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Immunotherapy has profoundly changed the treatment of gastric cancer, but

only a minority of patients benefit from immunotherapy. Therefore, numerous

studies have been devoted to clarifying the mechanisms underlying resistance to

immunotherapy or developing biomarkers for patient stratification. However,

previous studies have focused mainly on the tumor microenvironment. Systemic

immune perturbations have long been observed in patients with gastric cancer,

and the involvement of the peripheral immune system in effective anticancer

responses has attracted much attention in recent years. Therefore,

understanding the distinct types of systemic immune organization in gastric

cancer will aid personalized treatment designed to pair with traditional therapies

to alleviate their detrimental effects on systemic immunity or to directly activate

the anticancer response of systemic immunity. Herein, this review aims to

comprehensively summarize systemic immunity in gastric cancer, including

perturbations in systemic immunity induced by cancer and traditional

therapies, and the potential clinical applications of systemic immunity in the

detection, prediction, prognosis and therapy of gastric cancer.
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1 Introduction

Although its incidence has decreased in recent decades, gastric cancer (GC) remains the

most common cause of cancer-related death worldwide, especially in regions with high

Helicobacter pylori infection, such as East Asia, South America and the Middle East (1). In

2022, both the number of new cases of GC worldwide and the number of GC-related deaths

ranked fifth, with estimated values of 968350 and 659853, respectively (2). Except in some

countries and regions with well-established screening programs, such as Japan, Korea and

some areas in China, the majority of GC patients are diagnosed at late stages, leading to

dismal long-term survival (3).
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Traditionally, the main strategy for curing GC is radical

gastrectomy, and in some cases, chemotherapy and/or radiotherapy

are needed to reduce recurrence. However, in unresectable advanced

patients, systemic chemotherapy combined with targeted therapy

is the standard treatment, aiming to prolong survival and improve

quality of life (3). The participation of the immune system in

tumorigenesis has long been heavily investigated, resulting in the

impressive success of immunotherapy in the past decade.

Immunotherapy, including immune checkpoint inhibitors (ICIs),

cell-based therapy and vaccines, has revolutionized cancer therapy,

and several recently published phase 3 clinical trials have proven the

encouraging effects of immunotherapy in patients with GC in first- or

late-line settings (4–7). Nevertheless, patients who achieve a durable

response are limited, while the majority of patients with GC are

primarily or secondarily resistant to immunotherapy. Therefore,

numerous efforts have been devoted to elucidating the mechanisms

underlying the responsiveness of GC to immunotherapy. However,

most of these studies are limited to the tumor microenvironment

(TME), such as programmed cell death-ligand 1 (PD-L1) expression,

the tumor neoantigen load and the profile of infiltrating immune

cells (8, 9).

Although perturbations in systemic immunity have long been

observed in cancer patients, how they influence the progression of

tumors and the effects of cancer therapies, especially immunotherapy,

have not received much attention until recently (10). Inspired by

these findings, this review aimed to focus on systemic immunity in

GC. We first summarize the perturbations of systemic immunity

induced by GCs and then outline the effects of traditional therapies,

including radical gastrectomy and chemotherapy, on systemic

immunity. Finally, we address the potential clinical applications of

systemic immunity in the detection, prediction, prognosis and

therapy of GC.
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2 Perturbations in systemic immunity
induced by GC

Through the disruption of hematopoiesis or direct effects on

peripheral immune cells, both human cancers and animal tumor

models have been shown to induce extensive perturbations in

systemic immunity, manifesting as alterations in circulating

cytokines, the expansion of immunosuppressive myeloid

populations and a decrease in immune cells with antitumor

ability (11, 12). Progenitors with myeloid differentiation potential

have been found to increase in the bone marrow of mouse models,

leading to elevated frequencies of neutrophils and monocytes, along

with reductions in dendritic cell (DC) and lymphocyte populations,

which can be reversed by resection of cancer or cytokine blockage,

suggesting that circulating cytokines secreted by cancer cells drive

the remodeling of systemic immunity (12). Currently, no studies

have investigated the changes in hematopoiesis in bone marrow

induced by GCs; however, numerous studies have reported

perturbations in cytokines and major immune lineages in

peripheral blood (Figure 1; Supplementary Table S1).
2.1 Circulating cytokines

Cytokines are a collection of molecules that participate in

almost every step of tumorigenesis and immunology (13).

