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Extracellular Vesicles & Co.:
scaring immune cells in
the TME since ever
Carlo Rodolfo* and Silvia Campello*

Department of Biology, University of Rome Tor Vergata, Rome, Italy
The health t issue surrounding a sol id tumor, namely the tumor

microenvironment (TME), is an extremely complex universe of cells,

extracellular matrix, and signals of various nature, that support and protect the

growth of cancer cells. The interactions taking place between cancer cells and

the TME are crucial not only for tumor growth, invasion, and metastasis but they

also play a key role in modulating immune system responses to cancer, and vice-

versa. Indeed, tumor-infiltrating immune cells (e.g., T lymphocytes and natural

killers) activity is greatly affected by signals (mostly ligands/receptors and

paracrine) they receive in the TME, which frequently generate an

immunosuppressive milieu. In the last years, it has become evident that soluble

and receptor signaling is not the only way of communication between cells in the

TME, with extracellular vesicles, such as exosomes, playing a central role. Among

the different new kind of vesicles recently discovered, migrasomes look like to be

of extreme interest as they are not only different from the others, but also have

been reported as able to deliver a very heterogeneous kind of messages, able to

profoundly affect recipient cells’ behavior. Indeed, the role played by the different

classes of extracellular vesicles, especially in the TME, relies on their not-

directional diffusion from the originating cells, while migrasomes released from

migrating cells do have a directional effect. Migrasomes biology and their

involvement in cancer progression, dissemination, and resistance to therapy is

still a largely obscure field, but with promising development foreseen in the

next future.
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Tumor microenvironment

The tumor microenvironment is a complex region comprising structural components

and different types of cells, such as mesenchymal-derived cells, resident and/or infiltrating

vessels (endothelium), and cells of both innate and adaptive immunity, including

lymphocytes, natural killer cells (NKs), dendritic cells (DCs), and macrophages. All these

cells talk to each other in the TME by means of contact (cell-cell and cell-matrix
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interactions), soluble (ligands-receptors), and vesicle-delivered

signals. The complex cell signaling taking place in the TME plays

a key role and the “tumor microenvironment is not just a silent

bystander, but rather an active promoter of cancer progression” (1),

with resident cells able to modulate immune system activity against

the tumor itself (2, 3). Indeed, tumor-infiltrating T lymphocytes

(TILs) activity and efficacy are strongly affected by the balance

between cellular and humoral components, as well as by the diverse

inflammatory responses in the TME region, a crosstalk that

frequently results in the establishment of an immunosuppressive

milieu. Tumor cells often adopt mechanisms to hide their

vulnerability by exploiting physiological immune checkpoints,

such as those based on PD1/PD-L1 and CTLA4, to limit immune

cell activation, and “metabolic checkpoints” (e.g., mTOR, PGC-1a),

to win the competition for nutrients and metabolites. On balance,

infiltrating immune cells undergo exhaustion and fail to kill the

cancer cells. TME’s immunosuppressive nature is the major hurdle

the immune system must overcome, to be able to attack the

developing tumor, and impacts on the efficacy of new

immunotherapy approaches, such as CAR-T (4).

The understanding of the complex signaling network

established between cancer cells and TME has greatly improved.

Nevertheless, there is not yet a comprehensive picture about the

contribution of players other than the immune cell receptors/

ligands and soluble (cytokine, chemokines) signaling as well as on

the interplay between “classic” and “new” players. In this context,

extracellular vesicles (EVs), released both from cancer and other

TME-resident cells, have been shown to act as mediators of immune

system activation (5), as well as to sustain cancer growth and

dissemination (6, 7). EVs are cell-derived membrane-surrounded

vesicles of various size, originated/released by different kind of cells

in the TME, and able to carry various messages to other cells, for a

detailed review see (8).

The role played by EVs in the TME is far to be completely

unveiled, and in the last decade a new class of EVs, named

migrasomes (9, 10), and new roles for already known EVs, such

as apoptotic vesicles (ApoEVs, (11), have been identified.
Extracellular vesicles & Co.

