immune microenvironment (TIME),
machine learning, multi-omics, GBP5, biomarker
1 Introduction

Skin cutaneous melanoma (SKCM), the most aggressive skin

cancer, exhibits high heterogeneity and a poor prognosis. Over the

past few decades, the incidence of SKCM has increased (1, 2).

Traditional therapies, such as chemotherapy, have had limited

effects on patients with advanced melanoma (3). Fortunately,

immune checkpoint inhibitors (ICIs) has revolutionized melanoma

treatment by activating the patient’s immune system (4). Many

melanoma patients have experienced favorable treatment outcomes

from ICIs targeting cytotoxic T lymphocyte antigen 4 (CTLA-4),

programmed death-1 (PD-1), and PD-ligand 1 (PD-L1) (5–10).

Adoptive cell transfer (ACT) therapy, another immunotherapy

strategy, has also yielded encouraging results in recent years (11).

Melanoma patients undergoing combinatorial immunotherapy have

shown 5-year overall survival rates of up to 52% (12). However, due

to the high heterogeneity, a significant portion of patients fail to

respond to immunotherapy, and some experience unwanted

immune-related adverse events (13, 14). Therefore, identifying

factors that predict immunotherapy response may improve the

effectiveness of these treatments and prolong patient survival.

The success of immunotherapy in melanoma is likely linked to

the high tumor mutational burden (TMB). This high TMB

generates a large pool of neoantigens, potentially triggering robust

anti-tumor immune responses (15). However, despite the

association between high TMB and inferred neoantigen load with

overall survival, their connection to observed immunotherapy

efficacy remains inconsistent (16). Other proposed biomarkers

include mismatch-repair deficiency, CTLA-4 expression, and PD-

1/PD-L1 status (17, 18). While these markers are already used

clinically, they have limitations (19). The advent of bulk sequencing

has facilitated “omics” studies to identify tumor characteristics

predictive of immunotherapy response. For example, one study

reported the expression level of PRRT3-AS1 as a biomarker for

prognosis and immunotherapy response (20). Another study linked

increased activity in the glycolysis/gluconeogenesis pathway to a

positive response (21). Additionally, multi-gene signatures based on

specific signaling pathways like inflammasome, m6A modification,

and ferroptosis have been developed (22–24). However, their

widespread clinical application is hampered by limitations in

modeling methods and the typically small size of the datasets used.
02
Current clinical practice in melanoma relies heavily on the

clinicopathological TNM staging system, which categorizes patients

based on tumor size, lymph node involvement, and metastasis.

However, this system falls short of capturing the full picture of a

patient’s condition. Melanoma exhibits high inter- and intra-tumor

heterogeneity, meaning patients at the same stage can have vastly

different prognoses. An ideal biomarker would consistently reflect

tumor biology across all patients, but the TNM system focuses

solely on anatomical features. To address this limitation, researchers

have explored multigene panels as predictive signatures that

account for the biological diversity of melanoma (25–27). These

approaches hold promise for more accurate risk assessment and

treatment decisions. However, clinical application remains

hindered by several factors, such as insufficient data, suboptimal

machine learning methods, insufficient validation across diverse

patient populations, and the absence of robust clinical testing.

To develop a more reliable predictive biomarker for

immunotherapy in melanoma, we constructed and rigorously

validated the immunotherapy-related gene model (ITRGM)

signature in this study. The construction process can be divided

into three steps, corresponding to Steps I-III (Figure 1). In Step I, we

first identified a consensus of 66 hub genes associated with

immunotherapy, termed consensus immunotherapy prognostic

genes (CITPGs). These 66 hub genes represent the intersection of

3 gene sets (Figure 1 Step I, Figure 2E). The 3 gene sets are: (1) genes

identified by WGCNA (weighted correlation network analysis) for

gene pattern identification, (2) DEGs between immunotherapy

responders and non-responders, and (3) DEGs between

melanoma tumor tissues and normal tissues. The purpose of

constructing these 66 hub genes, or CITPGs, is to identify genes

are abnormally expressed in tumor tissues and also associated with

immune responses. In Step II, we utilized CITPGs and performed

consensus clustering analysis to refine the prognostic signature,

which was then used in Step III. In Step III, we developed a seven-

gene artificial intelligence-derived prognostic signature, the

immunotherapy-related gene model (ITRGM), using 101

machine-learning algorithm combinations (28, 29).

During the validation phase, we demonstrated the strong

correlation of ITRGM with the immune landscape across multi-

omics levels (scRNA-seq, pathology sections, SNP, IHC,

transcriptome). All seven genes in the ITRGM signature are all
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up-regulated in immunotherapy responders (Figure 1 Step IV,

section 3.6). Additionally, the ITRGM signature was shown to

play a significant role in tumor immunity and the tumor

microenvironment (Figure 1 Step V, section 3.7). Importantly, we

validated the predictive performance of the ITRGM signature

in 4 immunotherapy-untreated melanoma cohorts and 8

immunotherapy clinical cohorts (Figure 1 Step VI, section 3.8),

demonstrating its ability to distinguish “immune-hot” tumors

from “immune-cold” tumors and to predict prognosis and

immunotherapy response in melanoma patients. Furthermore,

beyond what is depicted in Figure 1, we also tested the

correlation between GBP5 (one of the ITRGM signature genes)

and CD8 (section 3.9) and evaluated the ITRGM signature’s

relevance in chemotherapy efficacy (section 3.10). This work

provides ITRGM as a stable and robust signature for predicting

prognosis and response to immunotherapy in melanoma patients,

potentially aiding in the clinical management of melanoma for

improved clinical outcomes.
2 Materials and methods

2.1 Description of workflow

The workflow in our study is illustrated in Figure 1. In step I, we

first developed a melanoma classification system designed to predict

patient responses to immunotherapy from a multi-omics

perspective. We utilized the melanoma immunotherapy cohort
Frontiers in Immunology 03
PRJEB23709, applying weighted gene co-expression network

analysis (WGCNA) to identify gene modules associated with

immune responses between immunotherapy responders and non-

responders, alongside differential gene expression analysis to

pinpoint genes that differed between these groups. The GEPIA

database further provided information on differentially expressed

genes (DEGs) in melanoma tumors versus normal tissues. From the

intersection of these three gene sets (Genes in modules most related

to immunotherapy response identified by WGCNA, DEGs between

immunotherapy responders and non-responders, and DEGs

between melanoma tumor tissues and normal tissues), we

identified a list of 66 melanoma immunotherapy-related genes,

termed consensus immunotherapy prognostic genes (CITPGs)

(Supplementary Table S1). In step II, through consensus

clustering, we determined that these CITPGs could effectively

categorize melanomas into CITPG-high and CITPG-low groups

and predict immunotherapy efficacy. To refine the melanoma

classification system, in step III, we identified prognostically

relevant DEGs between these groups (Supplementary Table S2)

and developed a novel immunotherapy-related gene model

(ITRGM) using a machine learning framework that integrated 10

algorithms and 101 combinations. In step III, IV and V, we assessed

the ITRGM’s prognostic accuracy across multiple cohorts,

compared its performance with existing models, and investigated

the relationship between model genes and immunotherapy through

transcriptome analysis, hematoxylin and eosin (H&E) pathology

sections, and tumor tissue immunohistochemistry. Ultimately, in

step VI, verification across various immunotherapy cohorts
FIGURE 1

The flowchart of the analysis in this study comprises six different modules, Step I-VI. See the Methods section for details.
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FIGURE 2

Identification of consensus immunotherapy prognostic genes (CITPGs). (A) Kaplan-Meier survival analysis based on immunotherapy responders and
non-responders in PRJEB23709 dataset, indicating a favorable prognosis for immunotherapy responders. R (green line) represents responder. NR
(red line) represents non-responder. (B) Correlation of 18 gene modules with response and non-response to immunotherapy, with the highest
correlation for the Grey 60 module. (C) Gene correlation scatter plot showing the relationship between module membership (MM) and gene
significance (GS) in the grey60 module. (D) Volcano plot showing DEGs between immunotherapy responders and non-responders in the
PRJEB23709 dataset. Red circles with black dots indicate genes with more than 4 times upregulation. (E) Venn Diagram demonstrating the
intersection of the genes in the grey60 module, DEGs between immunotherapy responders and non-responders, and DEGs between melanoma
normal (GTEX) and tumor tissues (TCGA-SKCM). A total of 66 genes were obtained, termed CITPGs. (F) GO enrichment analysis based on the 66
CITPGs, demonstrating that the CITPGs is enriched to immune-related pathways. (G) Univariate Cox regression analysis of the 66 CITPGs based on
overall survival (OS) in TCGA-SKCM dataset, showing that all 66 genes in the CITPGs were associated with better prognosis.
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confirmed that the ITRGM reliably predicts tumor response to

immunotherapy and patient prognosis.
2.2 Data acquisition and preprocessing

In total, data from 1808 cancer patients across 16 independent

public cohorts were accessed in this study. RNA-seq data to extract

FPKM values, clinical data, and mutation annotation format (MAF)

files for TCGA-SKCM were downloaded from the GDC database

(https://portal.gdc.cancer.gov/). We excluded samples with

incomplete or missing clinical information, resulting in a cohort

of 459 TCGA-SKCM patients. Three melanoma transcriptome data

with clinical information were downloaded from Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo): GSE54467

(N = 79), GSE69504 (N = 214), and GSE22153 (N = 57).