Numerous studies have investigated the perturbations of

circulating cytokines in GC patients (14). In general, the

concentrations of cytokines, including interleukin-1b (IL-1b), IL-
6, IL-10, IL-17, interferon-g (IFN-g) and tumor necrosis factor-a
(TNF-a), in the peripheral blood of GC patients are commonly
FIGURE 1

Perturbations in systemic immunity in gastric cancer. Gastric cancer itself and traditional therapy can induce reorganization of systemic immunity,
manifesting most prominently in alterations in circulating cytokines, expansion of immunosuppressive myeloid populations and a decrease in
immune cells with antitumor ability. Breg, regular B cell; cDC, classical dendritic cell; INF, interferon; NK, natural killer; pDC, plasmacytoid dendritic
cell; Treg, regular T cell.
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greater than those in healthy subjects, whereas the concentration of

macrophage chemotactic protein (MCP)-1 has been found to be

lower in several studies (15–19). However, cytokines in the

circulation can be secreted by nearly all cells, including immune

cells and GC cells themselves, and their levels are strongly affected

by various factors, such as age, sex, lifestyle and genetic background

(20–23). Therefore, inconsistent findings are common across

studies, and accurately interpreting the perturbations in

circulating cytokines induced by GCs is difficult. For individual

cytokines, the peripheral changes in GC patients may be context

dependent rather than a regular phenomenon. For example,

although IL-6 is one of the most common cytokines whose

peripheral levels are increased in GC patients, several studies have

not shown significant differences between GC patients and controls

(16, 24–26). Furthermore, the serum levels of several cytokines are

associated with clinicopathological features. For example, IL-6

levels are elevated only in intestinal GC patients, whereas MCP-1

levels are lower only in diffuse GC patients (16). Nevertheless, a

general finding is that the degree of alterations in peripheral

cytokines increases with disease progression (21, 27, 28).
2.2 Myeloid lineages

Several cancers have been demonstrated to promote

hematopoiesis toward monocytic and granulocytic lineages through

cancer-derived factors (10). Although such hematopoietic alterations

have not been validated in GC, many studies have reported that both

neutrophils and monocytes are extensively perturbed in GC patients.

However, these perturbations are commonly represented by ratios

between different immune cells, while studies on their functions are

limited. In general, patients with GC have a greater percentage of

neutrophils in the peripheral blood than healthy donors do, and with

increasing tumor burden, the percentage of neutrophils in the

periphery significantly increases (29, 30). Although disparities in

phenotype and function have been found between neutrophils

obtained from cancer tissues and peripheral blood, these differences

between neutrophils from GC patients and those from healthy

subjects have not been addressed (29). In terms of function,

peripheral neutrophils from GC patients exhibit normal phagocytic

activity but reduced superoxide generation (31). Furthermore, a

subset of myeloid-derived suppressor cells (MDSCs), which highly

express neutrophil markers, is dramatically increased in the

circulation of GC patients and has the ability to suppress the

activity of CD8+ T cells (32). In addition, neutrophil extracellular

traps (NETs), one of the main contributors to the cancer-promoting

ability of neutrophils, were found to be more abundant in the blood

of GC patients, especially those with late-stage disease (33, 34).

Another cell type of myeloid origin, monocytes, was also found to

be increased in the peripheral blood of GC patients with decreased

chemotactic responsiveness and upregulated T-cell immunoglobulin

and mucin-domain containing-3 (TIM-3) expression, which may be

an important mechanism in GC progression (35, 36). In addition to

these findings, few studies have investigated GC-induced dysfunction

of neutrophils and monocytes. As both neutrophils and monocytes
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are composed of heterogeneous cell populations with pro- and

anticancer abilities, determining their alterations is important for

clinical applications.

Dendritic cells, which participate in antigen presentation and T-

cell priming and proliferation, are critical orchestrators of innate and

adaptive immunity in cancer (37). Therefore, perturbation of DCs

from the peripheral circulation has long been observed in many

cancers, including GC (10). Compared with healthy individuals,

patients with GC have lower circulating DC counts and

percentages, with reduced cytotoxicity and TNF-a, IL-2 and CD40

expression, indicating impaired function and immature status (38,

39). However, similar to other immune cells, DCs are composed of

various heterogeneous subsets, including plasmacytoid DCs (pDCs),

classical DCs (cDCs) and inflammatory DCs, which play different

roles in human diseases (40). Therefore, despite the overall decrease

in peripheral DCs, subsets with tumor-promoting effects, such as

pDCs and DC-10 cells, were found to be elevated in the periphery of

GC patients (41–43). In patients with GC, the frequency and mean

fluorescence intensity of DC-10 in the peripheral blood are

dramatically increased and strongly associated with tumor grade

(41). The levels of other tolerogenic DCs, pDCs, are also significantly

increased in the blood of GC patients, and these pDCs are proposed

to be recruited to the TME through chemokine receptor 9 (CCR9)

and C-C motif chemokine (CCL25) interactions, leading to an

immunosuppressive microenvironment in GC (42). Therefore,

subsets and functional states should be taken into consideration

when peripheral DCs are utilized for clinical application.
2.3 Lymphoid lineage

As the main participants in antitumor immunity, lymphocytes

have long been the focus of cancer immunology. In terms of

peripheral immune cells in GC, substantially more studies have

investigated alterations in lymphocytes. Despite a few inconsistent

findings, lymphopenia is common in GC patients (15, 44).

However, circulating lymphocytes are composed of complicated

subsets with both cancer-promoting and cancer-inhibiting

activities. Therefore, in addition to the total lymphocyte

population, individual subsets have also been extensively studied.

