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The coronavirus disease 2019 (COVID-19) pandemic underscores the critical

need to integrate immunomics within the One Health framework to effectively

address zoonotic diseases across humans, animals, and environments.

Employing advanced high-throughput technologies, this interdisciplinary

approach reveals the complex immunological interactions among these

systems, enhancing our understanding of immune responses and yielding vital

insights into the mechanisms that influence viral spread and host susceptibility.

Significant advancements in immunomics have accelerated vaccine

development, improved viral mutation tracking, and broadened our

comprehension of immune pathways in zoonotic transmissions. This review

highlights the role of animals, not merely as carriers or reservoirs, but as essential

elements of ecological networks that profoundly influence viral epidemiology.

Furthermore, we explore how environmental factors shape immune response

patterns across species, influencing viral persistence and spillover risks.

Moreover, case studies demonstrating the integration of immunogenomic data

within the One Health framework for COVID-19 are discussed, outlining its

implications for future research. However, linking humans, animals, and the

environment through immunogenomics remains challenging, including the

complex management of vast amounts of data and issues of scalability.

Despite challenges, integrating immunomics data within the One Health

framework significantly enhances our strategies and responses to zoonotic

diseases and pandemic threats, marking a crucial direction for future public

health breakthroughs.
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1 Introduction

Immunomics, an interdisciplinary field, is essential for

understanding the regulation and response of the immune system

to pathogens. By integrating disciplines such as genomics,

transcriptomics, proteomics, and bioinformatics, it offers a

comprehensive view of the complex mechanisms that govern

immune responses (1). Genomics plays a crucial role in identifying

genetic variations that dictate individual responses to diseases and

vaccines, thereby enhancing our understanding of host susceptibility

and immune functionality (2). Transcriptomics delves into the gene

expression patterns activated during immune responses, particularly

those triggered by pathogens such as of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), to reveal cellular adaptive

strategies in the face of infections (3). Meanwhile, proteomics focuses

on profiling critical proteins involved in immune signaling, including

cytokines and chemokines, which are central to the orchestration of

immune responses (4). Bioinformatics synthesizes these diverse

datasets, enabling complex analyses that forecast disease

progression, tailor treatments, and facilitate the development of

targeted vaccines and immunotherapies (5). High-throughput

techniques such as next-generation sequencing and proteomics

allow immunomics to provide a comprehensive understanding of

the molecular mechanisms driving immune responses, aiding the

development of innovative immunotherapies, vaccines, and

diagnostic tools. This integrative science is crucial for elucidating

how organisms defend against pathogens at a molecular level, thereby

improving our knowledge of host defense mechanisms against

complex diseases like coronavirus disease 2019 (COVID-19) (5).

Leveraging the comprehensive insights provided by immunomics,

the One Health approach emphasizes the interconnectedness of

human, animal, and environmental health, enhancing our ability to

address global health threats through a collaborative strategy (6).

Immunomics, strategically positioned at the nexus of COVID-19

research and the One Health approach, employs advanced omics

technologies to probe the immune system’s intricate molecular

responses. This approach highlights the connections between human,

animal, and environmental health. Cross-species immune research

provides insights into how COVID-19 and similar pathogens interact

with various biological systems. Studying immune responses in species

such as mink, bats, and felines helps understand SARS-CoV-2’s

evolution and spread, which can aid in preventing cross-species

transmission (7–9). Environmental factors also influence viral

transmission, with the One Health framework examining how

climate change and habitat destruction affect host immune systems

and contribute to zoonotic disease risks (10, 11). Global surveillance

systems that integrate data from human, animal, and environmental

health are important for early detection and containment of outbreaks

(12). Advanced techniques like multi-omics and single-cell analysis

facilitate the identification of biomarkers and tracking of

environmental vectors to manage viral activity and transmission (7,

13, 14). Vaccine development should consider the need for vaccines

that generate broad immune responses across species to help reduce

outbreak risks (15, 16). The One Health framework also emphasizes

the value of a coordinated global response (12).
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Despite the potential benefits of integrating immunology with the

One Health framework to combat COVID-19, several notable

shortcomings in current research need to be addressed. Firstly, data

collection on immune responses across species is fragmented and sparse,

necessitating systematic and comprehensive global databases to better

understand cross-species interactions with SARS-CoV-2 and prevent

transmission events. Current research often segments human

immunological responses from animal and environmental studies,

leading to a fragmented understanding of pathogen behavior across

different hosts and environments. Secondly, studies on environmental

impacts like climate change and habitat destruction lack depth, requiring

longitudinal research and the use of satellite data and artificial

intelligence (AI) to model these effects on viral dynamics and host

immune responses. Thirdly, global surveillance systems are often siloed

and insufficiently integrated, highlighting the need for a unified, real-time

network using advanced techniques like multi-omics and blockchain

technology to enhance data integrity and sharing. Additionally, vaccine

development has focused too narrowly on humans, overlooking the

benefits ofmulti-species vaccines designed through synthetic biology and

cross-species trials to reduce virus reservoirs. There is also a lack of a

cohesive global response framework that integrates human, animal, and

environmental health measures. Lastly, the underutilization of advanced

immunomic technologies like next-generation sequencing (NGS) and

Cytometry by Time-of-Flight (CyTOF) emphasizes the need for greater

international collaboration to advance immune response research and

targeted therapies.

This review is organized into four key sections, each addressing a

crucial aspect of immunomics within the One Health framework for

COVID-19 research (Table 1, Figure 1; Supplementary Table 1). The

sections are as follows: “ Insights from Immunomics on Human

Immune Responses to COVID-19,” which examines the varied

immune responses in humans; “Immunomic Analysis of Animal

Hosts in SARS-CoV-2 Transmission” which investigates animal

contributions to the disease’s spread; “ Environmental Factors and

Immunomics in SARS-CoV-2 Spread,” which assesses how the

environment facilitates the virus’s spread; “ Integrating

Immunomics within the One Health Framework for COVID-19,”

which offers a holistic view of pandemic dynamics within global

health ecosystems; and “Methodological Strategies for Data

Collection,” which focuses on the methods used to gather

immunomics data and highlights the practical aspects of these

approaches. This review broadens our understanding of how

COVID-19 impacts humans, animals, and the environment,

potentially strengthening our global response to pandemic threats.
2 Insights from immunomics
on human immune responses
to COVID-19

2.1 Overview of immune responses
in humans

Immunomics has significantly advanced our understanding of

the heterogeneous immune responses to COVID-19, which range
frontiersin.org
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TABLE 1 Summary of Primary Biospecimen Types, Omics Data, and High-Throughput Techniques from Immunology and One-Health Publications.

