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Background: Sepsis is a life-threatening organ dysfunction condition produced

by dysregulation of the host response to infection. It is now characterized by a

high clinical morbidity and mortality rate, endangering patients’ lives and health.

The purpose of this study was to determine the value of Long chain non-coding

RNA (LncRNA) RP3_508I15.21, RP11_295G20.2, and LDLRAD4_AS1 in the

diagnosis of adult sepsis patients and to develop a Nomogram prediction model.

Methods: We screened adult sepsis microarray datasets GSE57065 and

GSE95233 from the GEO database and performed differentially expressed

genes (DEGs), weighted gene co-expression network analysis (WGCNA), and

machine learning methods to find the genes by random forest (Random Forest),

least absolute shrinkage and selection operator (LASSO), and support vector

machine (SVM), respectively, with GSE95233 as the training set and GSE57065 as

the validation set. Differentially expressed genes (DEGs), weighted gene co-

expression network analysis (WGCNA), boxplot statistical analysis, and ROC

analysis by Random Forest, Least Absolute Shrinkage and Selection Operator

(LASSO), and Support Vector Machine (SVM) machine learning methods were

used to identify characteristic genes and build the Nomogram Prediction model.

Results: GSE95233 yielded a total of 1069 genes, 102 of which were sepsis-

related and 22 of which were non-sepsis controls. GSE57065 yielded a total of

899 genes, with 467 up-regulated and 432 down-regulated, including 82 sepsis-

related genes and 25 non-sepsis control genes. WGCNA analysis excluded

outlier samples, leaving 2,029 genes for relationship analysis between sepsis-

and non-sepsis patient-associated LncRNA network representation modules, as

well as Wein plots of differential genes versus genes in key modules of weighted

co-expression network analysis to analyze gene intersections. Machine Learning

found the sepsis-related characteristic LncRNAs RP3-508I15.21, RP11-295G20.2,

LDLRAD4-AS1, and CTD-2542L18.1. The datasets GSE95233 and GSE57065 were

analyzed using Boxplot against the screened genes listed above, respectively.

The p-value between the sepsis and non-sepsis groups was less than 0.05,

indicating that anomalies were statistically significant. CTD-2542L18.1 in dataset
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GSE57065 had an AUC value of 0.638, which was less than 0.7 and did not

indicate diagnostic significance, but RP3-508I15.21, RP11-295G20.2, and

LDLRAD4-AS1 had AUC values more than 0.7 after ROC analysis. All four

sepsis-associated LncRNA ROC analyses in dataset GSE95233 exhibited AUC

values more than 0.7, indicating diagnostic significance.

Conclusion: LncRNAs RP3_508I15.21, RP11_295G20.2, and LDLRAD4_AS1 have

some utility in the diagnosis and treatment of adult sepsis patients, as well as

some reference importance in guiding the diagnosis and treatment of

clinical sepsis.
KEYWORDS

the significance of long chain non-coding RNA, signature genes, sepsis, diagnosis and
management, prediction model
Introduction

Sepsis is a systemic life-threatening organ dysfunction

syndrome with high mortality and severe complications, and

despite significant advances in diagnostic and therapeutic

approaches to sepsis over the last few decades, the disease

continues to be a major life-threatening public health problem

globally (1). With the in-depth study of the pathogenesis and

therapeutic methods of sepsis, we continue to understand the

complexity and diversity of sepsis multi-organ injury, whose

pathogenesis has yet to be fully elucidated, and that the immune

system plays an important role in the development and progression

of sepsis, which primarily includes the activation and regulation of

inflammatory cells, the host defense response, and the breakdown

of immune tolerance (2–4). Among them, macrophages are one of

the most important inflammatory cells. They initiate the

inflammatory response and secrete a variety of inflammatory

mediators by recognizing and phagocytosing endotoxins released

by Gram-negative bacteria. These inflammatory mediators are

capable of eliciting systemic inflammatory responses and exerting

toxic effects on the visceral organs (5). In addition, immune cells

such as T cells and B cells have a role in the development and

progression of sepsis by stimulating or restraining the inflammatory

response. Furthermore, immunological tolerance breakdown, such

as aberrant immune responses to self-antigens or flora, plays a

crucial role in the development of sepsis (6).