CD8+ T cells are the main effector cells involved in tumor cell

killing, and their functions are strongly impaired in the peripheral

blood of GC patients (45, 46). Under some conditions, CD8+ T cells

can be induced by GCs to express IL-10, PD-1 and TIM-3, which

inhibit the effector function of CD8+ T cells (46, 47). In contrast, the

levels of suppressive lymphocytes, such as regulatory T (Treg) cells,

regulatory B (Breg) cells and IL-17-producing T cells, are typically

greater in GC patients than in normal controls (48–52). These cell

types synergize with each other to establish an immunosuppressive

environment in GC patients. For example, increased Breg cells in

the blood of GC patients inhibited the production of T-cell

cytokines and converted T cells to Treg cells, leading to immune

escape in GC (52).

Natural killer (NK) cells are a type of innate immune cell that

differentiates from common lymphoid progenitors and participates
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in cancer immunosurveillance through direct cancer cell killing and

orchestrates the functions of other players in the immune system

(53). The phenotype of circulating NK cells from GC patients

differed from that from healthy controls, characterized by a

decrease in the number of NK cells expressing activating

molecules, including NKp30, NKp46, NKG2D and DNAM-1, and

an increase in the number of NK cells expressing the inhibitory

molecules KIR3DL1 and TIM-3; these perturbations are

significantly associated with cancer progression (54–56).

Additionally, the anticancer capacity of these NK cells has been

shown to be impaired in GC patients, manifesting as decreased IFN-

g production and cytotoxic function (21, 57, 58).
2.4 Indices derived from multiple
immune components

The human immune system is an intricate network with

complex synergistic and/or antagonistic interactions among

individual immune components. Therefore, various indices

derived from multiple immune components have been established

to reflect the peripheral immune state more precisely. Owing to

their low cost and noninvasive accessibility, numerous studies have

investigated alterations in these indices in patients with GC. In

general, compared with healthy individuals, patients with cancer

present with a greater neutrophil-to-lymphocyte ratio (NLR),

platelet-to-lymphocyte ratio (PLR), and systemic immune-

inflammation index (SII), and lower lymphocyte-to-monocyte

ratio (LMR), and the severity of perturbations increases with

disease progression (15, 59–61).

Overall, these findings strongly indicate that systemic immunity,

which results from the effects of cancer cells and participates in the

progression of cancer, is reduced in GC patients. Further efforts are

warranted to fully clarify the systemic immune landscape of patients

with GC and its associations with disease stage and patient

demographics. The mechanisms underlying these perturbations are

also largely unknown in GC, and elucidating these mechanisms is

critical for therapeutic development.
3 Changes in systemic immunity
during traditional therapy for GC

Traditional therapies for GC, including surgery, chemotherapy,

and radiotherapy, have long been known to positively or negatively

affect systemic immunity, which may determine the efficacy of

treatment and oncological outcomes (Supplementary Table S2). In

contrast, although targeted therapy has been developed as a

standardized treatment for GC in various settings and research

on its combination with immunotherapy has been increasing, few

studies have been conducted to investigate the effects of targeted

therapy on systemic immunity in patients with GC. Elucidating the

changes in systemic immunity during traditional GC therapy is

critical for optimizing these strategies to strengthen rather than

impair anticancer immunity.
Frontiers in Immunology 04
3.1 Radical gastrectomy and
perioperative events

Radical gastrectomy is the main method for achieving complete

disease control and long-term disease-free survival in GC patients. As

mentioned above, systemic immune perturbations are induced

mainly by various factors derived from the primary tumor;

therefore, radical gastrectomy can eliminate these factors and

restore normal peripheral immunity, which has been demonstrated

in breast and colon cancer (12). However, wound healing and the

stress response following gastrectomy also have detrimental effects on

systemic immunity.

After radical gastrectomy, wound healing programs remodel

systemic immunity, characterized by elevated circulating IL-2, IL-6,

IL-10, TNF-a and IFN-g, ultimately driving peripheral immune cells

to immunosuppressive states (62–64). In addition to gastrectomy,

perioperative events, including anesthesia, analgesia, postoperative

complications, intraoperative blood loss and blood transfusion, all

activate or prolong the surgical stress response, leading to the

activation of neural signaling and systemic inflammation (65).

More extended surgery and an eventful postoperative course are

associated with elevated serum catecholamines, which have been

shown to suppress anticancer immunity (66). Therefore, the

peripheral IL-6 concentration is greater in GC patients who have

undergone longer operations (62). In patients who underwent

gastrectomy in combination with splenectomy, the T-cell subsets

were decreased, and their functions were significantly suppressed

(64). The number and cancer cell-killing potential of NK cells are also

decreased by abdominal laparotomy, which leads to lung metastasis

(67). In addition to the direct suppression of anticancer effector

immune cells, surgical stress also increases the levels of immune

inhibitory molecules and cells in the periphery. For example, in

mouse models, gastrectomy can induce the accumulation of gdT cells

in mesenteric lymph nodes, which suppresses the cell-mediated

response by transforming growth factor-b (TGF-b) (68). Although
some studies have shown that increased proinflammatory cytokines