In the last years, more and more complexity has been added to

“the extracellular vesicles club”, mainly because of “new members”

identification, newly described functions for “old members”, and

the identification of non-vesicular extracellular matter. Indeed,

exosomes, microvesicles, and apoptotic bodies, once considered as

classical EVs, where recently joined by autophagic, stressed (12),

and matrix vesicles (13), as well as oncosomes (14), migrasomes (9),

and nanoparticles (15). This heterogeneity prompted to a

revisitation of the classification criteria, by taking in consideration

different key aspects, such as size, biogenesis, and originating cell

(see Table 1), and opened a debate on the role played by these

different vesicles and their contents as well as on their possible

exploitation, as diagnostic markers, or therapeutic strategy.
Frontiers in Immunology 02
Exosomes

Exosomes, probably the most studied and characterized among

EVs, are small (40-150 nm Ø) vesicles produced in the endosomal

compartment of most eukaryotic cells, during the maturation of

multivesicular endosomes (MVEs), secreted upon MVEs fusion

with the cell surface, and have specialized functions in different

physiological processes (10, 17). Nearly all exosomes, independently

from the cell type of origin, share proteins related to endosome

maturation (e.g., Annexins) and tetraspanins, which can be used as

surface markers. Exosomes’ activity as intercellular communicators

rely on both their membrane composition, in terms of lipids and

receptors, as well as on their cargo. Both these characteristics are

strictly related to the cell of origin, and allowed the delivery of

different messages, by means of specific combinations of functional

molecules, lipids, proteins (both native and aggregated), DNA, and

RNA (mRNA, microRNA, and other non-coding RNA). Once

internalized, these cargoes can actively change recipient cells’

habits as well as severely impact the nature of the environments

where this exchange happens. In this scenario, the information’s

exchange happening through exosomes in the TME is of extreme

importance not only for the resulting alteration of the stromal cell

phenotypes around the tumor, able to promote progression and

metastasis, but also for the messages tumor cells deliver to the

immune ones, to limit their effectiveness.
Microvesicles

Microvesicles share structural similarity with exosomes, but differ

in size, lipid composition, content, and above all origin, as they

generate by shedding of the plasma membrane micro-domains, such

as lipid rafts or caveolae (18). Nevertheless, their cargo is selectively

recruited (19) and comprises membrane-derived receptors, proteins,

lipids, carbohydrates, and genetic material such as mRNA and

microRNAs. Its composition depends upon the parent cell, the

microenvironment, and the specific release-triggers, and can be

released, thus altering the extracellular milieu, or internalized by

recipient cells, thus impacting on their activity. Microvesicles can be

classified as small (40-100 nm), such as arrestin domain containing

protein 1 (ARDCC1) mediated microvesicles (ARMMs), which form

by a budding virus-like mechanism (20); or large (0.1-10 µm), such as

classical microvesicles and large oncosomes. Classical microvesicles

were first identified in the circulatory system as able to coordinate

pro-coagulatory and inflammatory response (21), and are now

recognized as released by almost all kind of cells (22). Tumor-

derived MVs can inhibit tumor response to immunotherapy but

they can also be exploited as cancer biomarkers (in body fluids), to

reverse cancer cells’ drug resistance, to deliver chemotherapeutic

drugs and oncolytic adenoviruses (23). Large oncosomes, are cancer

cell-derived EVs able to deliver tumor-promoting molecules and to

induce transformation in the recipient cells (24). The number of large

oncosomes released by a certain cancer cell is directly correlated with

its aggressiveness as they can alter TME homeostasis by acting on
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both TME resident cells and extracellular matrix structure and

composition (25).
Apoptotic, autophagic, and stressed EVs

Stressed or dying cells can release EVs, with defined content and

role in cell-to-cell communication. Indeed, cells dying by apoptosis

release a variety of EVs, known as apoptotic cell derived EVs

(ApoEVs, 100-5000 nm Ø), playing a role in many aspects of

immunity and disease, by either activating or dampening immune

responses (26). Autophagic EVs (AEVs, 40-1000 nm Ø) were

recently identified as released by fusion of amphisomes with the

plasma membrane. Indeed, autophagosome generated during
Frontiers in Immunology 03
autophagy induction can either fuse with the lysosome, to allow

cargo degradation, or with endosomes, to give rise to a hybrid

organelle termed amphisome, which then fuse with the plasma

membrane to release AEVs (27). Both ApoEVs and AEVs could be

related to amphisome formation, thus suggesting a more general

mechanism for diverse cellular components. Stressed cell-derived

EVs are part of the so-called “stressome”, a term used to identify cell

stress-induced secretion products and EVs (12).
Migrasomes

Migrasomes are large (0.5-3 µm) EVs, with two peculiar features

not presented by other EVs: prior to release they are organelles, and
TABLE 1 Extracellular Vesicles (EVs) and Non-vesicular Extracellular Nanoparticles (NVEPs) characteristic.