Authors PMID Type
Biospecimen
type

Immunology Omics
High-
throughput
techniques

Other
One
health

Oreshkova N,
et al. (7)

32553059
Environmental,
Human,
Animal

Lung specimens –
Genomics,
Bioinformatics

NGS – Yes

Zhou P,
et al. (8)

32015507
Human,
Animal

Oral swabs, anal
swabs, blood and
BALF samples,

–
Genomics,
Bioinformatics

NGS – Yes

Halfmann PJ,
et al. (9)

32402157
Human,
Animal

Nasal and
rectal swabs

– – – – Yes

Rüegg SR,
et al. (12)

28261580
Environmental,
Human,
Animal

– – – – – Yes

Liao M,
et al. (13)

32398875 Human BALF mmune cells

Proinflammatory
monocyte-
derived
macrophages

Transcriptomics scRNA-seq – No

Unterman A,
et al. (14)

35064122 Human PBMCs Immune cells
Proteomics,
Transcriptomics,
Bioinformatics

Single-cell
multi-omics

– No

Ivanova EN,
et al. (15)

38213787 Human PBMCs
Cytotoxic gene and
immune cells

Proteomics scRNA-seq – No

Munster VJ,
et al. (16)

32396922 Animal Blood,nose swab
Animal model of
COVID-19

– – – No

Lucas C,
et al. (17)

32717743 Human PBMCs
cytokines and
immune cells

– – – No

Mathew D,
et al. (18)

32669297 Human PBMCs
Immune
perturbations

– –

High-
dimensional
flow
cytometry

No

Penttilä PA,
et al. (19)

33715015 Human WB samples
Immunomodulatory
effects

– – CyTOF No

Rendeiro AF,
et al. (20)

33361110 Human PBMCs Immune cells – –
Flow
cytometry

No

Zhao XN,
et al. (21)

34531370 Human PBMCs
Immune
cells behave

Transcriptomics
TCR/BCR
sequencing

– No

Berentschot JC,
et al. (22)

37881427 Human PBMCs
Immunological
profiling

– –
Flow
cytometry

No

Mehta P,
et al. (24)

32192578 Human – Cytokines – – – No

Huang C,
et al. (25)

31986264 Human – Cytokines – –

real-time
RT-PCR
and NGS

No

Sekine T,
et al. (26)

32979941 Human PBMCs Memory T cells – –
Flow
cytometry

No

Diao B,
et al. (27)

32425950 Human PBMCs T cells and cytokine – –
Flow
cytometry

No

Woodruff MC,
et al. (28)

33028979 Human PBMCs B cell responses – –

High-
dimensional
flow
cytometry

No

Kuri-Cervantes
L, et al. (31)

32669287 Human Whole blood Immune cell subsets – –
Flow
cytometry

No

(Continued)
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TABLE 1 Continued

Authors PMID Type
Biospecimen
type

Immunology Omics
High-
throughput
techniques

Other
One
health

Li S,et al. (32) 33717140 PBMCs
Immune
cell phenotype

Transcriptomics
scATAC-seq,
scRNA-seq

– No

Wilk AJ,
et al. (33)

32514174 Human PBMCs
Immune
cell phenotype

Transcriptomics sscRNA-seq – No

Zhang Q.
et al. (36)

32972995 Human Whole blood Immunity Genomics NGS – No

Ellinghaus D,
et al. (37)

32558485 Human
Whole-
blood samples

Genetic factors Bioinformatics – – No

Wu H,
et al. (38)

35022412 Human Lung specimens Immune cells Transcriptomics

Bulk RNA
sequencing and
digital spatial
profiling (DSP)

– No

Herold T,
et al. (39)

32425269 Human – Cytokines – – – No

Keech C,
et al. (42)

32877576 Human Blood Immune cells – – ELISA No

Logunov DY,
et al. (45)

32896291 Human Blood and urine Immune cells – –
Flow
cytometry

No

Khoury DS,
et al. (46)

34002089 Human –
Neutralizing
antibody levels

Bioinformatics – – No

Korber B,
et al. (49)

32697968 Human Nose/throat swabs
Tracking Changes in
SARS-CoV-2 Spike

Genomics,
Bioinformatics

– – Yes

Walls AC,
et al. (51)

32155444 Animal –

Structure, Function,
and Antigenicity of
the SARS-CoV-2
Spike Glycoprotein

Bioinformatics – – Yes

Gottlieb RL,
et al. (54)

33475701 Human – – – – – No

Zhou Q,
et al. (56)

32574262 Human Serum Cytokines – – – No

Huaman MA,
et al. (57)

37534607 Human – – – – – No

Lam TT,
et al. (60)

32218527 Animal – –
Genomics,
Bioinformatics

RNA sequencing – Yes

Shi J, et al. (64) 32269068
Environmental,
Human,
Animal

Nasal washes and
rectal swabs

– – – RT-PCR Yes

Palmer MV,
et al. (65)

33692203 Animal

Nasal secretions,
feces, serum
tracheal wash, and
lung lavage

– Bioinformatics – – No

Wan Y,
et al. (66)

31996437
Human,
Animal

–

Receptor
recognition
mechanisms

Bioinformatics – – Yes

Andersen KG,
et al. (70)

32284615
Human,
Animal

–
The origin of SARS-
CoV-2

Genomics,
Bioinformatics

– – Yes

Kim YI,
et al. (72)

32259477 Animal
Nasal washes,
saliva, urine,
and feces

Animal model of
COVID-19

– – – No

(Continued)
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from mild to severe or fatal outcomes (1, 17). SARS-CoV-2 triggers

complex immune responses, categorized into innate and adaptive

immunity. The innate immune system, as the first line of defense,

includes physical barriers and cellular responses from natural killer

(NK) cells, macrophages, and dendritic cells. These responses are

rapid and non-specific, acting without prior exposure. In contrast,

the adaptive immune system, involving B cells and T cells, provides

specific and long-lasting immunity. B cells produce antibodies to

neutralize the virus, while T cells eliminate infected cells and

support other immune components, establishing immunological

memory for future protection. Research has significantly advanced

our understanding of these immune responses in COVID-19.

Notable research by Mathew et al. (18) identified three distinct

immunotypes of lymphocyte responses correlated with COVID-19
Frontiers in Immunology 05
severity in hospitalized patients. The first immunotype, associated

with severe disease, is characterized by strong CD4 T cell activation,

reduced follicular helper cells, and exhausted CD8 T cells. The

second immunotype, linked to less severe disease, features reduced

CD4 T cell activation and an increase in memory B cells. The third

immunotype displays minimal activation of both T and B cells and

is inversely related to disease severity. In critically ill patients,

recovery began with classical monocytes, followed by CD8+ and

CD4+ T cells, and then non-classical monocytes (19). Rendeiro

et al. (20) documented dynamic alterations in immune landscapes

during COVID-19 progression, highlighting significant differences

among severe, mild, and healthy controls. Severe outcomes were

associated with specific NK cell KIR receptor usage and IgM+ B

cells, coupled with CD4 and CD8 T cell exhaustion. Additionally,
TABLE 1 Continued

Authors PMID Type
Biospecimen
type

Immunology Omics
High-
throughput
techniques

Other
One
health

Plante JA,
et al. (97)

33106671
Human,
Animal

Cell lines

The D614G
mutation in the
USA-WA1/
2020 strain

Bioinformatics Sanger sequencing – No
fron
NGS, Next Generation Sequencing; scRNA-seq, Single-cell RNA Sequencing; scATAC-seq, Single-cell Assay for Transposase-Accessible Chromatin using sequencing; TCR/BCR sequencing, T-
cell/B-cell Receptor Sequencing; BALF, Bronchoalveolar Lavage Fluid; PBMCs, Peripheral Blood Mononuclear Cells; CyTOF, High-dimensional cytometry by time-of-flight; ELISA, Enzyme-
Linked Immunosorbent Assay.
FIGURE 1

Immunomics in the One Health Framework for COVID-19 Study Overview. COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute
respiratory syndrome coronavirus 2. Created using BioRender.com.
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Zhao et al. (21) identified a distinct immune profile in

asymptomatic patients, marked by an increase in CD56+CD16-

NK cells and elevated levels of interferon-gamma. These patients

exhibited significant T-cell receptor (TCR) clonal expansion,

especially in effector CD4+ T cells, whereas patients with

moderate symptoms showed more modest B-cell receptor (BCR)

clonal expansion. Asymptomatic individuals also had lower

expression of interferon-stimulated genes (ISGs), though this

varied considerably among patients. This profile suggests a

unique immune response that may contribute to the

asymptomatic presentation of the disease. Berentschot et al. (22)

found that in long COVID patients, increased fatigue severity is

associated with heightened monocyte activation, low-grade

inflammation, and T-lymphocyte senescence. Cytokines, crucial

for immune signaling, play a pivotal role in the body’s reaction to

SARS-CoV-2. A “cytokine storm”, an excessive cytokine response,

is significant in severe COVID-19 cases (23, 24), leading to severe

inflammation and tissue damage. Elevated cytokine levels, including

interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a),

correlate with adverse outcomes (25). T-cell responses are critical

for viral control and long-term immunity. Sekine et al. (26)

demonstrated robust memory T-cell responses in convalescent

individuals, while severe cases often show T-cell exhaustion,

reducing response efficacy (27). B cells, through virus-specific

antibodies, are essential for controlling SARS-CoV-2.