return to normal levels immediately after gastrectomy, long-term

functional suppression of immune cells in the blood has been

demonstrated in breast cancer models (62, 63, 69). Collectively,

these findings suggest that gastrectomy and perioperative events

can induce systemic immune perturbations.
3.2 Cytotoxic therapy

The majority of chemotherapeutics and radiation kill cancer

cells through direct damage and induction of apoptosis. Although

the latter mechanism may cause immunogenic death, which

enhances anticancer immunity, acute cancer cell death and the

stress response of cells within the TME release various

proinflammatory molecules into the circulation to modulate the

function of peripheral immune cells (70). Currently, although

chemotherapy and radiotherapy are known to cause granulopenia

and lymphopenia in clinical practice, studies investigating the

effects of cytotoxic therapy on systemic immunity in GC patients
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are scarce. Few studies have suggested that following chemotherapy,

the levels of immune-enhancing cytokines, including IL-2, IL-4, IL-

10, and IFN-g, decrease in the serum of GC patients (15, 71).

Nevertheless, the most commonly used cytotoxic drugs in GC, such

as oxaliplatin and 5-fluorouracil (5-FU), were found to reorganize

systemic immunity in patients with cancer. For example, oxaliplatin

induces the systemic release of ectoenzyme-expressing extracellular

vesicles (EVs) from B cells and ATP from cancer cells, leading to the

production of adenosine, which contributes to CD8+ T cell

dysfunction (72). In addition, in response to 5-FU, circulating

proinflammatory factors secreted by myeloid and CD4+ T cells

promote tumor progression (73, 74). Whether these impairments

also occur in patients with GC needs further clinical study.
4 Potential for clinical application

4.1 Roles of systemic immunity in
cancer progression

Multiple decades of research have demonstrated that the immune

system has both cancer-promoting and cancer-inhibiting functions, the

process of which is referred to as cancer immunoediting and comprises

three phases: elimination, equilibrium and escape (75). However, the

conceptual development has been based mainly on the TME, whereas

the role of systemic immunity has been less considered. For successful

cancer cell elimination by natural and therapeutically induced

anticancer immunity, intact peripheral immunity is a critical

determinant, as the majority of steps of the tumor-immune cycle,

including tumor antigen presentation, effector cell priming,

proliferation and trafficking, occur outside the TME (76). Therefore,
Frontiers in Immunology 05
when the progression of effector cells is blocked or cancer drainage

lymph nodes are resected, immunotherapeutic efficacy is abrogated (77,

78). On the other hand, through various secreted factors, many cancers

can disrupt hematopoiesis extensively and drive circulating immune

cells toward accomplices to facilitate tumor progression (10). In

addition to preresident cells, the majority of cancer-infiltrated

immune components circulate from the periphery and participate in

the development of an immunosuppressive TME. For example, a

strong association was observed between the levels of peripheral and

intratumoral neutrophils, indicating that the expanded immature

neutrophils in the peripheral blood of GC patients also infiltrate

cancer tissues, resulting from the high expression of molecules

involved in neutrophil recruitment and plasticity modulation (79).

Furthermore, perturbed systemic immunity is involved in many steps

of the cancer invasion-metastasis cascade. For example, cancer-edited

immune cells induce the formation of premetastatic niches that are

conducive to the survival and proliferation of cancers before their

arrival (80). During trafficking in the circulation, cancer cells are

protected and supported by many immune components, including

neutrophils and platelets (81, 82) (Figure 2).

Because of its critical roles and extensive perturbations that

occur during cancer progression, the potential of systemic

immunity for GC detection, efficacy prediction, prognosis and

therapy has been extensively investigated (Figure 3).
4.2 Detection

As mentioned above, compared with healthy subjects, GC

patients exhibit extensive alterations in peripheral immune

components. Owing to their low cost and noninvasive
FIGURE 2

Roles of systemic immunity in gastric cancer progression. On the one hand, intact peripheral immunity is essential for the anticancer immune
response, as the majority of steps of the tumor-immune cycle occur outside the tumor microenvironment (TME). On the other hand, dysregulated
systemic immunity promotes cancer progression through immunosuppressive TME development, premetastatic niche (PMN) formation and
circulating tumor cell protection. Breg, regular B cell; cDC, classical dendritic cell; MHC, major histocompatibility complex; NET, neutrophil
extracellular trap; NK, natural killer; PMN, premetastatic niche; TME, tumor microenvironment; TCR, T-cell receptor; Treg, regular T cell.
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accessibility, the potential of these alterations as biomarkers for GC

detection has been explored. For example, the serum MIC-1 is

significantly elevated in early GC, and the performance of early GC

detection was 72.9% (83). A diagnostic model including CEA,

CA724, IL-6, IL-8, and TNF-a showed the potential to screen for

GC, including patients with early-stage disease (84). Peripheral

immune cells and indices derived from them also have diagnostic

value for GC (41, 59, 85). In addition, the preoperative NLR is

significantly correlated with the presence of peritoneal metastasis,

especially for type 4 or diffuse type 3 cancers, which may have

potential in decision-making regarding staging laparoscopy (86).