Category Name EV Class Size Membrane Markers Biogenesis Diffusion

Exosomes

Classical
exosomes

Small 40-150 nm

Lipid bilayer
Alix, Tsg101,
CD63,
CD9, CD81

Multivesicular endosome
No
fixed
directionNon-

classical
exosomes

Lipid bilayer
Alix, Tsg101,
CD63/CD9/
CD81 negative

Microvesicles

Classical
microvesicles

Large

150-1000 nm Lipid bilayer
Annexin
A1, ARF6

Plasma
membrane shedding

No
fixed
direction

Large
oncosomes

1-10 mm Lipid bilayer
Annexin
A1, ARF6

ARMMs Small 40-100 nm Lipid bilayer
ARRDC1,
TSG101

Migrasomes Migrasomes Large 0.5-3 µm Lipid bilayer
NDST1, CPQ,
PIGK, EOGT

Before left cell,
migrasomes
are organelles

Along the
migratory
path

Apoptotic EV

Apoptotic
bodies

Large 1-5 mm Lipid bilayer

Annexin V, PS Apoptosis
No
fixed
directionApoptotic

vesicles
Small to Large 100-1000 nm Lipid bilayer

Autophagic EV Autophagic EV Small to Large 40-1000 nm? Lipid bilayer
LC3B-PE, p62,
dsDNA/Histones

Autophagosome-
endosome
fusion (Amphisome)

No
fixed
direction

Stressed
EV (Stressome)

Stressed EV
Damaged EV

Small to Large 40-1000 nm? Lipid bilayer HSP90, HSPs
Plasma membrane
shedding, autophagy

No
fixed
direction

Mitochondrial
extracellular vesicles

Mitochondrial-
derived vesicles

Small 70–150 Lipid bilayer
Mitochondrial
proteins

Mitochondria
No
fixed
directionMitovesicles Small to Large 50–350 nm

Single to triple
lipid bilayer

VDAC, COX-IV,
PDH-E1a

Matrix vesicles Matrix vesicles Small to Large 40-1000 nm?
Fibronectin,
Proteoglycans

Matrix binding
and release

No
fixed
direction

Non-vesicular
extracellular
nanoparticles

Exomeres Non-EV 30-50 nm No
TGFBI,
HSPA13, ENO2

Unknown
No
fixed
direction

Supermeres Non-EV 20-30 nm No FASN, ACLY Unknown
No
fixed
direction
For a complete review see (10, 15, 16).
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they are directionally released. In fact, migrasome grow at the

intersections or tips of retracting fibers and are released at the

back of migrating cells through retraction fibers (9, 28). Migrasome

cargo comprises different cellular components such as lipids,

proteins, RNA, as well as organelles. Once taken up by other

cells, migrasome can rapidly deliver information, thus regulating

physiological processes, such as embryonic development, and

tumor invasion or migration (29–31). The formation and release

of migrasomes relies on the rearrangement of both the cytoskeleton

and the mitochondrial network, as well as on the activity of the

Tetraspanin-4 (TSPAN4) protein at the membrane (28, 32, 33).
Mitochondria derived extracellular vesicles

Mitochondria derived extracellular vesicles (MitoEVs) are a

heterogenous class of EVs, originating from the release of

Mitochondrial-derived vesicles (MDVs, ∼70–150 nm), via the

MVB or microvesicle mediated pathways (16). Recently,

mitovesicles (50–350 nm) have been identified as a specific subset

of EVs, containing mitochondrial derived material (34) in brain

tissues. It has been proposed that mitochondrial dynamics might

somehow play a role in the generation of MDVs and mitovesicles

and that through the release of mitochondrial contents cells aim to

maintain their own homeostasis and eventually impact on the

functionality of recipient cells.
Matrix vesicles

Matrix vesicles are mainly produced by cancer-associated

fibroblasts and cancer cells and comprise both extracellular

matrix-bound vesicles, embedded in the extracellular matrix

(ECM) of tumours’ stroma, and matrix-coated vesicles, in the

TME (35). Matrix-coated vesicles/ECM interaction can lead to

tumor-infiltrating immune cells reprogramming, thus impacting

tumors’ progression and dissemination.
Non-vesicular extracellular nanoparticles

Non-vesicular extracellular nano particles (NVEPs), are

characterized by the absence of a lipid bilayer membrane, include

well-known entities, such as lipoprotein particles and nucleosomes,

but also the recently discovered exomeres and supermeres.