Longitudinal studies show varying antibody durability, but

memory B cells persist, suggesting sustained immune protection

(28). Extrafollicular B cell activation was strongly correlated with

extensive expansion of antibody-secreting cells and early

production of high concentrations of SARS-CoV-2-specific

neutralizing antibodies (28).These studies collectively enhance our

understanding of the immune response dynamics in COVID-19

and highlight the importance of tailored therapeutic strategies that

consider individual variations in cytokine responses, T-cell

activation, and B-cell responses. Integrating immunomics into

these profiling efforts is crucial because it provides a more

detailed and comprehensive analysis, enabling the identification

of novel biomarkers and therapeutic targets. Immunomics offers the

tools to dissect these complex immune responses at a molecular

level, offering insights that are essential for developing effective

treatments and preventive measures. Further research using the

approaches is necessary to fully elucidate these mechanisms and

their implications for treatment and prevention strategies.
2.2 Technological advances in
immune profiling

Recent technological advancements have substantially improved

our ability to detail the immune responses in COVID-19, elucidating

the complex dynamics of how the immune system interacts with

SARS-CoV-2. Techniques like flow cytometry, mass cytometry

(CyTOF), and single-cell RNA sequencing (scRNA-seq) have been

central to these discoveries, providing critical data on immune cell

activation, cytokine profiles, and genetic markers linked to disease

progression (13, 29, 30). These methods are essential components of
Frontiers in Immunology 06
immunomics, which applies high-throughput technologies to analyze

and understand the immune system at a systemic level. CyTOF builds

upon flow cytometry by using metal-labeled antibodies to measure

over 40 markers on a single cell, providing a detailed assessment of

immune cell types in whole blood (31). This technique enables the

precise identification of eosinophils, neutrophils, B cells (including

plasmablasts and non-plasmablasts), T cells, natural killer (NK) cells,

monocytes, dendritic cells (DCs), innate lymphoid cells (ILCs), and

immature granulocytes. Neutrophils are distinguished using Cluster

of Differentiation (CD) markers such as CD4, CD8, CD14, and

CD19, while T cells are characterized by CD14 and CD15. B cells are

identified through CD3, CD14, CD15, and CD56. CD3-CD19- cells

are further classified by CD3 and CD15. Among T cells, CD8+ T cell

subsets are defined by CD27, CD45RA, and CCR7, and similar

markers are used to categorize CD4+ T cell subsets. Regulatory

CD4+ T cells are marked as CD127low CD25+, whereas follicular

CD4+ T cells are identified by CXCR5+ PD-1+. Activation markers

are assessed within these memory and non-naïve subsets. Monocytes

are classified into classical (CD14++ CD16-), intermediate (CD14+

CD16+), and non-classical (CD14low/- CD16+), while DCs are

divided into conventional (CD11c+ CD123low/-) and plasmacytoid

(CD11c- CD123+). NK cells are categorized as CD56bright CD16- and

CD56low CD16+. By offering a comprehensive analysis of immune

cell activation and perturbations, CyTOF enhances our

understanding of B cell responses, SARS-CoV-2-specific humoral

responses, and T cell activation in relation to disease severity. This

advancement allows for the mapping of immune cell populations

with unprecedented detail, identifying immune signatures associated

with severe COVID-19 cases, often correlating with cytokine storms

and adverse clinical outcomes (31). Meanwhile, scRNA-seq offers a

granular view of the transcriptomic changes at the single-cell level,

revealing the heterogeneity of immune cell responses and pinpointing

cell subsets contributing to disease pathology (13). The integration of

these technologies into immunomic studies enhances our

understanding by linking detailed cellular profiles to clinical

outcomes, enabling the identification of novel biomarkers and

therapeutic targets. Additional techniques like single-cell Assay for

Transposase-Accessible Chromatin using sequencing (scATAC-seq)

and multi-omics sequencing approaches have furthered our

understanding by exploring epigenetic and molecular changes in

immune cells, linking these profiles to patient outcomes and

advancing our comprehension of the molecular mechanisms

driving disease severity in COVID-19. Li et al. (32) performed

single-cell assay for transposase-accessible chromatin using

sequencing (scATAC-seq) and single-cell RNA sequencing

(scRNA-seq) on peripheral blood mononuclear cells (PBMCs) from

severely ill/critical patients (SCPs) with COVID-19, moderate

patients (MPs), and healthy controls (HCs). Analyzing 76,570 cells

with scATAC-seq and 107,862 cells with scRNA-seq, they identified

28,535 chromatin peaks, with 41.6% in promoter and 10.7% in

enhancer regions. Compared to HCs, SCPs and MPs had increased

inflammatory pathways, such as the mitogen-activated protein kinase

(MAPK) and tumor necrosis factor (TNF) signaling pathways, in

CD4+ and CD8+ T cells. SCPs showed reduced accessibility of T-box

transcription factor 21 (TBX21) motifs in CD4+ T cells. The scRNA-

seq data revealed reduced T cell proportions, especially CD4+ T cells,
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in SCPs and MPs, with increased expression of inflammatory genes,

including nuclear factor kappa B inhibitor alpha (NFKBIA), S100

calcium-binding protein A9 (S100A9), and phosphoinositide-3-

kinase regulatory subunit 1 (PIK3R1). CD8+ T cells in SCPs also

had upregulated activation markers, such as CD69 and major

histocompatibility complex class II (HLA-DRA, HLA-DRB1, HLA-

DRB5). Integrated analysis of scATAC-seq and scRNA-seq data

showed some consistency. Unterman et al. (14) used single-cell

multi-omics, including proteomics and transcriptomics, to examine

immune responses in progressive COVID-19. They identified

S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T

cells as markers of disease progression, highlighting abnormal

interactions between major histocompatibility complex class II

(MHC-II) and lymphocyte-activation gene 3 (LAG-3) on myeloid

and T cells. Case studies using these technologies offer practical

insights into therapeutic strategies. For instance, Wilk et al. (33) used

flow cytometry to identify reconfiguration of peripheral immune cell

phenotype in COVID-19, including a heterogeneous interferon-

stimulated gene signature, HLA class II downregulation and a

developing neutrophil population that appears closely related to

plasmablasts appearing in patients with acute respiratory failure

requiring mechanical ventilation, and find that peripheral

monocytes and lymphocytes do not express substantial amounts of

pro-inflammatory cytokines, and then revealed profound T cell

depletion in severe COVID-19, emphasizing the need for

interventions to enhance T cell function in severely affected

patients. Kuri-Cervantes et al. (31) employed CyTOF to explore

modulation of the B cell repertoire that its associations with the

establishment of a SARS-CoV-2-specific humoral response, and

activation of T cells relative to disease severity, and uncover distinct

immunological signatures in severe cases, identifying eosinophils,

neutrophils, B cells (plasmablasts and non-plasmablasts), T cells, NK

cells, monocytes, dendritic cells (DCs), innate lymphoid cells (ILCs)

and immature granulocytes in whole blood, and highlighting the

expansion of immature neutrophils and inflammatory macrophages,

thus providing biomarkers for early detection of severe outcomes

(31). Moreover, Liao et al. (13) used scRNA-seq to analyze

bronchoalveolar lavage fluid (BALF), identifying 31 distinct cell

clusters, including macrophages (CD68), neutrophils (Fc gamma

receptor IIIb, FCGR3B), myeloid dendritic cells (mDCs) (CD1C,

C-type lectin domain family 9 member A, CLEC9A), plasmacytoid

dendritic cells (pDCs) (Leukocyte Immunoglobulin Like Receptor

A4, LILRA4), natural killer (NK) cells (Killer Cell Lectin-like

Receptor D1, KLRD1), T cells (CD3D), B cells (Membrane

Spanning 4-domains A1, MS4A1), plasma cells (Immunoglobulin

Heavy Constant Gamma 4, IGHG4), and epithelial cells (Tubulin

Polymerization Promoting Protein 3, TPPP3; Keratin 18, KRT18).