Despite these promising findings, the application of these

biomarkers for the screening and identification of high-risk

populations for GC is still lacking. First, all the data were

obtained from retrospective cohorts, the majority of which had

small sample sizes and were not validated prospectively or

externally. Second, the cut-offs used to define high or low levels

varied across studies, impeding the development of an optimal

method for generalization. Third, peripheral immune components

are widely affected by various factors, leading to low specificity for

the detection of GC. Therefore, systemic immunity-related
Frontiers in Immunology 06
biomarkers may be utilized as supplements rather than methods

to screen for GC independently.
4.3 Efficacy prediction

Treatment for GC, including surgery, chemotherapy, radiotherapy,

targeted therapy and immunotherapy, puts patients at risk for

complications and adverse effects. Therefore, exactly predicting the

efficacy and possible adverse effects has long been a goal in the

management of GC. Postoperative complications following radical

gastrectomy, especially infections, including anastomotic leakage,

pneumonia and intraabdominal infections, are significantly

associated with oncological outcomes (65, 87). Therefore, various

prediction models, including indices based on components of

systemic immunity, have been established to assess the risk of

postoperative complications. For example, preoperative peripheral T

cells, B cells, NK cells, the NLR, the PLR and the LMR are predictive of

prolonged hospital stays and infectious complications (88, 89).

Furthermore, the postoperative systemic immune state is also a

predictor of infectious complications (90). Nevertheless, whether
FIGURE 3

Clinical applications of systemic immunity in gastric cancer. Biomarkers based on systemic immunity can be utilized for gastric cancer detection,
therapy response prediction and prognosis. Various strategies have been shown to preserve or activate systemic immunity in patients with gastric
cancer. Furthermore, cells from systemic immunity are the main sources of cell-based immunotherapies. CAR, chimeric antigen receptor; COX-2,
cyclooxygenase; DC, dendritic cell; NK, natural killer.
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preoperative strategies based on these prediction models will improve

the short-term outcomes of GC patients has not been investigated. In

terms of chemotherapy and immunotherapy alone or in combination,

which are used to reduce recurrence following radical gastrectomy or to

prolong the survival of patients with advanced disease, the predictive

value of biomarkers based on peripheral immune components has also

been suggested. The PLR obtained prior to chemotherapy might be a

useful indicator for predicting chemosensitivity, whereas the baseline

IL-6 concentration and progressive decrease in the PLR

during treatment can predict the therapeutic benefits of

immunochemotherapy (91–94). Furthermore, baseline circulating

Treg cell levels can predict the probability of the occurrence of

immunotherapy-related adverse events (95). In the future, if these

predictive biomarkers can be regularly and dynamically monitored,

personalized therapy for GC can optimize therapeutic effects while

reducing adverse events.
4.4 Prognosis

A precise prognosis is critical in the management of GC

patients, as more intensive therapy may be needed for patients

with negative prognostic factors. Therefore, numerous host and

cancer features, including biomarkers based on systemic immunity,

have been explored as prognostic factors. In general, higher levels of

peripheral immune components involved in anticancer responses

indicate better survival. For example, IL-2 and INF-g levels are

positively associated with overall survival (OS), whereas IL-6, IL-10

and IL-17A levels are negatively associated with OS (15, 24, 96). C-

reactive protein (CRP), an indicator of ongoing proinflammatory

response, was negatively associated with OS in a meta-analysis (97).

In addition, ICOS+Foxp3+ Treg cells and pDCs in the peripheral

blood could predict poor clinical outcomes in GC patients (98). In

the literature, the most studied systemic immune biomarkers with

prognostic value in GC are indices derived from multiple immune

components, such as the NLR, PLR, LMR and prognostic

nutritional index (PNI). Table 1 summarizes the results of the

meta-analyses on the prognostic value of these indices in patients

with GC receiving different treatment strategies. These meta-

analyses consistently suggest that higher levels of neutrophils,

monocytes and platelets and lower levels of lymphocytes are

significantly associated with poor OS (Table 2) (91, 97, 99–122).

Nevertheless, despite tremendous interest in the development of

predictive and prognostic biomarkers derived from peripheral

immunity, no such biomarkers have shown sufficient ability to

guide bedside decision-making. First, because of the wide range of

cutoff values used across studies, the optimal values of these indices

as prognostic factors are unknown and need to be standardized

through multicenter and international studies. Second, systemic

immunity is continuously influenced by various factors, including

cancer treatment. Although changes in some indices during therapy

have shown better prognostic value, studies dedicated to

monitoring the dynamics of systemic immune biomarkers in GC

are limited (15, 24). Finally, the predictive and prognostic values of

systemic immune biomarkers may be context dependent.