Exomeres have been identified as a type of small (<50 nm), non-

membranous nanoparticle, carrying a cargo enriched with proteins

implicated in regulating metabolic pathways, such as glycolysis and

mTORC1, and specifically associated with ER, mitochondria, and

microtubules, so suggesting a potential implication of these

organelles in their biogenesis and secretion (36–38), which are

still quite obscure. Supermeres, named as they are the supernatant

of exomeres pellet after isolation, are thus smaller than exomeres

and exhibit selective enrichment of proteins and especially

extracellular RNA (39, 40). As of today, it cannot be excluded
Frontiers in Immunology 04
that exomeres and supermeres derive from a larger overlapping

population of NVEPs (15).
EVs and TME

Tumor progression not only relies on cancer cells’ unregulated

growth but also on the interactions they establish with the

surrounding microenvironment. TME is a very complex region

comprising various cell types and conditions (see above and

Figure 1). In this peculiar environment, cancer cells are

continuously exposed to different sources of stress, such as

hypoxia, acidity (pH), oxidative, mechanical, thermic, nutrient,

genotoxic, etc. To cope with this critical situation, cancer cells can

produce and release EVs, as a mean to impact on TME resident cells

as to create a favorable niche for their survival and propagation. All

the EVs described above have the potential to deliver messages

favoring tumor cells’ survival, i.e. by impacting on immune cells’

activity in the TME or by establishing chemoresistance (8). Indeed,

from an immunological point of view, tumors can be defined as:

“hot tumors”, in which CD8+ T cells infiltrate the tumor mass and

their activity can be fostered by means of immune checkpoint

inhibitors (ICI); and “cold tumors”, that completely excluded or

deserted T cells, and thus are ICI resistant (41). In this scenario, the

soluble signaling relying on tumor cells’ secreted molecules, such as

cytokines, is further sustained by the release of EVs. Exosomes

released by tumor cells could deliver inhibitory molecules, such as

PD-L1, able to neutralize ICI and PD1+ T cells. Moreover, in

response to monoclonal antibody or chemotherapy, cancer cells,

fibroblasts and resident immune cells can release different type of

EVs containing specific cargoes able to induce chemoresistance.

The above described EV effects are just simple examples of EVs

activity in the TME, where they are essential for establishing the

“cold tumors” phenotype, mainly by: i) promoting angiogenesis and

extravasation; ii) promoting immunosuppression, by inducing

immune cells apoptosis or disabling NK cells; iii) changing the

differentiation or polarity of various cell types into pro-tumorigenic,

immunosuppressive, anti-inflammatory, and chemoresistant

phenotypes (42).
Mitochondria, migrasomes and
TME signaling

Mitochondria and mitochondrial dynamics (mito-dynamics)

are of extreme importance for tumor development as well as for the

recruitment and activity of immune cells within the TME (43).

Indeed, T cell selection, recruitment, and activation depends on

mito-dynamics (44). Moreover, mitochondria integrate a plethora

of different intra- and extra-cellular signals both in healthy and

cancer cells, thus they behave as central hubs for generating specific

“social” signals in both tumoral and TME resident cells, to alter

individual cell behavior (pro-inflammatory signals release within

the cytosol) or influence target cells. Indeed, mito-dynamics on one

side are involved into immune cells activation and migration, on the
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FIGURE 1

Main involvement of Extracellular Vesicles in the TME. 1. Exosomes (40-150 nm Ø) are produced in the endosomal compartment of both Cancer
Associated Fibroblasts (CAFs) and Tumor cells. Lipids and receptors in their membrane composition, as well as their cargo, are strictly dependent
upon the cell of origin, and in the TME they can induce stromal cells’ phenotype changes, to promote tumors’ progression and metastasis, as well as
to limit immune cells effectiveness. 2. Microvesicles (150-1000 nm Ø) are like exosomes, but differ in size and origin, as they generate by shedding
of the plasma membrane micro-domains. Their selectively recruited cargo depends upon the parent cell, the microenvironment, and the specific
release-triggers. Non-vesicular extracellular nano particles (NVEPs), such as exomeres and supermeres, are characterized by the absence of a lipid
bilayer membrane. 3. Migrasomes (500-3000 nm Ø) have two unique features: prior to release they are organelles, and they are directionally
released, at the back of migrating cells, like tumor infiltrating lymphocytes (TILs). Apoptotic cell derived EVs (ApoEVs, 100-5000 nm Ø) and
Autophagic EVs (AEVs, 40-1000 nm Ø) are released, respectively, during cell death and cell stress. 4. Tumor cell-released autophagosomes (TRAPs)
and large oncosomes (1-10 µm Ø), can induce recipient cells transformation, and alter TME homeostasis by acting on both structure and
composition of TME resident cells and of the extracellular matrix. Created with BioRender.com.
Frontiers in Immunology frontiersin.org05
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other are themselves subjects of the ligand-receptor signaling (45,

46), and the induced response has an impact on migrasomes

formation and release. Interestingly, released migrasomes can

contain mitochondria, thus expanding the kind and quality of

signaling delivered by EVs (47).