Major cell types such as mDCs, pDCs, NK cells, T cells, and B cells

were present in most samples, with macrophages showing specific

enrichment in different groups. BALF from patients with severe or

critical COVID-19 had higher proportions of macrophages and

neutrophils and lower proportions of mDCs, pDCs, and T cells

compared to those withmoderate infection. This technology has been

crucial in revealing immune cell dysregulation in BALF across

different severities of COVID-19, and in identifying potential

targets for reducing lung inflammation. These advanced
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technologies not only provide unprecedented insights into the

immune response to SARS-CoV-2, but also highlight specific

cellular and molecular targets for potential therapeutic

interventions and vaccine development.
2.3 Immunological aspects related to
biomarkers in COVID-19

Prognostic biomarkers provide valuable insights into the

potential progression of COVID-19 to severe conditions like

acute respiratory distress syndrome (ARDS) or multi-organ

failure. Elevated levels of inflammatory markers such as

C-reactive protein (CRP), lactate dehydrogenase (LDH), IL-6, and

D-dimer (D-D) are indicative of disease severity and are associated

with an increased risk of complications, guiding clinicians in

making timely and targeted interventions (24, 34, 35). Genetic

markers, particularly those related to the HLA system and ACE2

gene SNPs, offer valuable information regarding susceptibility to

severe COVID-19 outcomes (36, 37). Furthermore, research by Wu

et al. indicates that SARS-CoV-2 infection leads to lymphocyte

suppression and myeloid activation in severe cases, suggesting

distinct roles for these cell types in disease progression that

should be specifically targeted in treatment strategies (38).

Therapeutic biomarkers are crucial for assessing treatment

efficacy, allowing for tailored therapies based on changes in

cytokine levels or cellular dynamics. This personalized approach

maximizes treatment efficacy while minimizing side effects,

ultimately optimizing patient care (39). Predictive biomarkers are

crucial for forecasting disease progression, allowing doctors to

intervene early and tailor treatment strategies. Single-cell analysis

has revealed specific markers indicating disease progression,

underscoring the importance of precise and personalized medical

interventions (14). However, the identification and utilization of

biomarkers in managing COVID-19 encounter significant

challenges, including variability among patient populations due to

factors like age, genetics, and underlying health conditions (25).
2.4 Immunomics-driven innovations in
COVID-19 vaccine development

Various platforms, including viral vectors, nucleic acids,

recombinant proteins with adjuvants, and inactivated viruses,

have been leveraged in COVID-19 vaccine development. These

innovations have yielded effective vaccines that induce robust

immune responses while avoiding the acute inflammation

associated with natural SARS-CoV-2 infection (15). Immunomics

has played a pivotal role in driving advancements in vaccine

technology during the COVID-19 pandemic. Notably, mRNA

vaccines instruct cells to produce the SARS-CoV-2 spike protein,

eliciting robust immune responses. This approach, informed by

immunomic insights, accelerates vaccine design and enhances

production scalability (40). Additionally, viral vector vaccines and

protein subunit vaccines, informed by immunomic analyses, rapidly

induce strong immune reactions (41, 42). Inactivated vaccines,
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supported by comprehensive immunomic research, ensure safety

and efficacy across diverse populations (43). Nanotechnology has

further improved mRNA vaccine efficacy by facilitating cellular

uptake (44). Integrating immunomics into vaccine development

enables precise alignment with global immunological landscapes,

ensuring dynamic vaccine customization. Understanding immune

memory and implementing booster vaccinations are critical in

combating the COVID-19 pandemic. Immunomics, integrating

immunological data with omics technologies, provides profound

insights into immune memory. Both natural infection and

vaccination foster memory B and T cells essential for long-term

immunity (45). Booster vaccinations, guided by immunomic

analyses, aim to bolster memory responses against waning

immunity and emerging variants (46). Immunomics also

monitors post-vaccination immune responses, informing vaccine

adjustments to enhance effectiveness against evolving strains (31).

This adaptability is crucial for maintaining vaccination program

efficacy amidst viral mutations. Robust genomic surveillance

facilitated by immunomics is essential for tracking SARS-CoV-2

variants and understanding immune evasion mechanisms. Harvey

et al. and McLean et al. reviewed how advanced immunomics

techniques map the altered immune landscapes induced by

variants (41, 47). These techniques reveal antigenic drift and

conformational changes in spike proteins, which contribute to

immune escape (47). Furthermore, mutations in T-cell epitopes

allow variants to evade cellular immune responses, highlighting the

virus’s adaptive nature (48). Global genomic surveillance, informed

by immunomics, enables real-time adaptation of vaccine strategies

and public health measures to counteract the challenges posed by

viral mutations (49). Through immunomics, researchers maintain a

dynamic response to the pandemic, ensuring effective vaccine

strategies and public health interventions.
2.5 Identification of
immunotherapeutic targets

Immunomics plays a pivotal role in identifying novel

immunotherapeutic targets crucial for managing infectious

diseases like COVID-19. By unraveling intricate pathogen-host

immune system interactions, immunomics lays the groundwork

for tailored treatment strategies, significantly enhancing patient

outcomes (50). One critical target for immunotherapeutic

interventions is the interaction between the SARS-CoV-2 spike

protein and the ACE2 receptor on human cells, which has been

extensively studied to block or modulate this interaction (51).

Additionally, targeting the immune response, particularly in

managing the cytokine storm syndrome observed in severe

COVID-19 cases, is a significant area of research (24). Clustered

regularly interspaced short palindromic repeats (CRISPR) screens

and proteomics have been instrumental in identifying potential

immunotherapeutic targets, accelerating target discovery (52).

Computational models and systems biology aid in predicting

therapeutic targets and understanding their mechanisms of

action, integrating vast datasets from immunomic studies (53).

From an immunomics perspective, monoclonal antibodies
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(mAbs) represent a breakthrough in COVID-19 treatment

strategies. Engineered to target the SARS-CoV-2 virus, mAbs

mimic the body’s natural immune defenses by focusing on critical

viral antigens, primarily the spike protein (54). Clinical trials

leveraging immunomic techniques have demonstrated the robust

efficacy of mAbs in reducing viral load, alleviating symptoms, and

decreasing hospitalization and mortality rates among COVID-19

patients (54). However, challenges such as high production costs,

logistical complications, and the emergence of viral variants

threaten their efficacy (54). Yet, ongoing integration of

immunomic insights is essential for adapting these therapies to

emerging variants, ensuring sustained effectiveness (54).