To test the efficiency of the ITRGM signature in predicting the

immunotherapy response of patients, we obtained 7 clinical cohorts that

received immunotherapy from the TIGER database (http://

tiger.canceromics.org/#/immuneResponse): GSE91061, PRJEB23709,

GSE100797, Nathanson_2017, phs000452, STAD-PRJEB25780,

and GSE115821, and 1 clinical cohort (IMvigor210) with

“IMvigor210CoreBiologies” R package (30). The above

transcriptome data were transformed from FPKM to log2(FPKM

+1). The scRNA-seq dataset “SKCM_GSE115978_aPD1” was

analyzed directly with the TISCH2 website (http://tisch.comp-

genomics.org/home/). The transcriptional dataset GSE243238

(N = 17) of acral melanoma with CD8 immunohistochemistry

data was downloaded from GEO. The expression data for genes in

the ITRGM signature in two melanoma mouse immunotherapy

cohorts (GSE109485 and GSE149825) were downloaded from the

TISMO website (http://tismo.cistrome.org/). To assess the

expression levels of model genes, the immunohistochemistry

(IHC) images of model genes were downloaded from the Human

Protein Atlas (HPA) database (https://www.proteinatlas.org/). To

compare the expression levels of GBP5 in melanoma and normal

skin tissues, the GSE15605 and GSE114445 datasets were

downloaded from the GEO database. Details of all the datasets

used in this study are listed in Supplementary Table S3.
2.3 Differential gene expression analysis
and weighted gene co-expression
network analysis

Differentially expressed genes (DEGs) between melanoma

tumor tissue (TCGA-SKCM) and normal tissue (GTEx) were

directly obtained from GEPIA2 (http://gepia2.cancer-pku.cn/

#index). Genes with |log2FC| > 1 and FDR < 0.05, between

responders and non-responders in the PRJEB23709 dataset, were

selected using the limma package.

To gain insight into highly correlated gene clusters (modules) in

the PRJEB23709 melanoma immunotherapy dataset, WGCNA

analysis was performed using the R package “WGCNA” (31).

First, the optimal soft threshold b was determined to construct a

scale-free network. Next, we converted the weighted adjacency
Frontiers in Immunology 05
matrix into a topological overlap matrix (TOM) and calculated

the dissimilarity (dissTOM). The dynamic tree-cut approach was

used for clustering genes and module identification. Finally, we

selected the gene module with the highest correlation with the

immunotherapy response for subsequent study. To assess the

correlation between gene significance (GS) and module

membership (MM) in the gene module, the Pearson correlation

coefficient and corresponding P values were calculated using the

WGCNA package.
2.4 Consensus clustering

To identify the genes commonly detected as immunotherapy

predictive genes in melanoma, we extracted three gene sets to

compare their intersections: the modular genes most relevant to the

immunotherapy response identified by WGCNA analysis, DEGs

between immunotherapy responders and non-responders in the

PRJEB23709 cohort, and DEGs between melanoma tumor samples

and normal tissues from TCGA-SKCM. This resulted in the

identification of 66 hub genes as CITPGs. Subsequently, consensus

clustering of TCGA-SKCM patients was performed based on these

CITPGs using the R package “ConsensusClusterPlus” (32). The

optimal number of clusters (k) was determined to be 2, based on

the cumulative distribution function. Furthermore, PCA analysis and

Kaplan-Meier analysis were performed between the two clusters

using the R packages “ggplot2” and “survival”, respectively.

Univariate Cox regression analysis of the 66 CITPGs was

performed using the R package “survival”.
2.5 Construction and validation of
ITRGM model

The overall flowchart of this method is shown in Step III of

Figure 1. Firstly, we obtained DEGs between the two clusters that

were significantly associated with prognosis in all four melanoma

datasets (TCGA-SKCM, GSE54467, GSE69504, and GSE22153).

Subsequently, models were fitted based on these genes. The TCGA-

SKCM dataset was used as the training set, while GSE22153,

GSE54467, and GSE59455 were used as the validation sets. We

incorporated ten machine learning algorithms: elastic net (Enet),

ridge regression, partial least squares regression for Cox (plsRcox),

stepwise Cox, lasso, survival support vector machine (survival-SVM),

random survival forest (RSF), supervised principal components

(SuperPC), CoxBoost, and generalized boosted regression modeling

(GBM). A tenfold cross-validation network was employed to evaluate

101 combinations of these algorithms in the TCGA-SKCM training

set for variable selection and model construction (28, 29). For each

model, we evaluated its C-index across all the training and validation

sets. Finally, we ranked the average C-index of all models and

selected the model (Lasso+plsRcox) with the highest average C-

index to develop ITRGM for predicting melanoma response to

immunotherapy and prognosis.

In the Lasso+plsRcox machine learning algorithm, Lasso

regression was initially performed using the survival duration and
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survival status of each patient along with the expression matrix of

the 44 genes. During this process, each gene was assigned a

regression coefficient. Genes with coefficients close to zero,

indicating a weak relationship with survival, were removed from

the model. Ultimately, seven genes—GBP5, HLA-DPB1, XBP1,

CD40, GBP1, CXCL10, and TNFSF13B—were identified with

non-zero coefficients. These genes were then used in the plsRcox

algorithm to compute risk scores. The code for the Lasso+plsRcox

model is available on GitHub: https://github.com/YuBestLab/

YuBestLab.github.io/tree/101-machine-learning-algorithm.

In constructing the meta-cohort (TCGA-SKCM, GSE22153,

GSE54467, GSE69504), we used the “limma” and “sva” R

packages to merge the four cohorts after removing batch effect. In

addition, all cohorts were normalized using the “standarize.fun”

function for ITRGM score calculation. This standardization is

important for data analysis and machine learning algorithms, as

many algorithms do not perform well with data on different scales.

By standardizing the data, we ensure it is comparable and has better

numerical stability, thus improving the performance and

effectiveness of the algorithms. Univariate Cox regression analysis,

multivariate Cox regression analysis, and calibration curve analysis

of ITRGM were performed with the “survival” R package.
2.6 Functional enrichment analysis

The R packages “clusterprofile” (33) and “maftools” (34) were

used to perform Gene Ontology (GO) enrichment analysis for the

66 CITPGs and to analyze MAF files, respectively. Additionally, the

R package “clusterprofile” was used to perform Gene Set

Enrichment Analysis (GSEA) based on the gene set “c2.cp.kegg.

v2023.1.Hs.symbols.gmt”. GSEA on GBP5 was performed using

LinkedOmics (https://linkedomics.org/#/) (35).
2.7 Assessment of tumor immune
microenvironment characteristics

The TCGA-SKCM immune microenvironment was evaluated

for StromalScore, ImmuneScore, and ESTIMATEScore using R

with the ESTIMATE algorithm (36). The ssGSEA algorithm was

utilized to evaluate 28 immune cell infiltrations and 29

immunofunctional activities in TCGA-SKCM for heat mapping.

The response of TCGA-SKCM to immunotherapy was predicted

with the TIDE online tool (http://tide.dfci.harvard.edu/) (37, 38).

The TIP website (http://biocc.hrbmu.edu.cn/TIP/index.jsp) (39)

was used to obtain scores for the cancer-immunity cycle, which

consists of seven steps, in TCGA-SKCM patients. The gene lists for

Immunoinhibitor, MHC, and Immunostimulator were downloaded

from TISIDB (http://147.8.185.80/TISIDB/) (40). The IPS scores

were downloaded from TCIA (https://tcia.at/home). Additionally,

immune cell infiltration data were obtained from the TIMER2

website (http://timer.cistrome.org/) (41–47) using multiple

algorithms including TIMER, CIBERSORT, quanTIseq, xCell,

MCP-counter, and EPIC. After obtaining the infiltration scores,

we performed a Spearman correlation analysis between the risk
Frontiers in Immunology 06
scores and the infiltration scores to obtain the correlation

coefficients. These data were also used for Kaplan-Meier analysis.