For example, the prognostic value of circulating cytokines was
Frontiers in Immunology 07
exclusive to patients receiving immunotherapy in combination

with chemotherapy but not to patients receiving chemotherapy

alone (15). Therefore, further studies are needed to fully understand

why the prognostic value of systemic immune components in GC

patients is inconsistent across different contexts.
4.5 Harnessing systemic immunity for
GC therapy

Although the exact mechanisms underlying the contribution of

systemic immunity to GC progression remain unknown, its distinct

perturbations during carcinogenesis and prognostic value suggest

that systemic immunity has the potential to be harnessed for GC

therapy. As surgery and anesthesia are two of the strongest inducers

of the stress response, studies have focused on exploring strategies to

alleviate their effects on systemic immune function and inflammation

(123). Compared with open gastrectomy, laparoscopic-assisted

gastrectomy (LAG) has a weaker inflammatory response and less

impact on the immune system. Furthermore, in recent years, the

noninferiority of LAG in long-term survival has been strongly

established for both early and locally advanced GC patients (124–

127). Therefore, LAG is recommended for GC patients without

contraindications to reduce the detrimental effects of surgery on

systemic immunity. In terms of anesthesia and analgesia, the available

evidence supports the combination of epidural analgesia and general

anesthesia, which has the potential to improve systemic immunity

while inhibiting the inflammatory response. As discussed above,

activation of the sympathetic nervous system contributes the most

to postoperative immune suppression; therefore, intraoperative

administration of esmolol, a b-receptor blocker, decreases the

inflammatory response and CRP production in a dose-dependent

manner. In addition to these examples, various other perioperative

strategies, including analgesics, anesthesia at low depths, goal-

directed fluid therapy, enhanced recovery after surgery (ERAS),

probiotics and enteral immunonutrition, have also shown beneficial

effects on systemic immunity, and their regular administration is

worthy of further exploration (Table 2) (128–147).

In addition to these strategies aimed at preserving systemic

immunity through a reduction in the stress response and

inflammation following radical gastrectomy, another means to

harness systemic immunity for GC therapy is to directly enhance

the anticancer response. One unsophisticated strategy involves the

use of recombinant cytokines, such as IL-2, type I IFNs and

granulocyte-macrophage colony-stimulating factor (GM-CSF),

which can activate peripheral lymphocytes and improve survival

(148–151). However, cytokine therapy has been discontinued in

recent years, largely owing to severe systemic adverse events. Cell-

based immunotherapies, such as cytokine-induced killer cell (CIK)

therapy, dendritic cell-based vaccines, and chimeric antigen receptor

(CAR) T or NK cell therapy, mainly involve obtaining therapeutic

cells from the periphery and have shown promising results in both

preclinical and clinical trials in GC (152–157). Another class of

immunotherapy, ICIs, has revolutionized the field of oncology in

the past decade. Many clinical trials have demonstrated the efficacy of

ICIs in patients with GC (4–7). Although many studies have focused
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on the TME to investigate the mechanisms underlying the anticancer

effects of ICIs, the involvement of systemic immunity has also been

noted in recent years. As persistence in the TME rapidly drives

dysfunctional differentiation of T cells, effective immunotherapies

need continuous new effector T-cell infiltration. Several studies have

shown that the de novo immune response mainly occurs in the

periphery (158–160). In GC patients, ICIs have been shown to

increase the levels of circulating IL-2 and IFN-g and enhance the

activation of central/effector memory and effector subsets of CD4+/
Frontiers in Immunology 08
CD8+ T cells (15, 161). As discussed above, traditional therapies for

GC have detrimental effects on systemic immunity; therefore, pairing

chemotherapy with ICIs significantly improved the oncological

outcomes of GC patients with GC (4–7). In contrast, the

application of immunotherapy during the perioperative timeframe

has been limited by the established and theoretical risks pertinent

around the time of surgery. However, as perioperative immune

preservation or stimulation have various advantages, further

investigations are needed to develop potential strategies.
TABLE 1 Meta-analyses investigating the prognostic value of systemic immune biomarkers in gastric cancer.

Author Year Treatment Index Cutoff

OS

ReferenceNo. of
comparison

HR (95% CI) I2

Szor DJ 2018 Surgery NLR 1.40-4.02 7 2.89 (2.41-3.47) 85% (99)

Mellor KL 2018 Surgery NLR 1.44-5.5 5 2.31 (1.40-3.83) 84% (100)

Li LL 2023 Immunotherapy NLR 2.5-5.0 10 2.13 (1.70-2.66) 13% (101)

Zhang S 2023 Immunotherapy NLR 2.5-5.0 9 1.98 (1.67-2.35) 19% (102)

Matsas S 2024 Immunotherapy NLR 2.5-5.0 10 2.11 (1.70-2.62) 45% (103)

Du S 2021
Systemic
therapy

NLR 2.5-5.0 36 1.78 (1.59-1.99) 80% (104)

Sun J 2016 Not specific NLR 1.44-5 19 1.98 (1.75-2.24) 53% (105)

Kim MR 2020 Not specific NLR 1.44-5.0 24 1.61 (1.45-1.78) 51% (91)

Xu Z 2016 Surgery PLR 126-184 7 0.99 (0.89-1.10) 12% (106)

Matsas S 2024 Immunotherapy PLR 139.41-267.00 5 1.77 (1.44-2.17) 25% (103)

Chen J 2015 Chemotherapy PLR 2.15-5.0 9 2.16 (1.86-2.51) 65% (107)