Personalized immunotherapy, guided by immunomic data,

enhances therapy efficacy and reduces side effects. Biomarkers

from patients inform the selection and dosage of therapeutic

agents, enabling tailored treatment strategies (55). Personalized

therapies, including mAbs targeting specific antigens unique to

individual infections and cytokine inhibitors tailored to patient

cytokine profiles, offer a customized approach to managing the

immune response (56). COVID-19 convalescent plasma (CCP) has

also shown promise as a safe and potentially effective therapeutic

option for high-risk outpatients (57). The deployment of

personalized immunotherapies faces logistical hurdles, including

complex and costly manufacturing processes and ethical

considerations regarding equitable access (58). Current

technologies face challenges in accurately and efficiently

identifying therapeutic targets and integrating vast amounts of

data to inform treatment strategies (59). Overcoming these

challenges requires continued advancements in technologies to

ensure the widespread accessibility and effectiveness of

personalized immunotherapies.
3 Immunomic analysis of animal hosts
in SARS-CoV-2 transmission

3.1 Role of animals in SARS-
CoV-2 epidemiology

In the epidemiology of SARS-CoV-2, animals serve critical roles

as both reservoirs and vectors (8, 60–63). Bats are considered

primary reservoirs for SARS-CoV-2 due to their extensive viral

diversity and unique immune features that allow them to harbor

viruses without becoming ill (8, 62). Genetic analyses strongly

suggest bats as natural reservoirs, given the substantial genetic

similarities between bat coronavirus RaTG13 and SARS-CoV-2

(8). Additionally, similar coronaviruses have been identified in

pangolins, supporting the hypothesis that these mammals could

be intermediate hosts facilitating transmission to humans (60).

Vectors, on the other hand, are organisms that do not necessarily

support the long-term survival of a virus within their bodies but can

transmit the virus between susceptible hosts (63). Minks, for

example, have been implicated in transmitting the virus to

humans and other minks, suggesting their role as both reservoirs

and vectors (7, 63, 64). This dual function facilitates broader

dissemination of the virus. Recent studies have highlighted SARS-
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CoV-2 infections in various domestic and wild animals, revealing

complex epidemiological dynamics. Significant outbreaks in mink

farms underscore the need for robust animal surveillance to

monitor potential reservoirs that could contribute to new

infection chains in humans (7). The persistent presence of SARS-

CoV-2 in many animal species presents ongoing risks for zoonotic

transmission and reverse zoonosis, where humans infect animals,

potentially establishing new viral reservoirs and complicating

control measures (62). An integrated One Health approach is

paramount for managing these zoonotic risks, integrating

veterinary health, wildlife management, and public health

initiatives to develop coordinated surveillance and response

mechanisms (58).
3.2 Immunomic techniques revealing
cross-species transmission mechanisms

Advanced immunomic techniques are essential for elucidating

how animals function as reservoirs and vectors for SARS-CoV-2

and for uncovering the specific mechanisms of its transmission.

These techniques facilitate the detection of antibodies indicative

of past infections and enable genomic sequencing to track

changes in the viral genome (65). By integrating high-throughput

immunological assays and omics technologies, researchers can

dissect immune responses across species and identify adaptive

changes that enable the virus to infect new hosts. Recent

metagenomic sequencing of frozen tissue samples from pangolins

has highlighted significant sequence similarities between human

SARS-CoV-2 and coronaviruses in pangolins and bats (60). This

research underscores the importance of ACE2 receptor variations

across species, which influence the virus’s ability to bind and enter

host cells, affecting its host range (66). Immunomic studies have

revealed how these receptor variations impact viral cross-species

transmission. Understanding SARS-CoV-2 transmission involves

distinguishing between major avenues and specific mechanisms.

Major transmission avenues include direct interactions and indirect

influences on transmission dynamics. Direct interactions involve

animal-to-human, animal-to-animal, and human-to-animal

transmission through physical contact, such as handling infected

animals or consuming contaminated animal products. Significant

outbreaks in mink farms illustrate this direct transmission route, with

studies using flow cytometry to reveal immune cell activation

patterns in infected minks (7). Indirect influences include

environmental factors like fomites, behavioral practices, and social

interactions. SARS-CoV-2 has been detected on surfaces, where it

can survive and infect new hosts through contact with contaminated

surfaces (67). High-throughput serological testing has detected

antibodies in various animals, indicating past infections and

potential ongoing transmission (65). These influences contribute to

the four major transmission modes: direct physical contact, indirect

contact (fomites), large droplets, and fine aerosols.

In addition, the variability in immune responses, such as

cytokine release patterns and immune cell activation, is crucial for
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understanding the virus’s adaptation to new hosts. Research

indicates that cats, ferrets, and some deer are highly susceptible

and may act as virus carriers, while dogs exhibit lower susceptibility

and reduced transmission capabilities (62). Advanced immunomic

techniques, including scRNA-seq, have been employed to map

immune responses in animals, providing insights into cellular-

level interactions with the virus (68). Integrating these findings

within the One Health framework has greatly improved our

understanding of SARS-CoV-2 transmission (64, 69). This

approach emphasizes the importance of monitoring various

animal species to understand their role in the virus’s ecology and

transmission chains. Combining genetic and immunomic studies

enhances our understanding of zoonotic transmission pathways

and informs public health strategies and preventive measures.
3.3 Studies on reservoirs, intermediate
hosts, and animal immune responses

Research integrating genetic and immunomic findings is crucial for

identifying potential reservoirs and intermediate hosts, which is

essential for predicting and mitigating risks associated with emerging

infectious diseases. For example, significant outbreaks in mink farms

have highlighted the virus’s ability to infect these animals and mutate,

posing a potential public health risk through possible transmission

back to humans (68). Advanced immunomic techniques, combined

with genomics and bioinformatics, are pivotal for monitoring viral

presence and evolution in animal populations. These approaches aid in

mapping the spread of SARS-CoV-2 and understanding species-

specific immune responses (70). Studies on immune responses in

animal models have been instrumental in uncovering new

therapeutic targets and advancing treatments. Research involving

mice engineered to express human ACE2 receptors has provided

valuable insights into viral replication and immune responses, which

are crucial for guiding vaccine development (71). Additionally,

investigating immune responses in wildlife and domestic animals

that show resistance to viral infections can reveal unique

mechanisms and potential therapeutic targets. For instance, bats,

despite being natural reservoirs of SARS-CoV-2, exhibit minimal

disease symptoms, suggesting immune mechanisms that could

inspire novel treatments (62). Furthermore, animal models, including

mice and non-human primates, are essential for studying the virus’s

progression and accelerating the development of vaccines and

therapeutics. Mice expressing human ACE2 receptors closely mimic

human viral entry points, while ferrets offer valuable data on virus

transmission and respiratory impacts (72). Non-human primates, such

as rhesus macaques, closely replicate human disease, aiding in vaccine

and therapeutic evaluations (16). An integrated One Health approach,

which acknowledges the interconnectedness of animal, human, and

environmental health, is crucial for preventing and controlling the

spread of SARS-CoV-2 and achieving optimal health outcomes.