Correlation between GBP5 expression levels and CD8+ T cell

infiltration in 32 cancer types were performed using the

TIMER2 website.
2.8 Histological examination of the TCGA-
SKCM samples

Histologic data (annotation.tsv) for TCGA-SKCM (N = 63)

were downloaded from Bagaev et al. (48). Semiquantitative scores

of lymphocytes for melanoma were obtained using a 5-grade

system (0-4) from the dataset (48). Tumor cellularity was defined

as the percentage of tumor cells detected in the sample slides out

of all cells present. Pathology sections stained with hematoxylin

and eosin (H&E) were provided by the GDC database (https://

portal.gdc.cancer.gov/).
2.9 Multiplex immunofluorescence

Based on bioinformatics studies, tissue microarrays containing

17 cases of melanoma and 18 cases of normal skin tissue were

obtained from Shanghai Wellbio Technology Co., Ltd. To confirm

the expression of GBP5 in melanoma and its association with CD8+

T-cell infiltration, the slices underwent sequential treatment with

eco-friendly dewaxing solution I (three times for 10 min each),

anhydrous ethanol (four times for 5 min each), and were washed

with distilled water. High-pressure antigen retrieval was performed,

followed by natural cooling. The slides were placed in PBS (pH 7.4)

on a decolorization shaker and washed three times for 5 min each.

After drying the sections, a circle was drawn around the tissue with

a histochemical pen, and 3% BSA was added to block the sections

for 30 min.

The mixture of the first primary antibody (GBP5, Abcam:

AB313390) and the second primary antibody (CD8, Servicebio:

GB12068) was then added. The prepared primary antibodies were

applied dropwise, and the sections were incubated flat in a wet box

at 4°C overnight. After incubation, the slides were washed in PBS

(pH 7.4) three times for 5 min each on a decolorization shaker. The

corresponding secondary antibodies (Alexa Fluor 488-conjugated

goat anti-rabbit IgG for GBP5 and Cy3-conjugated goat anti-mouse

IgG for CD8) were added, and the slides were incubated for 50 min

at room temperature, protected from light. After incubation, the

slides were washed three times in PBS (pH 7.4) for 5 min each on a

decolorization shaker, followed by the addition of autofluorescence

quencher B solution for 5 min, and rinsed under running water for

10 min. Images were captured using specific excitation and

emission wavelengths for DAPI (excitation 380 nm, emission 420

nm), Alexa Fluor 488 (excitation 480 nm, emission 535 nm), and

Cy3 (excitation 535 nm, emission 590 nm).

Fluorescence intensity was quantified using ImageJ or Fiji by

calculating the mean intensity of the selected region of interest

(ROI) and subtracting the mean intensity of the background ROI.

The mean intensity of 20-45 ROIs, each approximately 100 mm ×
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100 mm in size, was measured and then averaged to determine the

fluorescence intensity of each sample.
2.10 Analysis of drug sensitivity

The R package “oncopredict” (47) was utilized to predict the

chemosensitivity of TCGA-SKCM patients using the expression file

data and drug response information in Genomics of Drug

Sensitivity in Cancer (GDSC2) as a reference. Samples were

divided into high and low risk groups based on the median risk

score determined by the ITRGM signature. Differential sensitivity to

drugs between these groups was examined using the Wilcox test.

Correlation coefficients between drug sensitivity scores and risk

scores were analyzed using the Spearman method.
2.11 Statistical analyses

All statistical analyses were performed using R software (R

version 4.2.3) or GraphPad Prism 8.0.2. Kaplan-Meier analyses and

log-rank tests between two groups were conducted with the R

package “survival”. Prognostic genes were identified through

univariate Cox analysis. Correlation analyses were performed

using either Spearman or Pearson methods as appropriate.

Differences between two groups were assessed using the Wilcoxon

test or unpaired t-tests. P < 0.05 was considered statistically

significant. * P < 0.05; ** P < 0.01; *** P < 0.001.
3 Results

3.1 Identification of key genes related to
immunotherapy response in melanoma

The application of immunotherapy has emerged as a

breakthrough in melanoma treatments. The PRJEB23709 cohort,

an immunotherapy dataset for melanoma, offers high-quality

transcriptomic data, along with survival times and responses to

treatment. In this immunotherapy cohort of metastatic melanoma,

the survival of immunotherapy responders was substantially

prolonged (Figure 2A). To identify gene modules strongly

correlated with immunotherapy response in melanoma, we

conducted WGCNA analysis with the PRJEB23709 cohort to

identify patterns of genes. We utilized the soft threshold

parameter b = 5 to ensure the construction of a scale-free gene

network (Supplementary Figure S1A). Subsequently, 18 gene

modules were established, as shown by the dendrogram of genes

clustered via the dissimilarity measure. (Supplementary Figure

S1B). The Grey 60 module showed the strongest association with

immunotherapy response efficiency (Figure 2B). The relationship

between gene significance (GS) and module membership (MM) in

the Grey 60 module showed a significant positive correlation (cor =

0.74, P = 3.8e-28), suggesting the positive association of this gene

module with immunotherapy response (Figure 2C).
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To identify the list of genes most reliably associated with

melanoma as consensus immunotherapy prognostic genes

(CITPGs), we compared three sets of gene lists. First, employing

stringent criteria (|log2FoldChange| > 1 and FDR < 0.05), we found

257 DEGs between immunotherapy responders and non-

responders in the PRJEB23709 cohort (Figure 2D). Second, we

acquired 6457 DEGs between melanoma tumors (TCGA-SKCM)

and normal tissues from GEPIA2. Finally, we compared the genes

in the Grey 60 module with these two gene sets (DEGs between

immunotherapy responders and non-responders, DEGs between

melanoma tumor tissues and normal tissues) and identified 66

genes as the CITPGs (Figure 2E; Supplementary Table S1). GO

functional enrichment analysis showed that CITPGs were highly

enriched in several immune-related pathways, such as phagocytosis,

B cell receptor signaling, and immunoglobulin (Figure 2F). Next, we

tested whether CITPGs are associated with the prognosis of

melanoma patients through univariate Cox regression analysis

using the TCGA-SKCM cohort. Remarkably, we found that all 66

genes in CITPGs showed a slight but significant reduction in the

risk of the prognosis of melanoma patients (Figure 2G). We also

analyzed the mutation status of the CITPGs in TCGA-SKCM

cohort. The results showed that many mutations were present in

CITPGs predominantly with missense mutations, suggesting a

potential implication of CITPGs in melanoma progress

(Supplementary Figure S1C).
3.2 Consensus clustering analysis
of CITPGs

Consensus clustering, an unsupervised clustering method, is a

common research method for classifying cancer subtypes. It allows

for the distinction of samples into subtypes based on different

histological datasets, thereby facilitating the analysis of the

specificity of the different subtypes as well as the response to

certain therapies. To identify distinct subgroups of TCGA-SKCM

patients based on CITPG expression patterns, we employed

consensus clustering. The optimal clustering stability was reached

when the number of clusters (K) equals 2 (Figure 3A;

Supplementary Figures S1D, E). Consequently, we divided the

cohort into two subgroups (Figure 3A): one group with higher

CITPG expression, referred to as the CITPG-high group (C2), and

the other with lower CITPG expression, termed the CITPG-low

group (C1) (Figure 3B). Principal component analysis (PCA)

further confirmed the effectiveness of this classification

(Supplementary Figure S1F). Notably, the CITPG-high group

exhibited significantly better prognosis (Figure 3C).

Using the TIDE algorithm, we predicted the response of the

TCGA-SKCM cohort to immunotherapy. The results revealed that

the CITPG-high group had a significantly higher proportion of

immunotherapy responders (Figure 3D). Subsequently, we assessed

whether the expression pattern of CITPGs could serve as a valid

predictive factor for melanoma immunotherapy. Consensus

clustering analysis based on CITPG expression was applied to two

melanoma cohorts (PRJEB23709, GSE91061) that underwent
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immunotherapy. Remarkably, both cohorts showed clear separation

of patients into two groups. (Figures 3E, F, I, J; Supplementary Figures

S1D–F). Importantly, the CITPG-high group exhibited better

prognosis as well as a higher percentage of immunotherapy

responses (Figures 3G, H, K, L), highlighting CITPGs as a

promising feature for predicting prognosis in melanoma.
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3.3 Analysis of the tumor immune
microenvironment between the CITPG-
high and CITPG-low groups

To explore the mechanisms underlying the disparate clinical

outcomes observed in the two clusters based on CITPG expression,
FIGURE 3

Identification of two distinct clusters with consensus clustering analysis. (A, E, I) Consensus clustering divides the patients in TCGA-SKCM,
PRJEB23709, and GSE91061 datasets into two clusters, C1 and C2, based on the expression of 66 CITPGs. (B, F, J) The expression levels of 66
CITPGs in the two clusters in the TCGA-SKCM, PRJEB23709, and GSE91061 datasets, with Cluster2 (C2) showing higher expression. (C, G, K)
Kaplan-Meier survival analysis on overall survival (OS) between two clusters, CITPG-low and CITPG-high, in the TCGA-SKCM, PRJEB23709, and
GSE91061 datasets, showing a better prognosis for the CITPG-high group. (D, H, L) Stacked graphs showing the percentage of immunotherapy
responders/non-responders between the CITPG-low and CITPG-high clusters in TCGA-SKCM, PRJEB23709, and GSE91061 datasets, The CITPG-
high cluster exhibited higher response rates to immunotherapy in three different databases.
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we analyzed the status of the tumor immune microenvironment

(TIME) in the two CITPG groups of TCGA-SKCM. First, we

utilized the ESTIMATE package (44) to infer the levels of stromal

and immune cells in melanoma tumors. The results showed

significantly higher TIME values of stromal, immune, and

ESTIMATE scores in the CITPG-high group compared to the

CITPG-low group (Figure 4A).