Recent research has shown that long chain non-coding RNAs

(lncRNAs) play a vital role in inflammation and immunological

modulation (7, 8). LncRNAs Their function and expression may be

associated with the start and progression of sepsis. As a result, the

purpose of this research is to investigate the roles and mechanisms

of RP3_508I15.21, RP11_295G20.2, and LDLRAD4_AS1 in sepsis

and develop a Nomogram prediction model.
02
Materials and methods

Microarray dataset collection and data
process the adult sepsis microarray

The adult sepsis microarray dataset was screened from the

GEO database with GSE95233 as the training set, which

included 102 genes associated with sepsis and 22 genes from

the non-sepsis control group. The validation set was GSE57065,

which contained 82 sepsis-associated genes and 25 non-sepsis

control genes.
LncRNA-related differentially
expressed genes

We transformed the probe into gene symbol in each dataset

based on the platform’s annotation file, when there were multiple

probes mapped to the same gene symbol; the mean value of probes

was selected as the gene expression value. Differentially expressed

genes (DEGs) between sepsis and control were analyzed via the

“limma package” in R software, with the following cutoff for

adjustment: p value < 0.05 and FC (fold changes) >1.5. The

intersection of DEGs and LncRNA-related genes was visualized

by the Venn plot.
Weighted gene co-expression network
analysis of LncRNAs with associated sepsis

We utilized R’s “clusterProfiler” package to perform weighted

gene co-expression network analysis (WGCNA) of LncRNAs linked

with sepsis. Through its study, we investigated the biological
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functions and clinical diagnostic significance of the related LncRNA

potential biomarkers in sepsis progression.
Machine learning algorithms were used to
identify LncRNA signature biomarkers
related with sepsis, as well as boxplot
statistical and ROC analyses

Random Forest, Least Absolute Shrinkage and Selection

Operator (LASSO), and Support Vector Machine (SVM) machine

learning algorithms were utilized to identify the distinctive genes, as

well as boxplot statistics and ROC analysis.
Building predictive models

Rtudio software was used to do predictive modeling and

produce column Nomogram line graphs based on variables in the

created clinical model.
Statistical analysis

GSE95233The diagnostic accuracy of three hub genes was

analyzed with receiver operating characteristic curves (ROC) and

expressed as the area under the ROC curves (AUROC) and 95% CI.

The sensitivity, specificity, positive predictive value (PPV), negative

predictive value (NPV),positive likelihood ratio (PLR), and negative

likelihood ratio (NLR) for each gene were calculated. The optimal

cutoff values of hub genes were obtained when Youden’s index was
Frontiers in Immunology 03
fixed at the maximum value. Spearman’s rank tests or Pearson

correlation coefficient were used to analyze the associations between

hub genes and immune cells and immune checkpoint genes.
Results

Identification of LncRNA-related degs
between sepsis and control

A total of 899 genes were obtained from the adult sepsis

microarray dataset GSE57065, 467 of which were up-regulated

and 432 of which were down-regulated (Figure 1A). Of these, 82

were connected to sepsis and 25 were control genes unrelated to

sepsis (Figure 1B). The dataset GSE95233 yielded 1069 genes in

total, of which 102 were associated to sepsis and 22 were control

genes unrelated to sepsis (Figure 1C). Genes from both datasets that

indicate sepsis and those that do not were subjected to principal

component analysis independently.

Weighted gene co-expression network analysis for LncRNAs

linked to sepsis. Constructing a weighted gene co-expression

network using screened DEG expression data.
Removal of outlier samples

Sample clustering analysis was performed using DEG

expression data in the samples to exclude outliers and guarantee

the accuracy of the results, and the GSM2500377 samples were

finally eliminated (Figure 2A), sample dendrogram, and trait

heatmap (Figure 2B).
FIGURE 1

(A) Volcano plots of GSE57065. (B) Principal component analysis (PCA) scatterplot showing the relationship between septic versus non-septic
patients in dataset GSE57065. (C) Principal component analysis (PCA) scatterplot showing the relationship between septic versus non-septic patients
in dataset GSE95233.
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Network construction and modularization

Following the typical selection criterion of 4 for scale-free

networks, which is the lowest power of the scale-free topology

fitting index of 0.9 (Figure 2C), the network was built and the

modules were separated to yield 11 valid modules (Figure 2D).
Frontiers in Immunology 04
After removing redundant genes, we kept 2,029 genes for

additional WGCNA analysis. Our goal was to identify genes that

are strongly linked to the development of sepsis and to obtain a

thorough understanding of the gene co-expression relationships

in sepsis. Gene expression among the six identified modules was

relatively independent as illustrated by the topological overlap
FIGURE 2

(A) Sample clustering to detect outliers. (B) Sample dendrogram and trait heatmap. (C) Scale-free fit index analysis and average connectivity analysis
for different soft threshold powers. (D) Hierarchical clustering dendrogram of channel catfish, Ictalurus punctatus, genes with dissimilarity. Each
single leaf in the tree represents a single gene, the major tree branches constitute distinct modules and are shown in different colors.
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matrix (TOM) plot of 2029 genes, suggesting that each module