Additionally, high-throughput sequencing technologies enhance our

ability to map viral mutations in animal hosts, aiding in the prediction

and prevention of potential spillover events to humans.
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3.4 Integrated one health approaches to
managing COVID-19 risks and
animal protection

An integrated One Health approach is crucial for managing

zoonotic risks such as COVID-19, by merging veterinary health,

wildlife management, and public health initiatives to create

coordinated surveillance and response mechanisms. This

approach is vital for understanding and controlling zoonotic

diseases, like COVID-19, as wildlife reservoirs can harbor viruses

with minimal illness to the hosts, thereby serving as long-term

sources of infection. Effective response mechanisms include

strategies to manage and mitigate the risk of disease transmission

from these reservoirs to humans, which involve monitoring,

surveillance, habitat management, and population control

measures (73). Population control, aimed at managing specific

wild animal populations to reduce human contact, is a delicate

issue that requires careful consideration within the One Health

framework to balance the health of animals, humans, and

ecosystems. This is particularly important for protected species

such as bats and pangolins, which have significant cultural and

ethical implications (74). Monitoring wild animal populations

provides essential data for predicting and preventing outbreaks by

identifying potential zoonotic reservoirs and understanding viral

transmission dynamics. However, this must be done with minimal

disruption to wildlife and their habitats to prevent stressing animal

populations and disrupting ecological balances, which could lead to

habitat loss or decreased biodiversity. Avoidance strategies are also

crucial in reducing human-wildlife contact to prevent virus

spillover. These strategies include preserving habitats to reduce

human encroachment, educating the public about the risks of

wildlife contact, enforcing stricter regulations on wildlife trade,

and employing non-invasive monitoring technologies such as

remote sensing, camera traps, and environmental DNA sampling

(75). This holistic approach addresses the interconnected health of

humans, animals, and ecosystems, enhancing our ability to control

the spread of SARS-CoV-2, mitigate future outbreaks, and bolster

global health security.
4 Environmental factors and
immunomics in SARS-CoV-2 spread

4.1 The impact of air quality on SARS-
CoV-2 transmission and immune response

Air quality profoundly influences the transmission dynamics of

respiratory viruses such as SARS-CoV-2. Poor air quality,

characterized by elevated levels of particulate matter (PM2.5 and

PM10), can enhance viral transmission by acting as a carrier for viral

particles, thereby extending their range and increasing the spatial

distribution of COVID-19 cases in urban environments (76, 77).

Fine particulate matter, in particular, adsorbs viral particles,

potentially enhancing their longevity and infectiousness. SARS-

CoV-2 viral RNA has been detected in fine aerosols (<5 microns),
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with a half-life of about one hour, suggesting that these airborne

particles can remain infectious (78). Evidence of SARS-CoV-2

particles on surfaces like air exhaust outlets and fans further

supports airborne transmission in settings where direct contact

with an infected individual is unlikely (79). Poor air quality,

characterized by high levels of particulate matter (PM2.5) and

harmful gases, can compromise mucosal immunity and heighten

vulnerability to respiratory infections like COVID-19 (76). Fine

particulate matter can also adsorb viral particles, potentially

enhancing the virus’s stability and spread (77). Studies have

shown that improved ventilation and air cleaning significantly

reduce airborne viral loads, thereby mitigating the risk of

transmission within enclosed spaces (80, 81). Effective ventilation,

whether through natural means like opening windows or

mechanical systems, helps disperse and dilute viral particles,

reducing their potential to infect new hosts.

Beyond its role in viral transmission, air quality also critically

impacts immune health. Pollutants such as particulate matter and

harmful gases can impair mucosal immunity, making individuals

more susceptible to respiratory infections like COVID-19. Chronic

exposure to air pollutants exacerbates inflammatory responses and

weakens the immune system, leading to more severe disease

outcomes (10, 11, 76, 77). Compromised immunity can result in

heightened susceptibility to infections and poorer disease prognosis.

During the COVID-19 pandemic, research has highlighted that

managing indoor air quality is crucial not only for controlling viral

transmission but also for protecting immune health. Enhanced

ventilation and air purification are essential strategies for

reducing airborne viral particle concentrations and improving

overall public health safety. Addressing both the environmental

and immune factors involved in SARS-CoV-2 transmission

underscores the importance of comprehensive public health

strategies that integrate air quality management with immune

health considerations to effectively combat the spread of

COVID-19.
4.2 The impact of water systems on SARS-
CoV-2 transmission and immune response

The stability and transmission dynamics of SARS-CoV-2 are

significantly influenced by water systems and their interactions with

immune responses. Research has demonstrated that SARS-CoV-2

can be detected in untreated wastewater, indicating that sewage

systems may act as reservoirs and potentially contribute to

transmission if not adequately managed (82). Wastewater-based

epidemiological surveillance has become an essential tool for

estimating community infection prevalence and providing early

warnings for outbreaks (83). Although direct waterborne

transmission is limited, the presence of SARS-CoV-2 RNA in

sewage underscores the importance of effective sanitation and

water treatment practices to mitigate potential risks. Disinfection

methods, such as chlorination, have been shown to effectively

inactivate the virus in water, thereby reducing transmission risks.

Furthermore, water systems can impact immune responses
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indirectly. The quality of drinking water and the effectiveness of

water treatment play critical roles in influencing overall health and

immune function. For instance, hydrogen-rich water has been

reported to reduce inflammatory responses and prevent apoptosis

of peripheral blood cells in healthy adults (84). Poor water quality

can contribute to the burden of infections and illnesses, which can

undermine immune responses and increase susceptibility to severe

outcomes of SARS-CoV-2 infection. Microbial contamination from

community water systems, such as waterborne Legionella and non-

tuberculous mycobacteria, has been shown to significantly impact

human health (85). These contaminants can exacerbate the health

burden, potentially compromising immune function and making

individuals more vulnerable to severe infections, including those

caused by SARS-CoV-2 virus more susceptible to severe outcomes

of SARS-CoV-2 infection. Maintaining effective sanitation and

water treatment is crucial for minimizing the risks associated with

waterborne pathogens and supporting public health. Implementing

robust water management strategies and enhancing wastewater

surveillance can play a vital role in controlling SARS-CoV-2

transmission and safeguarding community health.
4.3 The impact of other environmental
factors on SARS-CoV-2 transmission and
immune response

In addition to air quality and water systems, various other

environmental factors significantly influence SARS-CoV-2

transmission and immune responses. Temperature plays a key role;

lower temperatures enhance the virus’s stability, allowing it to persist

longer on surfaces and in the air, which can increase transmission

rates during colder months (86, 87). Conversely, higher temperatures

accelerate viral degradation, reducing its viability. Humidity levels also

affect the stability of the virus. Low humidity can prolong the presence

of SARS-CoV-2 in the air, whereas higher humidity helps respiratory

droplets settle more quickly, thereby reducing airborne transmission

(86, 87). The type of surface material also influences the persistence of

SARS-CoV-2, with the virus surviving longer on materials like plastic

and stainless steel compared to copper and cardboard. This

understanding is crucial for developing effective cleaning and

disinfection strategies (67). UV light, particularly UV-C, has been

shown to effectively inactivate SARS-CoV-2, demonstrating the

benefits of natural sunlight and UV-C disinfection in reducing viral

viability (88). Environmental stressors, such as noise and

overcrowding, also compromise immune function, altering

susceptibility to and progression of viral infections like SARS-CoV-2

(89). Chronic exposure to these stressors can impair immune function,

increasing susceptibility to severe disease outcomes (89).

Understanding the interactions between environmental factors and

immune responses is essential for developing effective public health

interventions. Managing environmental factors and improving air

quality can help reduce SARS-CoV-2 transmission and enhance

overall public health safety. Public health guidelines should

incorporate these insights to effectively manage environmental

conditions and mitigate the spread of the virus.
Frontiers in Immunology 11
4.4 High-throughput immunomic
technologies in environmental health

High-throughput immunomic profiling technologies, such as

CyTOF and single-cell RNA sequencing, are essential for detailing

immune responses under diverse environmental conditions,

particularly amidst the COVID-19 pandemic. These technologies

provide precise immune cell characterization, offering insights into

how air quality and climate change affect immune profiles and

responses to SARS-CoV-2 (90). These advanced technologies

enable comprehensive analysis of environmental samples to detect

the presence of SARS-CoV-2 and other pathogens. They also help

understand how environmental exposures affect immune system

functioning. For example, high-throughput sequencing could

identify microbial communities and their interactions with the

virus in various environments, providing insights into potential

hotspots for transmission.Karczewski et al. (91) compared two

methods for analyzing microbial diversity in groundwater

ecosystems: Terminal Restriction Fragment Length Polymorphism

(T-RFLP) and high-throughput sequencing (HTS). Their study

assessed the effectiveness of these techniques in evaluating

microbial community composition and diversity. Fontenele et al.