Next, we employed the single-sample GSEA (ssGSEA)

algorithm to evaluate the infiltration levels of various types of

immune cells in TCGA-SKCM. We found that almost all

immune-related cells were significantly more infiltrated into the

tumor in the CITPG-high group (Figure 4B). To gain insight into

whether the increased infiltrated immune cells were functionally

active for anti-cancer immune response, we analyzed the status of

cancer immune cycle scores between the two groups using TIP (39).

Consistently, we found that the CITPG-high group exhibited

increased activity in steps related to antigen release (step 1),

antigen presentation (step2), activation (step 3), T cell transfer

(step 4), immune cell infiltration (step 5), and cancer cell killing

(step 7), while decreased activity in T cell recognition (step 6)

(Figure 4C). Additionally, the ssGSEA analyses revealed that

overall, the CITPG-high group had significantly higher

immunomodulatory activities compared to the CITPG-low group

(Figure 4D). These results indicate that the CITPG-high group

likely represents “immune-hot” tumors, while the CITPG-low

group may correspond to “immune-cold” tumors.

To further confirm the relationship between CITPG expression

pattern and anti-cancer-immune response, the histological

phenotypes associated with CITPG expression patterns were

examined using hematoxylin and eosin (H&E)-stained sections of

melanoma from TCGA-SKCM (N = 63). In line with our prediction,

the CITPG-high melanomas had lower malignant cell cellularity and

higher lymphocytic infiltration, indicating higher levels of infiltrated

immune cells (Figures 4E–G). Additionally, the quantitative

histopathological analysis of TCGA-SKCM revealed that CITPG-

high melanomas showed enrichment of the immune-inflamed

histological phenotype, but the CITPG-low group was

characterized by an increased immune-desert phenotype (Figure 4H).
3.4 Integrative construction of
immunotherapy-related gene model

The CITPGs comprise 66 genes, which is still too many to be

practical for analysis. To develop a more streamlined and robust

immunotherapy-related gene model (ITRGM), we screened for

DEGs between CITPG-high and CITPG-low groups within the

TCGA-SKCM cohort and identified 566 DEGs. We then

incorporated three additional melanoma cohorts (GSE22153,

GSE54467, GSE69504) and performed univariate Cox regression

analysis on the 566 DEGs across these four datasets. This analysis

identified 44 consensus genes significantly associated with patient

prognosis (Figure 5A; Supplementary Table S2). The benefit of

integrative procedures is the ability to fit a mode with consistent

performance for SKCM prognostics based on multiple machine

learning algorithms and their combinations. Furthermore, the
Frontiers in Immunology 09
combination of algorithms can reduce the dimensionality of the

variables, making the models more simplified and translatable. The

TCGA-SKCM cohort comprises a wealth of clinical data on

melanoma patients, along with genomic variants, mRNA

expression, H&E pathology sections, and other valuable resources,

making it an invaluable source of data for cancer researchers.

Therefore, using gene expression profiles of these 44 genes, we

integrated 101 machine learning algorithm combinations (28, 29)

on the TCGA-SKCM cohort as the training set to construct the

optimal algorithm for ITRGM and calculated the average C-index

of each combination. The algorithmic combination of “Lasso

+plsRcox” exhibited the highest average C-index, thus being

selected as the final model. This approach identified seven genes

(CD40, GBP5, HLA-DPB1, XBP1, CXCL10, GBP1, TNFSF13B) as

model genes for ITRGM (Figure 5B).

To explore the relationship between ITRGM and patient

survival outcomes, we divided melanoma patients into high and

low-risk groups based on the risk score acquired by ITRGM via the

“Lasso+plsRcox” method. The risk score is negatively correlated

with expression levels of model genes, meaning that higher

expression of model genes indicates a lower risk score. Kaplan-

Meier survival analysis indicated that low-risk melanoma patients

had better prognoses in the GSE22153, GSE54467, GSE69504, and

TCGA cohorts (Figures 5C–F). Compared to commonly used

clinical prognostic traits such as age, gender, and cancer stage, the

ITRGM showed superior and more reliable prognostic predictive

power, as indicated by the area-under-the-curve (AUC) values of

the receiver operating characteristic (ROC) curves (Figures 5G–J).
3.5 Comparison of ITRGM with previously
published signatures in melanoma

Recent advancements in high-throughput sequencing, big-data

technologies, and machine-learning algorithms have facilitated the

development of numerous prognostic and predictive signatures for

immunotherapy in melanoma (48, 49). To better evaluate ITRGM as

a prognostic biomarker, we retrieved published signatures related to

immunotherapy in melanoma for a comprehensive comparison of

predictive accuracy. Signatures using miRNAs were excluded as none

of the cohorts we used included miRNA expression information.

After removing the batch effect, we built a meta-cohort by

combining four cohorts (TCGA-SKCM, GSE22153, GSE54467,

GSE69504), which showed a consistent trend of the low-risk

group having better prognosis (Figure 6A). Next, we conducted a

comprehensive benchmark of our ITRGM alongside 37 published

prognostic signatures. First, univariate Cox analyses of all models

revealed that only our ITRGM and Hu_G models demonstrated

consistent statistical significance of association with prognosis

across the four independent cohorts and the meta-cohort

(Figure 6B), demonstrating the stability of ITRGM.

Furthermore, we compared the C-index of ITRGM with other

signatures. Remarkably, the ITRGM exhibited superior performance,

achieving the highest accuracy in two cohorts, GSE22153 and

GSE54467, and exhibiting comparable results with other top

signatures in GSE65904, TCGA, and the meta-cohort (Figure 6C).
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FIGURE 4

Characteristics of the tumor immune microenvironment (TIME) between two clusters, CITPG-low and CITPG-high. (A, C) Comparison of TME scores
(A) and cancer immune cycle scores (C) between the CITPG-low and CITPG-high clusters in TCGA-SKCM dataset, showing that the CITPG-high
cluster is associated with higher TME scores and overall higher cancer immune cycle scores *P < 0.05; **P < 0.01; ***P < 0.001 (B, D) The ssGSEA
analysis indicates differences in 28 immune cell infiltrations and 29 immunofunctional activities between the CITPG-low and CITPG-high clusters in
TCGA-SKCM. The CITPG-high cluster is associated with increased immune cell infiltration and enhanced immunofunctional activities. (E, F) Boxplots
show histological tumor cellularity and lymphocytic infiltration based on histological examination of the TCGA-SKCM samples between the CITPG-
low and CITPG-high clusters. The CITPG-high cluster is associated with lower tumor cellularity and higher lymphocytic infiltration (G) Representative
hematoxylin-eosin (H&E) histological images of the CITPG-low and CITPG-high clusters in TCGA-SKCM reveal that the CITPG-high cluster is
associated with higher lymphocytic infiltration. Scale bars in all panels are 100 mm. (H) Stacked graphs show the percentage of desert, excluded, and
inflamed immune phenotypes between the CITPG-low and CITPG-high clusters in TCGA-SKCM, with the CITPG-high cluster showing a higher
percentage of inflamed immune phenotypes.
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FIGURE 5

Development of immunotherapy-related gene model (ITRGM) signature via 101 machine learning combinatorial algorithms. (A) Univariate Cox
regression analysis demonstrating DEGs significantly associated with prognosis in all the TCGA-SKCM, GSE69504, GSE54467, and GSE22153
datasets. A total of 44 genes were identified as being associated with improved prognosis. The size of the circle represents the p-value and the
shade of the color represents the HR-value. (B) A total of 101 kinds of prediction models via LOOCV framework and further calculated the C-index
of each model across all validation datasets. The Lasso+plsRcox model demonstrated the highest C-index. Numbers represent the C-index of the
corresponding model in the corresponding cohort (GSE22153, GSE54467, GSE65904, TCGA-SKCM). Numbers in the rightmost bars represent the
average C-index of the corresponding model in the four cohorts. (C–F) Kaplan–Meier curves based on OS according to the ITRGM signature in
GSE22153, GSE54467, GSE65904, and TGCA-SKCM datasets revealed that the low-risk group was associated with better prognosis. (G–J) The area-
under-the-curve (AUC) values of the receiver operating characteristic (ROC) curves for 1, 3, and 5 years, comparing ITRGM signature and certain
clinical traits in GSE22153, GSE54467, GSE65904, and TGCA-SKCM datasets, demonstrated that the ITRGM signature consistently achieved better
and more reliable AUC values.
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FIGURE 6