Hu G 2022 Chemotherapy PLR 107.7-284 11 1.60 (1.41-1.82) 39% (108)

Peng X 2022 Chemotherapy PLR 107.7-284 16 1.43 (1.25-1.64) 54% (97)

Zhang X 2014 Not specific PLR NR 10 1.83 (1.62-2.07) 30% (109)

Zhang X 2020 Not specific PLR 10.1-350 44 1.37 (1.26-1.49) 80% (110)

Cao W 2020 Not specific PLR 108-350 28 1.37 (1.24-1.51) 68% (111)

Gu X 2016 Not specific PLR 126-235 14 1.30 (1.10-1.52) 69% (112)

Ma JY 2018 Surgery LMR 3.15-5.15 6 0.66 (0.54-0.82 75% (113)

Mei P 2023 Immunotherapy LMR 2.8-5.0 7 0.51 (0.33-0.79) 55% (114)

Yang Y 2016 Surgery PNI 45-49.7 10 1.89 (1.67-2.13) 7.40% (115)

Li J 2019 Surgery PNI 40-52 15 1.81 (1.56-2.09 49% (116)

Yang X 2024 Not specific SII 315-1185.2 27 1.53 (1.34-1.75) 72.40% (117)

Fu S 2021 Not specific SII 320-802 12 1.53 (1.27-1.83) 77% (118)

Qiu Y 2021 Not specific SII 320-802 8 1.40 (1.08-1.81) 88% (119)

Yin J 2023 Surgery CONUT 1-5 14 1.75 (1.55-1.96) 12% (120)

Takagi K 2019 Surgery CONUT 1-5 4 1.85 (1.38-2.48) 54% (121)

Pang H 2024 Surgery ALI 24.81-40.50 4 1.45 (1.02-1.73) 0% (122)

Kim MR 2020 Not specific CRP 0.3-13.9 11 1.65 (1.27-2.15) 86% (91)
ALI, advanced lung cancer inflammation index; CONUT, controlling nutritional status; CRP, C-reactive protein; HR, hazard ratio; LMR, lymphocyte-to-monocyte ratio; NLR, neutrophil-to-
lymphocyte ratio; OS, overall survival; PLR, platelet-to-lymphocyte ratio; PNI, prognostic nutritional index; SII, systemic immune-inflammation index.
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TABLE 2 Randomized controlled studies and meta-analyses investigating strategies to preserve or enhance systemic immunity following
radical gastrectomy.

Author Years Design Intervention Control Findings Reference

Ma Z 2016 RCT LAG, 129 OG, 107 Higher CD3+, CD4+, CD4+/CD8+ cell ratios and lower IL-6, TNF
and CRP in LAG group

(128)

Aoyama T 2014 RCT LAG, 13 OG, 13 No significant difference between two groups in WBC count, IL-6
and CRP

(129)

Fujii K 2003 RCT LAG, 10 OG, 10 Higher TNF-g production, lower IL-4 production in LAG group (130)

Shu ZB 2015 Meta-analysis LAG, 427 OG, 240 LAG is associated with significantly lower serum IL-6 levels (131)

Lv AQ 2022 RCT Low anesthetic
depth, 40

High
anesthetic
depth, 40

The perioperative release of inflammatory factors (IL-6, IL-10) is
less in patients with low anesthetic depth

(132)

Liu W 2019 RCT Epidural and
general
anesthesia, 54

General
anesthesia, 53

Lower IL-1, IL-8, hs-CRP and TNF-a, while higher CD3+, CD4+

and CD4+/CD8+ cell ratio in the epidural and general
anesthesia group

(133)

Wang L 2019 RCT Epidural and
general
anesthesia, 20

General
anesthesia, 20

CD3+ T cells decreased less, while IL-4 and IL-6 increased less in
the epidural and general anesthesia group

(134)

Kun L 2014 RCT Epidural and
general anesthesia

General
anesthesia

Less suppression of NK cell activity, higher IL-2 and IL-10, and
lower IL-1b and IL-6 in the epidural and general
anesthesia group

(135)

Konstantis G 2023 Meta-analysis Epidural and
general
anesthesia, 54

General
anesthesia, 53

Higher NK cells and CD4+ T cells in the epidural and general
anesthesia group

(136)

Liu R 2019 RCT Transversus
abdominis
plane, 30

General
anesthesia, 31

IL-6 and IL-10 were significantly lower in the transversus
abdominis plane group

(137)

Moon J 2023 RCT Dexmedetomidine,
42

Control, 42 The IL-6 levels at the end of the surgery was significantly lower
in the dexmedetomidine group

(138)

Zhu M 2021 RCT Quadratus
lumborum
block, 32

Control, 32 HMGB1, TNF-a, and IL-6 were significantly decreased after
surgery in the quadratus lumborum block group

(139)

Lao WL 2021 RCT Oxycodone, 30 Sufentanil, 30 Lower postoperative IL-6 while higher IL-10 in the
oxycodone group

(140)

Kim Y 2015 RCT Esmolol, 26 Control, 32 Esmolol decreased postoperative IL-6, IL-10, IL-4 and CRP (141)