Mitochondrial activity regulation in TME’s resident cells is of

particular importance as it is well known to impact on metabolism,

oxidative stress, and apoptosis. Nevertheless, there are still

unexplored sides about the role played by mitochondria as

potential signaling hubs, in immune cells’ activation, in the

modulation of cancer immune evasion, as well as regarding the

efficacy of mitochondria-targeted antitumor therapy. We observed

that, upon chemoattractant stimulation, migrating T cells produce

tubular structures, extending directly from the cell surface, and

releasing migrasomes. We speculate that migrasomes released by

tumor infiltrating T cells, by acting like “breadcrumbs to be

collected” (31), can increase the chemotactic response of recipient

cells. Indeed, in the TME, migrasome directionally delivered

messages could ameliorate the functionality of different immune

cell types, by increasing their proliferation rate, migration, and

invasion capabilities. This aspect could be of extreme relevance

when considering that all these T cell functions are impaired in

TME, inducing an exhausted phenotype. Thus, migrasomes

production and modulation could be seen as a new strategy to

boost this immune dampening.
Open questions

The role of exosomes released in the TME has been extensively

investigated (14, 48) but the real impact of migrasomes remains still

quite obscure in terms of type of message delivered and potential

value as biomarkers or therapeutic targets (10).

Another attracting and still poorly investigated hypothesis is

related to the possible crosstalk between EVs, such as exosomes and

migrasomes, and pro- or anti-tumor cellular pathways like

autophagy (49). Indeed, there are evidence supporting a role for

exosomes in the regulation of the autophagy induction/execution,

especially upon anti-cancer therapy (50), and there is an emerging

interest for secretory autophagy (51).

The involvement of migrasomes in the complex regulation of

signaling is still largely unknown, even if there are reports about their

role in mitochondrial quality-control process through mitocytosis

(47), in ischemic brain injury (52), in cerebral amyloid angiopathy

(53), in autophagy regulation during miscarriage (54), and in cancer

cells undergoing ER-stress, where migrasomes are exploited to release

autophagosomes and relieve the stressful condition (55).

Identification of migrasomes, as well as other EVs, in body

fluids could be a useful strategy to identify specific markers

associated with pathogenic conditions. Also in this case, there is

still a lot to understand and standardize prior to an effective bench-

to-bedside translation (56, 57).

Another interesting possibility relies on the therapeutic

exploitation of different EVs not only as possible drug’s targets

but also as drug delivery system (58), even if as of today EV-based
Frontiers in Immunology 06
therapies and drug delivery, proved to be limited mostly by

therapeutic loading technologies and efficiency (59). In this

scenario, the possibility to integrate further knowledge about

mito-dynamics regulations in TME resident immune cells, the

development of drugs specifically targeting mito-dynamics, and

their relationships with EVs generation and release could be of main

importance to highlight a new way to fight solid tumors. As of

today, it has been reported that mitochondria, upon both

physiological and stressful conditions (16, 60, 61), can release

specific vesicles, namely mitovesicles (34) and mitochondrial-

derived vesicles (MDVs) (62), whose biogenesis is somehow

related to mito-dynamics and mito-quality control, even if still

not fully unveiled (63–66)}. On the other hand, mitochondria

transfer through mitoEVs could be of importance in different

pathological conditions (16, 67, 68) and mito-dynamics in the

recipient cells could be affected upon EVs uptake (67–70). Indeed,

as mito-dynamics are fundamental for migrasome generation and

release, we could envisage to exploit them to develop CAR-T cells,

or other tumor-directed immune cell types, engineered as to release

migrasomes along their way into the tumors’ mass, not only to

prevent their own exhaustion but also to foster migration and

activation of surrounding immune cells.

In conclusion, a better knowledge of cargo composition, release

stimuli and mechanisms, selection and effect on the recipient cells are

needed to improve the efficacy of a possible EVs-based therapy or to

exploit EVs generation in-situ as a possible therapeutic approach.
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