Comparison of ITRGM signature with 37 published signatures in melanoma. (A) Kaplan–Meier curves based on OS according to the ITRGM signature
in the meta-cohort, revealed that the low-risk group was consistently associated with a better prognosis. (B) Univariate Cox regression analysis
comparing ITRGM with 37 published signatures in melanoma. The light blue color denotes that the model is a significant protective factor for
prognosis in the cohort, whereas the dark red color indicates that the model is a significant risk factor for prognosis. A white color signifies that the
model does not have a significant association with prognosis in the cohort. (C) Comparison of C-indexes between the ITRGM signature and 37
published signatures in TCGA-SKCM, GSE54467, GSE65904, GSE22153, and the meta-cohort datasets demonstrated that the ITRGM signature
consistently achieved a higher and more stable C-index overall. (D, E) Univariate (D) or multivariate (E) Cox regression analysis of ITRGM and several
clinical traits (age, gender, stage) in TCGA-SKCM cohort (left) and the meta-cohort (right) demonstrated that ITRGM signature can serve as an
independent prognostic factor. (F, G) Calibration curve for predicting 1-, 3-, and 5-year OS in the TCGA-SKCM cohort (F) and meta-cohort (G). (H, I)
The receiver-operator characteristic (ROC) analysis for predicting 1-, 3-, and 5-year OS in the TCGA-SKCM cohort (H), and meta-cohort
demonstrated the satisfactory predictive performance of the ITRGM signature (I).
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Finally, the independent prognostic significance of ITRGM was

evaluated through univariate and multivariate Cox analyses. The

results demonstrated that ITRGM is a robust and independent

prognostic factor (Figures 6D, E). The calibration curves and

receiver-operator characteristic (ROC) curves showed that ITRGM

exhibited satisfactory prediction performance in both the TCGA-

SKCM training cohort and the meta-cohort (Figures 6F–I).
3.6 Roles of model genes in
immunotherapy cohorts

To understand the role of model genes in melanoma and

immunotherapy response, we first compared the expression levels

of seven model genes in tumors and normal tissues. At the

transcriptome level, GBP5, TNFSF13B, HLA-DPB1, and CXCL10

had higher expression levels in tumors, whereas CD40, GBP1, and

XBP1 were not significantly different (Supplementary Figures S2A,

C, E, G, I, K, L). These findings were further confirmed by the IHC

results from the HPA database (Supplementary Figures S2B, D, F,

H, J). We then compared the differences in expression levels of

model genes between immunotherapy responders and non-

responders in 8 additional melanoma immunotherapy cohorts.

Consistently, in all 8 immunotherapy cohorts, we observed

significantly or modestly higher expression levels of all model

genes in responders compared to non-responders (Figure 7A).

Given the high homology between human and mouse genes, we

used genetically identical mouse melanoma immunotherapy data to

further validate the response of the model genes to immunotherapy,

thereby avoiding potential interference from differences in the

human genome. Similar findings were observed in two in vivo

mouse studies using a murine melanoma cell line, B16, which

underwent anti-cancer immunotherapy (50, 51). The baseline

group consisted of IgG-treated controls, and the responders were

immunotherapy-treated mice that exhibited smaller tumors and

longer lifespans. Compared to the baseline group, all model genes,

except Xbp1, showed a trend of significant upregulation in

immunotherapy responders (Figures 7B, C).

Additionally, we examined the cell-specific expression of model

genes using the single-cell RNA-seq (scRNA-seq) dataset of

SKCM_GSE115978, an immunotherapy cohort. The UMAP plot

revealed the presence of nine distinct cell populations: B cells, CD4+

conventional T cells (CD4Tconv), exhausted CD8+ T cells

(CD8Tex), endothelial cells, fibroblasts, malignant tumor cells,

monocytes/macrophages (Mono/Macro), natural killer (NK)

cells, and proliferating T cells (Tprolif) (Figure 7D). Model genes

are predominantly expressed in immune cells such as B cells,

CD8Tex, Mono/Macro, NK, and Tprolif (Figures 7E, F). Next, we

tested whether treatment of ICIs might affect the levels of model

genes using scRNA-seq data. Our analysis revealed distinct immune

cell type-specific gene expression changes in response to

immunotherapy. CD40 expression was up-regulated in Mono/

Macro, while GBP5 was up-regulated in B cells, CD8Tex, and

Mono/Macro. Similarly, HLA-DPB1 showed upregulation in

Mono/Macro, NK, and Tprolif. Other genes, such as CXCL10,

GBP1, and TNFSF13B, were also up-regulated in Mono/Macro
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(Supplementary Figure S3A). Together, these results suggest the

involvement of model genes like CD40 and GBP5 in the

immunotherapy response.
3.7 ITRGM is a reliable indicator of the
immune landscape

The TIME strongly influences the efficacy of immunotherapy.

Therefore, we conducted a comprehensive investigation of immune-

related features associated with risk scores generated by the ITRGM.

To investigate the correlation between ITRGM and immune cell

infiltration, we employed the ssGSEA algorithm to assess immune

cell infiltration in the TCGA-SKCM training set and three additional

training sets (GSE22153, GSE54467, GSE69504). Subsequently, based

on the ITRGM scores of each dataset, the datasets were divided into

high-risk and low-risk groups, and the differences in immune cell

infiltration between the groups were explored. The findings indicated

that the overall low-risk group exhibited heightened immune cell

infiltration in all the TCGA-SKCM training set and the three test sets

(Supplementary Figure S3B). These results suggested that the ITRGM

may differentiate between immune-hot and cold tumors and

demonstrated stability. As the TCGA-SKCM cohort serves as the

training set and possesses the largest sample size, in addition to

accompanying HE pathology slides and tumor mutation data, a more

comprehensive analysis utilizing TCGA-SKCM will be conducted

subsequently. We further analyzed the levels of immune cell

infiltration in the TCGA-SKCM cohort using seven methods. The

risk score showed significant negative correlations with many

immune cells, most notably CD8+ T cells, NK cells, and M1

macrophages (Figure 8A; Supplementary Figure S4A).

Similarly, the risk score was negatively correlated with the

majority of immunoregulators classified as immunoinhibitors,

MHC molecules, and immunostimulators (Figure 8B). Consistent

with this, high infiltration levels of CD8+ T cells were significantly

associated with superior patient prognosis (Supplementary Figure

S4B). This was further confirmed by IHC results. The IHC staining

scores for CD8 were significantly negatively correlated with the risk

score. Importantly, as the risk score is negatively correlated with the

levels of model genes, CD8 levels are significantly positively

correlated with the model genes CXCL10, TNFSF13B, GBP5, and

HLA-DPB1, and positively but not significantly correlated with

GBP1, CD40, and XBP1 (Figure 8C). These results suggest a strong

negative association between the ITRGM risk score and the level of

immune cell infiltration within the tumor microenvironment.

Consistently, the H&E staining based on pathology sections also

showed that the low-risk group had lower tumor cellularity but

higher lymphocyte infiltration (Figures 8D, E). Compared with the

high-risk group, the low-risk group was dominated by the inflamed-

immune phenotype and had a smaller percentage of the desert-

immune phenotype (Figure 8F). Collectively, these results

demonstrate that the risk score generated by the ITRGM is an

efficient indicator for TIME, as the risk score is strongly negatively

associated with tumor immune infiltration. Therefore, “immune-

hot” tumors (low-risk) and “immune-cold” tumors (high-risk) can

be reliably distinguished based on the risk score by the ITRGM.
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3.8 ITRGM is a robust predictive biomarker
for immunotherapy

To gain insight into whether ITRGM can be a reliable

biomarker for immunotherapy, we performed GSEA analysis of
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the KEGG gene set between high and low-risk groups defined by

ITRGM. Consistent with our prediction, the results showed that

many immune regulatory pathways are highly enriched in the low-

risk group, such as antigen processing and presentation, chemokine

signaling pathway, and natural killer cell-mediated cytotoxicity
FIGURE 7

Analysis of expression levels of seven model genes in immunotherapy cohorts. (A) Expression levels of the 7 model genes were compared between
immunotherapy responders (R, blue) and non-responders (NR, orange) in PRJEB23709, GSE100797, STAD-PRJEB25780, GSE135222, IMvigor210,
GSE91061, GSE115821, and Nathanson-2017 immunotherapy datasets. Responders exhibited higher expression levels of the modeled genes. *P <
0.05; **P < 0.01; ***P < 0.001 (B, C) Expression levels of the 7 model genes were compared between immunotherapy responders and baseline in
the GSE109485 and GSE149825 mouse in vivo experiments. Responders exhibited higher expression levels of these modeled genes. The baseline
group consisted of IgG-treated controls, and the responders were immunotherapy-treated mice that exhibited smaller tumors and longer lifespans
*P < 0.05; **P < 0.01; ***P < 0.001. (D) Umap plot showing the major cell subtypes in the GSE115978 scRNA-seq immunotherapy dataset. (E, F)
Expression patterns of the 7 model genes across different cell populations.
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(Figure 9A). Next, we tested whether the ITRGM signature is

related to several commonly used immunotherapy predictors.