Zang YF 2018 RCT ERAS, 20 Control, 20 Lower WBC, CRP, IL-6 in the ERAS group (142)

Tang A 2021 RCT Goal-directed fluid
therapy, 37

Conventional
fluids, 37

Lower CPR, IL-6 and PCT in the goal-directed fluid
therapy group

(143)

Miyachi T 2013 Surgery Cystine and
theanine, 15

Placebo, 18 Significantly lower IL-6, CRP, and neutrophils in the
intervention group

(144)

Cao W 2022 RCT Clostridium
butyricum, 47

Placebo, 45 Significantly reduced leucocytes, neutrophils, IL-1b, IL-6, and
TNF-a, markedly enhanced immunoglobulin and lymphocytes in
the intervention group

(145)

Fu H 2022 Meta-analysis Enteral
immunonutrition,
505

Standard
enteral
nutrition, 551

Higher proalbumin, IgM, and IgG in the enteral
immunonutrition group

(146)

Cheng Y 2018 Meta-analysis Enteral
immunonutrition,
297

Standard
enteral
nutrition, 286

Higher CD4+, CD4+/CD8+, IgM, IgG, and lymphocytes in the
enteral immunonutrition group

(147)
F
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CRP, C-reactive protein; ERAS, enhanced recovery after surgery; HMGB1, high mobility group box 1 protein; IL, interleukin; LAG, laparoscopic-assisted gastrectomy; NK, natural killer; OG,
open gastrectomy; PCT, procalcitonin; RCT, randomized controlled study; TNF, tumor necrosis factor; WBC, white blood cell.
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5 Conclusions and future perspectives

With the progression of GC, not only the local but also the

systemic immune landscape are strongly perturbed by cancer. In

addition, traditional treatments for GC, including radical

gastrectomy and chemotherapy, also have detrimental effects on

systemic immunity. Although effector immune cells in the TME are

the key executors, the localized anticancer immune response cannot

persist without continuous communication with the periphery. As

systemic immunity closely participates in the progression of GC

and is a critical determinant of the efficacy of other therapeutic

methods, systemic immunity can be widely applied as a biomarker

for GC detection, prediction and prognosis and can be harnessed

for GC treatment.

Nevertheless, the majority of currently available data are limited

to exploring the perturbations and their associations with

therapeutic efficacy and oncological outcomes, and few studies

have elucidated the underlying mechanisms involved. Although

some critical progress has been made in other cancer types, because

systemic immune alterations vary across cancer tissue origins,

disease stages and patient characteristics, more studies are needed

to clarify the distinct immune states and critical mechanisms

involved in directing treatment development to restore an

anticancer immune macroenvironment. In recent years, the

progress of single-cell technologies has provided many impressive

transcriptomic, epigenomic and proteomic data on the immune

microenvironment, which can also be applied to assess alterations

in systemic immunity. In addition to traditional measurement

methods, such as peripheral blood cell counts, circulating

molecule detection and flow cytometry, these single-cell

technologies can inform the distinct types of systemic immune

organization in GC, which will aid personalized treatment designed

to pair with traditional therapies to alleviate their detrimental effects

on systemic immunity or to directly activate the anticancer response

of systemic immunity. Although various strategies have been shown

to improve the function of systemic immunity in GC patients

during traditional therapy, the translation of these effects into

survival benefits is limited, and further studies are needed to

determine the underlying mechanisms involved. On the other

hand, immunotherapy has achieved impressive success in patients

with GC; however, the majority of patients obtained no benefit from

this therapeutic strategy. Previous studies on the mechanisms

underlying resistance to immunotherapy or biomarkers for

patient stratification have focused mainly on the TME. Owing to

the close associations with effective anticancer immune responses,

strategies harnessing systemic immunity to improve the oncological

outcomes of patients with GC warrant further research.
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Herrera-Goepfert R, et al. Circulating blood levels of IL-6, IFN-g, and IL-10 as potential
diagnostic biomarkers in gastric cancer: a controlled study. BMC Cancer. (2017) 17:384.
doi: 10.1186/s12885-017-3310-9

17. Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet
Oncol. (2013) 14:e218–28. doi: 10.1016/S1470-2045(12)70582-X

18. Ashizawa T, Okada R, Suzuki Y, Takagi M, Yamazaki T, Sumi T, et al. Clinical
significance of interleukin-6 (IL-6) in the spread of gastric cancer: role of IL-6 as a
prognostic factor. Gastric Cancer. (2005) 8:124–31. doi: 10.1007/s10120-005-0315-x

19. Tonouchi H, Miki C, Tanaka K, Kusunoki M. Profile of monocyte
chemoattractant protein-1 circulating levels in gastric cancer patients. Scand J
Gastroenterol. (2002) 37:830–3. doi: 10.1080/gas.37.7.830.833

20. Amedei A, Della Bella C, Silvestri E, Prisco D, D'Elios MM. T cells in gastric
cancer: friends or foes. Clin Dev Immunol. (2012) 2012:690571. doi: 10.1155/2012/
690571
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