(92) utilized high-throughput sequencing to analyze SARS-CoV-2

in wastewater. They employed Illumina MiSeq and NextSeq

platforms to sequence viral RNA, providing detailed insights into

circulating variants. This approach demonstrated the potential of

wastewater-based surveillance for monitoring SARS-CoV-2

prevalence and mutations in communities, highlighting how HTS

can enhance understanding of virus dynamics. ScRNA-seq allows

for the detailed examination of immune cell responses at the

individual cell level, revealing how environmental factors such as

pollutants impact immune functionality. CyTOF, or mass

cytometry, combines flow cytometry and mass spectrometry,

allowing for the simultaneous measurement of multiple

parameters on individual cells. Bioinformatics synthesizes

environmental data with immunological outcomes, essential for

predicting disease spread and severity under varied environmental

conditions. Advanced algorithms and machine learning techniques

analyze large datasets, identifying patterns and correlations that can

inform public health strategies. Integrating immunomic data with

environmental monitoring helps develop predictive models for

outbreaks, refine public health interventions, and enhance

environmental controls.
4.5 Integrated immunological and
environmental factors approaches to
managing COVID-19 risks

Environmental factors play a significant role in the transmission

dynamics of SARS-CoV-2. Elements such as population density,

urbanization, environmental variables, and environmental

pollution can enhance the spread of the virus. Crowded urban

areas with high population densities facilitate close contact among

individuals, increasing transmission rates. Additionally,
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environmental pollution, including particulate matter and other

pollutants, may affect respiratory health and increase susceptibility

to viral infections (10). Research conducted in various urban areas

during the pandemic indicated a correlation between high pollution

levels and increased COVID-19 case numbers. Research has

established that meteorological variables such as temperature,

humidity, and air quality significantly influence immune

responses to SARS-CoV-2, thereby affecting viral transmission

rates and immune defenses. Davis et al. (93) emphasize that

immunomics enhances the understanding of dynamic immune

interactions, which is essential for developing interventions for

infectious diseases like COVID-19. Mecenas et al. (11) highlights

how these factors impact infection severity and distribution.

Integrating environmental and immunological data enables better

anticipation and mitigation of environmental impacts on COVID-

19 spread and severity. Such insights refine public health

interventions and enhance predictive models for outbreaks.

By synthesizing environmental data with epidemiological

insights, our review offers insights on how natural and human-

modified environments affect the dynamics of SARS-CoV-2

transmission. For instance, Naidoo et al. reported that overlaying

virus stability data with weather patterns and human mobility data

helps predict potential hotspots and inform public health responses

(94). Immunology, employing advanced techniques, intricately

dissects the immune system’s complexities, particularly its interplay

with environmental factors. This field unravels the intricate networks

of immune signaling and responses at the molecular level, providing

profound insights into how external conditions shape immune

functionality. These specific examples highlight the critical role of

environmental factors in understanding and controlling the spread of

COVID-19. Integrating environmental and immunological data

enables better anticipation and mitigation of environmental

impacts on COVID-19 spread and severity. Such insights refine

public health interventions and enhance predictive models for

outbreaks. This holistic approach not only informs immediate

response strategies but also aids in preparing for future outbreaks

by emphasizing the integration of environmental health in

pandemic preparedness.
5 Integrating immunomics within the
one health framework for COVID-19

5.1 Overview of immunomics and one
health integration

The integration of immunomics within the One Health

framework represents a comprehensive approach to managing

pandemics like COVID-19, emphasizing the interconnected

health of humans, animals, and the environment (12). This

interdisciplinary model enhances our understanding of zoonotic

diseases and strengthens global health security by promoting data

and resource sharing across borders (6). It encourages

multidisciplinary collaboration, essential for devising strategies to

predict, prevent, and manage infectious diseases effectively (95).
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Immunomics, as a crucial component of this framework, provides

in-depth insights into the immune responses of various species to

SARS-CoV-2, helping identify potential reservoirs and understand

transmission dynamics (9, 64). This information is vital for

developing targeted strategies to control disease spread and

integrating environmental data to better understand how

ecological factors influence transmission. By incorporating these

insights, the One Health approach facilitates the development of

robust public health policies and enhances preparedness for future

outbreaks. It builds resilience against zoonotic challenges and

improves health security measures, necessitating a coordinated

strategy that includes surveillance, data analytics, and ecological

considerations (96).
5.2 Case studies of practical applications

The integration of the One Health framework with

immunomics has significantly enhanced our understanding of the

COVID-19 pandemic, enabling targeted interventions based on

high-throughput immunomics data. This approach provides

comprehensive insights into the disease’s complexities and

informs practical response strategies. For instance, research by

Zhou P. et al. (53) employed NGS to identify the genetic

sequence of SARS-CoV-2 from clinical samples collected from

patients with pneumonia. They conducted phylogenetic analyses

comparing these sequences with those of other coronaviruses. The

study revealed a coronavirus in bats that is genetically similar to

SARS-CoV-2, suggesting that bats are a natural reservoir. This

finding has been instrumental in tracing the zoonotic origins of the

virus and underscores the importance of wildlife monitoring to

prevent future outbreaks. Complementary immunomics analysis

such as high-throughput sequencing to analyze viral RNA

sequences analysis extended to pangolins, as documented by Lam

TT et al. (60), revealing that pangolins host coronaviruses closely

related to SARS-CoV-2, shedding light on potential intermediate

hosts and transmission dynamics. Furthermore, the intersection of

immunomics and One Health has been essential in examining

environmental factors influencing viral transmission and immune

responses. Research by Ciencewicki J. and Jaspers I (10).

demonstrated how air pollution can compromise immune

responses in the respiratory tract, increasing susceptibility to

respiratory virus infections and potentially exacerbating disease

severity. Their study utilized cytokine profiling and immune cell

analysis to show how pollutants affect inflammatory pathways and

immune function. Research by Mecenas P. et al. (11) investigated

the impact of climate change on the stability and transmission rates

of viruses like SARS-CoV-2.They emphasized the importance of

integrating immunomic data with environmental factors to predict

the risk levels for different regions and populations under various

climate scenarios. Their research involved correlating viral load and

immune response data with temperature and humidity variations to

assess their effects on viral spread. The integration of immunomics

within the One Health framework has also deepened our

understanding of animal reservoirs and their roles in virus
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spillover to humans. A study by Andersen KG et al. (70) explored

the genomic characteristics of SARS-CoV-2 in relation to other

coronaviruses found across different species. This research,

augmented by proteomic profiling and structural analysis, has

enabled scientists to identify specific viral mutations that facilitate

cross-species transmission, providing insights into how SARS-CoV-

2 adapts to new hosts. Recent studies have underscored the

significant role of agricultural settings and wildlife interfaces in

the transmission dynamics of zoonotic diseases, including COVID-

19. A study by Oreshkova N. et al. (7) using genetic sequencing of

SARS-CoV-2 strains analysis investigated SARS-CoV-2 infections

in mink farms in the Netherlands, documenting transmission from

humans to minks and identifying potential mutations that could

affect the virus’s transmissibility and virulence. The research

demonstrated that SARS-CoV-2 spread rapidly among minks and

was transmitted back to humans, highlighting the potential role of

animal farms as reservoirs for the virus. By applying immunomic

techniques to analyze immune responses in minks, researchers can

identify specific immunological markers that indicate spillover

potential. These case studies illustrate how integrating

immunomics with the One Health approach facilitates proactive

prevention and mitigation of pandemic impacts through strategies

that are both informed and data-driven, rather than

merely reactionary.
5.3 Future research directions and public
health strategy implications

To effectively integrate immunomics and the One Health

framework in addressing COVID-19 and similar zoonotic diseases,

we posit that future research and technological advancements should

achieve significant breakthroughs in the following areas. (1) Develop

cost-effective immunomic technologies. Future research must

prioritize the development of cost-effective, scalable, high-

throughput immunomic technologies. Transformative advancements

like single-cell RNA sequencing and mass cytometry face limitations

such as high costs and operational complexity, hindering widespread

use in resource-limited settings. Complex data from these technologies

require sophisticated computational tools for analysis, posing

challenges in distinguishing meaningful signals from noise. The

specificity and sensitivity of biomarkers also limit their clinical

utility, risking disease misclassification and missed early detection,

crucial for effective interventions. Moreover, scalability remains an

issue, especially during pandemics, where rapid application to large

populations is constrained by high costs and logistical complexities.