Remarkably, the immune-related gene expression profile (GEP),

interferon gamma (INFg), cytolytic activity (CYT), and TMB
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displayed significantly higher values in the low-risk group

compared to the high-risk group, suggesting potentially more

favorable immunotherapy outcomes in the low-risk group

(Figures 9B–E). Additionally, we found that the low-risk group
FIGURE 8

Immune landscape of ITRGM signature. (A) Correlation between risk scores based on the ITRGM signature and immune cell infiltration via seven
algorithms. Different colors represent different algorithms. (B) Heatmap showing the correlation of high and low-risk groups based on ITRGM with
immunoinhibitors, MHC, and immunostimulators. (C) Correlation of CD8 IHC scores with risk scores based on the ITRGM signature or the
expression levels of the seven model genes (CXCL10, TNFSF13B, GBP5, HLA-DPB1, GBP1, CD40, XBP1), respectively in the GSE243238 dataset. The
ITRGM signature was negatively associated with CD8 IHC scores, whereas CXCL10, TNFSF13B, GBP5, HLA-DPB1, GBP1, CD40, XBP1 showed positive
associations with CD8 IHC scores overall. (D, E) Boxplots displaying histological tumor cellularity and lymphocytic infiltration based on histological
examination of TCGA-SKCM samples between high and low-risk groups defined by the ITRGM signature. The low-risk group is associated with
lower tumor cellularity and higher lymphocytic infiltration. (F) Stacked graphs showing the percentage of the desert, excluded, and inflamed immune
phenotypes between high and low-risk groups. The low-risk group is associated with a higher percentage of the inflamed immune phenotype.
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exhibited higher immunophenoscore (IPS) values, a feature

positively linked with immunotherapy, suggesting better

prognosis for immunotherapy response (Figure 9F).

To further evaluate the efficacy of the ITRGM signature in

predicting immunotherapy outcomes, we included eight

immunotherapy cohorts for further validation analysis, including

six melanoma immunotherapy cohorts, one urothelial carcinoma

immunotherapy cohort, and one stomach adenocarcinoma (STAD)

immunotherapy cohort. We applied ITRGM to these 8

immunotherapy cohorts. Consistently, Kaplan-Meier analysis

showed that the low-risk group had a superior prognosis in 5

melanoma immunotherapy cohorts (GSE91061, PRJEB23709,

GSE100797, Nathanson-2017, phs000452) with survival data

(Figures 9G, I, K, M, O), and similarly in the IMvigor210

immunotherapy cohort (Figure 9Q). Stacked plots showed that

the low-risk group had higher proportions of immunotherapy

responders in all eight immunotherapy cohorts (Figures 9H, J, L,

N, P, R–T). Our results provide convincing evidence that patients

with a low ITRGM signature, or low risk, benefit more from

immunotherapy than patients with a high ITRGM signature,

demonstrating that ITRGM is a promising predictive biomarker

for immunotherapy response.
3.9 GBP5 expression correlates with CD8+

T cell infiltration

Notably, all seven model genes have been shown to play diverse

roles in immunity and immunotherapy (52–66). In particular,

GBP5 has emerged as an immune regulator and a biomarker for

inflammation and cancers (67–69). GBP5 promotes the assembly of

the NLRP3-containing inflammasome and activates the NF-kB
signaling pathway (69–71). It has also been linked to the immune

microenvironment, where it plays a role in influencing tumor

progression (68). To further elucidate the role of GBP5 in the

ITRGM signature, we conducted additional bioinformatics analysis

on GBP5. In addition to the TCGA-SKCM cohort (Supplementary

Figure S2A), two additional melanoma cohorts (GSE15605,

GSE114445) were included. Consistently, GBP5 showed higher

expression levels in tumor tissues relative to normal tissues

(Figure 10A). GSEA analysis revealed that GBP5 exhibited a

significant positive correlation with numerous immune-related

pathways, such as MHC protein binding, antigen binding, and

immunoglobulin binding (Figure 10B). Analysis of immune cell

infiltration revealed a positive correlation between GBP5 and

various immune cells, including macrophage M1, NK cells, B

cells, and CD8+ T cells, with CD8+ T cells showing the strongest

correlation (Supplementary Figure S5A). Additionally, the

association of GBP5 with CD8+ T cell infiltration was investigated

across 33 cancers. Except for thymoma (THYM), GBP5 was

significantly and positively associated with CD8+ T cell

infiltration in 32 other cancers (Supplementary Figure S5B).

Finally, through our IHC experiments using tissue microarrays

containing 17 cases of melanoma and 18 cases of normal skin

tissues, we confirmed that GBP5 exhibited significantly higher
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expression levels in melanoma tumor tissues compared to normal

tissues (Figures 10C, D). Similarly, higher infiltration levels of CD8+

T cells were observed in tumor tissues compared to normal tissues

(Figures 10C, E). Importantly, the expression levels of GBP5

showed a significant positive correlation with CD8+ T cell

infiltration levels (Figure 10F), corroborating our findings that

ITRGM, which includes seven model genes, notably GBP5, is a

promising biomarker for immunotherapy in melanoma.
3.10 Evaluation of ITRGM signature in
chemotherapy efficacy

In clinical practice, immunotherapy is rarely used alone; it is

often combined with chemotherapy to achieve better outcomes. To

further explore the clinical implications of ITRGM, we assessed the

therapeutic efficacy of various chemotherapeutic agents across low

and high-risk groups using the oncopredict package (47). The low-

risk group had a better response to temozolomide and cisplatin, both

of which are commonly used for chemotherapy to treat melanoma

(Supplementary Figure S5C). Similarly, higher risk scores indicated

higher resistance to these chemotherapy drugs (Supplementary

Figure S5D). Interestingly, the high-risk group showed a lower

resistance to sorafenib and afatinib. (Supplementary Figure S5E),

with a negative correlation with the risk score (Supplementary Figure

S5F). Sorafenib, a multikinase inhibitor, has shown potential to treat

melanoma (72, 73). Afatinib, a tyrosine kinase inhibitor used for the

treatment of non-small cell lung cancer, has also shown therapeutic

potential for melanoma (74, 75). This analysis suggests that

temozolomide and cisplatin may enhance the sensitivity of

immunotherapy for the low-risk group, while sorafenib and

afatinib may provide beneficial outcomes for the high-risk group in

combination with immunotherapy.
4 Discussion

The incidence and morbidity of SKCM have increased in

successive decades (2, 76). Despite advancements in therapies

such as surgery, chemotherapy, targeted therapies, and

radiotherapy, their impact on patients with malignant melanoma

has been limited (10). Immunotherapy, however, has revolutionized

melanoma treatment and significantly enhanced patient survival

with landmark approvals (77). Yet, the high cost and variable

patient responses often lead to challenges of over- or under-

treatment (78). Therefore, establishing a reliable biomarker is

crucial to identify SKCM patients who are likely to benefit most

from immunotherapy.

This study aims to develop a stable and robust signature based

on immunotherapy-related genes using a novel computational

framework, and to explore its implications from multiple

perspectives. Firstly, we identified a consensus of 66 genes

associated with immunotherapy, termed CITPGs, through

WGCNA and DEG analysis. These genes are pivotal in immune

function, impact patient prognosis, and exhibit a high mutation rate
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FIGURE 9

Predictive performance of the ITRGM signature in immunotherapy response. The ITRGM signature stratified each cohort into high-risk or low-risk
groups. (A) Gene Set Enrichment Analysis (GSEA) between high and low-risk groups in TCGA-SKCM revealed that immune-related pathways were
significantly enriched in the low-risk group. (B-F) Violin plots display differences in GEP (B), INFg (C), CYT (D), TMB (E), and IPS scores (F) between
high and low-risk groups, with the low-risk group demonstrating higher scores across GEP, INFg, CYT, TMB, and IPS *P < 0.05; ***P < 0.001.
Kaplan–Meier survival analyses show OS between high and low-risk groups in the GSE91061 (G), PRJEB23709 (I), GSE100797 (K), Nathanson_2017
(M), phs000452 (O), and IMvigor210, with the low-risk group consistently showing better prognosis. (Q). Stacked graphs show the percentage of
immunotherapy responders and non-responders between high and low-risk groups in GSE91061 (H), PRJEB23709 (J), GSE100797 (L),
Nathanson_2017 (N), phs000452 (P), IMvigor210 (R), GSE115821 (S), and STAD-PRJEB25780 (T), with the low-risk group showing a higher
percentage of immunotherapy responders.
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in melanoma, underscoring their potential role in disease

progression. Secondly, based on these CITPGs, SKCM can be

classified into two distinct subtypes. One subtype comprises

“immune-hot” tumors characterized by higher immune

infiltration levels, better prognosis, and greater responsiveness to

immunotherapy. In contrast, the other subtype includes “immune-

cold” tumors with lower immune infiltration, poorer prognosis, and

reduced response rates to immunotherapy.

Subsequently, we screened for DEGs between CITPG-high and

CITPG-low groups across four melanoma cohorts (TCGA-SKCM,
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GSE22153, GSE54467, GSE69504), identifying a set of 44 common

DEGs. To construct an optimal predictive model, we evaluated

these 44 genes using 101 machine learning algorithms, selecting

“Lasso+plsRcox” as the best-performing model. The resulting

seven-gene ITRGM signature demonstrated superior predictive

power compared to traditional clinical indicators such as gender,

age, and stage. When compared with 37 previously published

signatures across multiple datasets (TCGA-SKCM training, 3 GSE

cohorts, and a meta-cohort), ITRGM consistently showed higher

predictive accuracy based on C-index assessments (Figure 6C).
FIGURE 10

The Role of GBP5 in melanoma. (A) The expression levels of GBP5 in tumor tissues compared to normal tissues in the GSE15605 (top) and
GSE114445 (bottom) melanoma datasets, with tumor tissues exhibiting higher GBP5 expression levels. (B) Gene Set Enrichment Analysis (GSEA) of
GBP5 using LinkedOmics. (C) Representative immunostaining images of GBP5 and CD8 in the melanoma tissues and normal skin tissues reveal that
tumor tissue exhibit higher levels of GBP5 and CD8 signatures. Scale bars, 50 mm. (D, E) Bar graphs show relative expression levels of GBP5 (D) and
CD8 (E) in melanoma tissues (N = 17) and normal skin tissue (N = 18). Tumor tissues are associated with higher levels of GBP5 and CD8. **P < 0.01;
***P < 0.001. (F) Analysis of correlation between GBP5 and CD8 expression within tumor tissues revealed a positive relationship between the two
markers. Each dot represents a ROI and 3-10 ROIs were selected from each tumor section (N = 156). a.u., arbitrary unit.
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Notably, while signatures like Li_G, Zhong_L, and Cao_X

performed comparably well in certain cohorts, their performance

varied significantly across different datasets, indicating limited

generalizability likely due to overfitting. In contrast, our ITRGM

signature, optimized through dimensionality reduction and

machine learning, demonstrated enhanced stability and potential

for broader applicability across diverse melanoma patient cohorts.

The TIME, a complex regulator of cancer progression, is a

central focus of immunotherapy (79, 80). Melanoma patients

classified with a low-risk score based on the ITRGM signature

exhibit extensive infiltration of immune cells, notably CD4+ T cells,

M1-polarized macrophages, CD8+ T cells, NK cells, and B cells.

These immune cell populations are associated with improved

prognosis and extended survival in patients undergoing

immunotherapy (79, 81, 82), as corroborated by CD8

immunohistochemistry and H&E pathology sections aligning with

transcriptomic assessments. Furthermore, patients with low-risk

scores based on the ITRGM signature demonstrate heightened

activity in immune-related signaling pathways, including GEP,

IFNg, CYT, TMB, and IPS scores, all of which are indicators of

favorable responses to immunotherapy. These findings suggest that

melanoma patients identified as low-risk by the ITRGM signature

are more likely to benefit from immunotherapy. To validate this

hypothesis, the ITRGM signature was evaluated across six

melanoma immunotherapy cohorts (GSE91061, PRJEB23709,

GSE100797, Nathanson-2017, phs000452, and GSE115821), one

stomach adenocarcinoma cohort (PRJEB25780), and one urothelial

carcinoma cohort (IMvigor210). Consistently, patients classified

with a low-risk score by ITRGM exhibited superior responses to

immunotherapy and better overall prognosis across all these

immunotherapy cohorts (Figure 9). These results underscore the

potential clinical utility of the ITRGM signature in guiding the

management of melanoma patients, and potentially other cancers,

treated with immunotherapy.

The ITRGM signature includes GBP5, HLA-DPB1, XBP1,

CD40, CXCL10, and TNFSF13B, each playing pivotal roles in the

immune response and tumor microenvironment of melanoma.

GBP5, a member of the TRAFAC class dynamin-like GTPase

superfamily, is involved in inflammasome assembly and innate

immunity (83, 84), and promotes M1 macrophage polarization,

suggesting potential roles in enhancing anti-tumor immunity (85,

86). HLA-DPB1, critical for presenting extracellular peptides, shows

reduced expression in melanoma patients resistant to immune

checkpoint therapy, indicating its relevance as a prognostic

marker (61). XBP1, a transcription factor regulating MHC class II

expression, has dual roles in melanoma—potentially enhancing

anti-tumor immunity through dendritic cells and NK cells (87–

89), while also exhibiting immunosuppressive properties in

melanoma (65, 90). CD40, a member of the TNF receptor

superfamily, enhances T-cell activity and has shown promise in

clinical trials with CD40 agonistic antibodies combined with

immune checkpoint inhibitors for treating metastatic melanoma

(52, 54, 91, 92). CXCL10, upregulated in melanoma tissues (93),

recruits CD8+ T cells and NK cells to tumors (55, 94), promoting

anti-tumor immune responses (55, 57, 94), and serving as a
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predictive marker for immunotherapy outcomes (95). TNFSF13B

(APRIL), a proinflammatory cytokine, supports T-cell survival and

enhances dendritic cell functions in melanoma and other cancers

(63). These genes collectively influence the TIME and hold

substantial implications for immunotherapy response and patient

prognosis in melanoma. They underscore the ITRGM signature as a

robust tool with promising potential to accurately predict treatment

outcomes and guide personalized therapy decisions for melanoma

patients undergoing immunotherapy.

Despite its promise for predicting immunotherapy response in

melanoma, ITRGM has limitations to consider for clinical

translation. First, all datasets originated from single-center

retrospective studies. Validation in prospective multicenter cohorts

with larger and more diverse patient populations is crucial to confirm

ITRGM’s generalizability and effectiveness in real-world settings.

Second, the seven genes in ITRGM, known for their roles in

immune response and immunotherapy, warrant further

investigation for their performance as biomarkers in other cancers.

Our findings in Figure 9 suggest that ITRGM may have broad

applicability, but studies focusing on other tumor types are needed

to determine its accuracy and clinical utility across different cancers.
5 Conclusion

In conclusion, we developed a robust 7-gene signature, ITRGM,

for predicting prognosis and immunotherapy response in

melanoma patients. This signature integrates data from bulk

RNA-seq, scRNA-seq, pathology, and IHC via multiple

bioinformatics analyses and 101 machine learning combinatorial

algorithms. Notably, ITRGM accurately stratifies prognosis in other

cancers like urothelial carcinoma and STAD, suggesting broad

applicability across multiple tumor types. Overall, our findings

support ITRGM as a promising tool for enhancing personalized

treatment and improving clinical management of melanoma and

potentially other cancers.
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SUPPLEMENTARY FIGURE 1

Consensus clustering analysis and mutation frequency analysis of 66 CITPGs
in TCGA-SKCM. (A) Soft-threshold power determination. The top panel
Frontiers in Immunology 20
displays the scale-free fit index on the y-axis, indicating how well the
network conforms to a scale-free topology. The bottom panel shows the

mean connectivity on the y-axis, representing the average degree of

connectivity within the network. The x-axis indicates the power value of
the soft threshold, which is used to adjust the network’s scale-free topology.