Addressing these challenges necessitates a holistic approach that

integrates technological innovation, enhances data analysis

capabilities, and improves accessibility across global healthcare

systems. (2) Enhance data analysis capabilities. Leveraging artificial

intelligence (AI) and machine learning (ML) can significantly refine

our ability to interpret complex immune response data, enabling the

identification of novel biomarkers and optimizing the analysis of

genetic, proteomic, and metabolic information to predict individual

treatment outcomes and disease progression (10). Integrating
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the rapid identification and validation of therapeutic targets in

personalized medicine. (3) Expand immunomic databases.

Broadening immunomic databases to encompass a wider array of

demographic variables will improve the tailoring of treatments to

individual genetic and immunological profiles, enhancing treatment

efficacy and minimizing adverse effects. (4) Integrate Environmental

and Immunomic Data. In the context of One Health, immunomics

will advance our understanding of how environmental factors

influence zoonotic disease transmission. Innovations such as spatial

transcriptomics and advancedMLmodels will transform our ability to

predict interactions between pathogens and their hosts within

environmental contexts, providing critical insights that could

preempt future outbreaks (8). However, isolating the effects of

specific environmental factors on immune responses is challenging

due to the intricate nature of environmental-immunological

interactions. Understanding these interactions demands

sophisticated experimental and analytical methodologies to establish

clear causal relationships. The complexity of these interactions often

obscures the direct impacts of environmental changes on disease

dynamics and immune system behavior (11). In summary, integrating

large-scale environmental and immunomics datasets introduces

substantial challenges. The vast volume and diversity of the data

necessitate advanced analytical techniques to decipher meaningful

patterns and derive actionable insights. This process is essential for

translating complex data sets into practical applications in public

health and epidemiology. Ultimately, integrating immunomics data

within a One Health framework enhances the effectiveness of global

response strategies and pandemic preparedness.
6 Methodological strategies for
data collection

In this study, we analyzed 61 original research papers and 36

review articles. The original research papers include 23 studies

related to immunomics, 16 papers focused on immunology, 1 paper

addressing One Health, and 21 other relevant studies. Our analysis

included a diverse array of biological samples, such as peripheral

blood mononuclear cells (PBMCs), whole blood (WB) samples,

BALF immune cells, lung specimens, serum, nasal secretions, feces,

saliva, urine, and swabs from various sites (nose, throat, oral, rectal),

as well as cell lines. The comprehensive sampling across these

studies ensures sample integrity and representativeness, which are

for our study. These details are provided in Supplementary Table 1.

Significantly, we examined major types of data including

genomics (7, 8, 36, 49, 60, 70), transcriptomics (13, 14, 21, 33, 38),

proteomics (14, 15), and bioinformatics (7, 8, 14, 37, 46, 49, 51, 60, 65,

66, 70, 97). We also reviewed key associated techniques such as NGS,

CyTOF, and scRNA-seq, RT-PCR, and ELISA, which have been

pivotal in understanding the molecular mechanisms of immune

responses. These methods provide essential data on immune cell

activation, cytokine profiles, and genetic markers linked to disease

progression. These studies in our review, including those using NGS
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(7, 8, 36), have played a crucial role in identifying genetic variations

that dictate individual responses to diseases and vaccines. Flow

cytometry, used traditionally to analyze the physical and chemical

characteristics of cells, was highlighted in studies like those by Wilk

et al. (33) Additionally, CyTOF, which builds upon flow cytometry by

using metal-labeled antibodies to measure over 40 markers on a

single cell, has provided insights into distinct immunological

signatures in severe cases, as shown by Kuri-Cervantes et al. (31).

ScRNA-seq offers a detailed view of transcriptomic changes at the

single-cell level, revealing the heterogeneity of immune cell responses

and pinpointing cell subsets contributing to disease pathology. This

technique, along with scATAC-seq and multi-omic sequencing

approaches, has advanced our understanding by exploring

epigenetic and molecular changes in immune cells, linking these

profiles to patient outcomes and furthering our comprehension of the

molecular mechanisms driving disease severity in COVID-19 (14,

32). Bioinformatics synthesizes these diverse datasets, enabling

complex analyses that forecast disease progression, tailor

treatments, and facilitate the development of targeted vaccines and

immunotherapies (8, 14, 37, 46, 49, 51, 60, 65, 66, 70, 97). This field

also reviews technological tools such as RT-PCR and ELISA,

analyzing cytokine trends for identification and treatment of

hyperinflammation, displaying the immune responses of the

rSARS-CoV-2 vaccine, and exploring SARS-CoV-2 transmission

models (24, 42, 64).

Data resources are detailed in Supplementary Table 1. For

instance, the dataset from the study by Zhao et al. (21) is

accessible available on CNGB Nucleotide Sequence Archive

(CNSA) with accession number CNP0001250. The datasets from

Penttilä PA et al.’s study (19) are available in the Flow repository

and on GitHub (https://flowrepository.org/id/FR-FCM-Z34U and

https://github.com/saeyslab/CYTOF_covid19_study). All original

research received the necessary ethics approval and adhered to

appropriate guidelines. To ensure data accuracy and reliability, both

raw and processed data are available in the corresponding

repositories, subject to management regulations. These datasets

can be accessed for further analysis in compliance with data

protection regulations.
7 Conclusion

This review integrates the application of immunomics within the

One Health framework, highlighting its critical role in addressing the

multifaceted challenges posed by the COVID-19 pandemic. Our

analysis demonstrates the profound utility of immunomics in

dissecting complex immune responses across species, including

humans and animals, and the significant environmental factors

influencing viral propagation and disease manifestation.

Immunomic analyses have provided invaluable insights into

distinct immune mechanisms triggered by COVID-19 in humans,

identifying key biomarkers indicative of disease severity and

susceptibility. These findings are instrumental in refining clinical

interventions and enhancing therapeutic outcomes. Additionally, we

have explored the roles of various animal species as reservoirs or

vectors in the virus’s transmission chain, emphasizing the necessity of
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zoonotic spillovers. Furthermore, we have examined how

environmental variables, such as air quality and water systems,

impact viral stability and dissemination, advocating for stringent

environmental monitoring and proactive public health interventions

to mitigate these influences. The review also discusses the

transformative impact of advanced omics technologies on

accelerating vaccine development and enhancing the detection and

monitoring of viral mutations. These technological advancements are

pivotal for navigating the virus’s evolutionary trajectory and its

potential for cross-species transmission. In summary, the synthesis

of immunomics within the One Health framework emerges as a

transformative strategy for enhancing pandemic preparedness and

response. By broadening the scope of immunomic studies to include a

more extensive array of biodiversity and ecological settings, we can

unlock novel insights into virus-host dynamics and mechanisms of

zoonotic spillover, thereby fortifying our global preparedness for

emerging health challenges.
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