(B) The dendrogram illustrates gene clustering based on the dissimilarity
metric (1-TOM), showing that 18 gene modules were established. The y-axis

on the left, labeled as “Height,” represents the dissimilarity or distance
between gene expression profiles, with lower values indicating more similar

gene expressions. The dendrogram branches depict the hierarchical

clustering of genes based on their expression profiles. The x-axis lists
individual genes from the patient samples, representing all the genes

analyzed. Below the dendrogram, a colored horizontal bar labeled
“Dynamic Tree Cut” shows the results of dynamic tree cutting, a method

used to define gene modules. Each module is represented by a distinct color,
and all genes within a module share the same color. These modules are

groups of genes that exhibit highly correlated expression patterns, suggesting

that they may be co-regulated or functionally related. (C)Mutation frequency
analysis of the 66 CITPGs in TCGA-SKCM cohort. (D) Consensus cumulative

distribution function (CDF) in TCGA-SKCM, PRJEB23709, and GSE91061
datasets. (E) Delta area in TCGA-SKCM, PRJEB23709, and GSE91061

datasets. (F) PCA analysis for two clusters based on CITPGs-expression in
TCGA-SKCM, PRJEB23709, and GSE91061 datasets.

SUPPLEMENTARY FIGURE 2

Box plots and IHC images of the 7 model genes. Box plots show the mRNA
levels of GBP5 (A), TNFSF13B (C), HLA-DPB1 (E), CD40 (G), GBP1 (I), CXCL10
(K), and XBP1 (L) betweenmelanoma tissues (red bar) and normal tissues (grey

bar) from the GEPIA2 database. Representative IHC images of GBP5 (B),
TNFSF13B (D), HLA-DPB1 (F), CD40 (H), and GBP1 (J) from HPA database.

SUPPLEMENTARY FIGURE 3

Implication of ITRGM in immunotherapy responses. (A) The expression levels
of the 7 model genes were analyzed with and without immunotherapy

treatment across various cell populations using a scRNA-seq dataset of

SKCM_GSE115978. (B) Histograms show the level of immune cell infiltration
between high-risk (red) and low-risk groups (green) in the GSE22153,

GSE54467, GSE65904, and TCGA-SKCM cohorts, showing the low-risk
group being associated with higher immune cell infiltration level.

SUPPLEMENTARY FIGURE 4

Association of CD8+ T cells with the ITRGM signature and prognosis in SKCM

patients. (A) The correlation of the ITRGM signature with CD8+ T cells was

assessed by multiple algorithms in the TCGA-SCKM cohort, revealing a
negative correlation between the ITRGM signature and CD8+ T cells. (B)
Kaplan-Meier survival analysis was performed based on CD8+ T cell
infiltration levels in TCGA-SKCM patients revealed that higher CD8+ T-cell

infiltration is associated with a better prognosis.

SUPPLEMENTARY FIGURE 5

Immune infiltration analysis and drug sensitivity analysis. (A) Correlation

between GBP5 expression level and immune cell infiltration was assessed

with multiple algorithms. CD8+ T cells are marked with red boxes in the
TCGA-SCKM cohort. (B) Correlation between GBP5 expression level and

CD8+ T cell infiltration in 32 cancer types from TCGA was assessed with
multiple algorithms, revealing a positive correlation between GBP5 and CD8+

T cell infiltration. (C, E) The chemotherapy sensitivity estimation of 4 drugs
(Temozolomide, Cisplatin, Sorafenib, Afatinib) was estimated between the

high-risk and low-risk groups in the TCGA-SCKM cohort. The low-risk group

exhibited greater sensitive to Temozolomide and Cisplatin but showed higher
resistant to Sorafenib and Afatinib. (D, F) Correlation analysis was performed

to assess the relationship between chemotherapy sensitivity of 4 drugs
(Temozolomide, Cisplatin, Sorafenib, Afatinib) and risk scores in the TCGA-

SCKM cohort. Risk score were positively associated with resistance to
Temozolomide and Cisplatin, but negatively associated with resistance to

Sorafenib and Afatinib.
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14. Sedano R, Cabrera D, Jiménez A, Ma C, Jairath V, Arrese M, et al.
Immunotherapy for cancer: common gastrointestinal, liver, and pancreatic side
effects and their management. Am J Gastroenterol. (2022) 117:1917–32.
doi: 10.14309/ajg.0000000000001983

15. Jung J, Heo YJ, Park S. High tumor mutational burden predicts favorable response
to anti-PD-(L)1 therapy in patients with solid tumor: a real-world pan-tumor analysis. J
Immunother Cancer. (2023) 11:e006454. doi: 10.1136/jitc-2022-006454

16. YarchoanM, Hopkins A, Jaffee EM. Tumor mutational burden and response rate
to PD-1 inhibition. N Engl J Med. (2017) 377:2500–1. doi: 10.1056/NEJMc1713444

17. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer
immunotherapy. Mol Cancer Ther. (2015) 14:847–56. doi: 10.1158/1535-7163.MCT-
14-0983

18. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al PD-1
blockade in tumors with mismatch-repair deficiency. N Engl J Med. (2015) 373:1979–9.
doi: 10.1056/NEJMc1510353

19. Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in
melanoma: understanding the molecular basis for immune sensitivity and resistance.
Nat Immunol. (2022) 23:660–70. doi: 10.1038/s41590-022-01141-1

20. Zhang W, Xie X, Huang Z, Zhong X, Liu Y, Cheong KL, et al. The integration of
single-cell sequencing, TCGA, and GEO data analysis revealed that PRRT3-AS1 is a
biomarker and therapeutic target of SKCM. Front Immunol. (2022) 13:919145.
doi: 10.3389/fimmu.2022.919145

21. Liu Q, Nie R, Li M, Li L, Zhou H, Lu H, et al. Identification of subtypes correlated
with tumor immunity and immunotherapy in cutaneous melanoma. Comput Struct
Biotechnol J. (2021) 19:4472–85. doi: 10.1016/j.csbj.2021.08.005

22. Sheng Y, Liu J, Zhang M, Zheng S. Unveiling the link between inflammasomes
and skin cutaneous melanoma: Insights into expression patterns and immunotherapy
response prediction. MBE. (2023) 20:19912–28. doi: 10.3934/mbe.2023881

23. Meng J, Huang X, Qiu Y, Yu M, Lu J, Yao J. Characterization of m6A-related
genes landscape in skin cutaneous melanoma to aid immunotherapy and assess
prognosis. IJGM. (2021) 14:5345–61. doi: 10.2147/IJGM.S328522

24. Zhang X, Ding C, Zhao Z. Exploring a 7-gene prognostic model based on
ferroptosis for efficiently guiding immunotherapy in melanoma patients. Adv Med Sci.
(2022) 67:364–78. doi: 10.1016/j.advms.2022.09.004

25. Li S, Zhao J, Wang G, Yao Q, Leng Z, Liu Q, et al. Based on scRNA-seq and bulk
RNA-seq to establish tumor immune microenvironment-associated signature of skin
melanoma and predict immunotherapy response. Arch Dermatol Res. (2024) 316:262.
doi: 10.1007/s00403-024-03080-3

26. Rong D, Su Y, Jia D, Zeng Z, Yang Y, Wei D, et al. Experimentally validated
oxidative stress -associated prognostic signatures describe the immune landscape and
Frontiers in Immunology 21
predict the drug response and prognosis of SKCM. Front Immunol. (2024) 15:1387316.
doi: 10.3389/fimmu.2024.1387316

27. Li Y, Jiang B, Chen B, Zou Y, Wang Y, Liu Q, et al. Integrative analysis of bulk
and single-cell RNA-seq reveals the molecular characterization of the immune
microenvironment and oxidative stress signature in melanoma. Heliyon. (2024) 10:
e28244. doi: 10.1016/j.heliyon.2024.e28244

28. Liu Z, Liu L, Weng S, Guo C, Dang Q, Xu H, et al. Machine learning-based
integration develops an immune-derived lncRNA signature for improving outcomes in
colorectal cancer. Nat Commun. (2022) 13:816. doi: 10.1038/s41467-022-28421-6

29. Zhang N, Zhang H, WuW, Zhou R, Li S, Wang Z, et al. Machine learning-based
identification of tumor-infiltrating immune cell-associated lncRNAs for improving
outcomes and immunotherapy responses in patients with low-grade glioma.
Theranostics. (2022) 12:5931–48. doi: 10.7150/thno.74281

30. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFb
attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells.
Nature. (2018) 554:544–8. doi: 10.1038/nature25501

31. Zhang B, Horvath S. A general framework for weighted gene co-expression
network analysis. Stat Appl Genet Mol Biol. (2005) 4:1. doi: 10.2202/1544-6115.1128/html

32. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics. (2010) 26:1572–3.
doi: 10.1093/bioinformatics/btq170

33. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS: A J Integr Biol. (2012) 16:284–7.
doi: 10.1089/omi.2011.0118

34. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28:1747–56.
doi: 10.1101/gr.239244.118

35. Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics
data within and across 32 cancer types. Nucleic Acids Res. (2018) 46:D956–63.
doi: 10.1093/nar/gkx1090

36. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-Garcia
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