was independently validated (Figure 3A). The connectivity

degree of eigengenes was analyzed to further quantify the

similarity of coexpression. The six modules yielded two main

clusters, with two sets of three modules each (brown, red and

turquoise modules, and black, blue and yellow modules),
Frontiers in Immunology 05
followed by cluster analysis (Figure 3B). The blue and yellow

modules, and red and turquoise modules were found to have

higher adjacency values based on the heatmap plot of the

adjacencies (Figure 3C).

Relationship between sepsis and non-sepsis patients’ LncRNA

network representation modules (Figure 4A). Differential gene vs
FIGURE 3

(A) Heatmap plot of the gene network in channel catfish, Ictalurus punctatus. The heatmap shows the Topological Overlap Matrix (TOM) among all
genes in the analysis. Light color represents high adjacency, and darker color represents low adjacency. The left and top sides indicate the gene
dendrogram and module assignment. (B) Hierarchical cluster analysis of the genes in different modules. (C) connectivity level analysis of the genes in
different modules. Within the heatmap, red represents a positive correlation and blue represents a negative correlation. Squares of red color along
the diagonal are the meta-modules.
FIGURE 4

(A) depicts the characteristic gene network that represents the relationship between modules; the horizontal coordinate represents the grouping,
the vertical coordinate represents the module, and each cell contains the corresponding correlation and P-value; the darker color represents a
higher absolute value of P. (B) represents the intersection of differential genes with a weighted co-expression network that examines the important
module genes.
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weighted co-expression network analysis of essential module genes

using a Wayne diagram (Figure 4B).
Machine learning

Rtudio software was used to do random forest analysis

(Figures 5A, B), LASSO analysis (Figures 5C, D), and Support

Vector Machines analysis (Figure 5E) on the screened genes, as well

as to generate important genes for various Machine Learning

approaches. Wayne plots (Figure 5F) were used to detect the

LncRNAs linked with sepsis: RP3-508I15.21, RP11-295G20.2,

LDLRAD4-AS1, and CTD-2542L18.1.

GSE95233 and GSE57065 datasets were evaluated against the

screened sepsis-related characteristic LncRNAs RP3-508I15.21,
Frontiers in Immunology 06
RP11-295G20.2, LDLRAD4-AS1, and CTD-2542L18.1 using

Boxplot analysis, respectively, and p-values of less than 0.05

anomalies existed between sepsis and non-sepsis groups.

Statistical significance (Figures 6A, B).

The datasets GSE95233 and GSE57065 were ROC assessed

against the screened sepsis-related characteristic LncRNAs RP3-

508I15.21, RP11-295G20.2, LDLRAD4-AS1, and CTD-2542L18.1,

with an AUC value greater than 0.7 considered diagnostic.

Figure 7A depicts the ROC analysis of genes connected to dataset

GSE57065, with CTD-2542L18.1 having an AUC value of 0.638,

which is less than 0.7 and does not indicate diagnostic significance,

and AUC values of RP3-508I15.21, RP11-295G20.2, and

LDLRAD4-AS1 being larger than 0.7, indicating diagnostic

significance. Figure 7B depicts the ROC analysis of the genes

linked with the GSE95233 dataset, and the AUC values of the
FIGURE 5

(A) Randomized forest trees. The horizontal axis represents the tree and the vertical axis represents the error rate. Red represents sepsis samples,
green represents non-sepsis samples, and black represents overall samples. (B) Lollipop chart of genes associated with sepsis. The Cross-Validation
results of Lasso. (C) The coefficients paths at each step of Lasso; (D) The Misclassification Error of Lasso. (E) The model achieves the highest cross-
validation accuracy with around 10 features. Adding more features beyond 10 does not significantly improve the accuracy and might even cause
slight fluctuations. (F) Wayne diagrams of key genes for 4 Machine Learning methods.
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four sepsis-related distinctive LncRNAs were all larger than 0.7,

indicating diagnostic relevance.
Building predictive models

After Boxplot and ROC analyses, RP3-508I15.21, RP11-295G20.2,

and LDLRAD4-AS1 genes with diagnostic significance were selected

for prediction modelling and column Nomogram line plotting using

Rtudio software. The diagnostic equation built for model was Logit(P)

=7.43 + 1.71*(LDLRAD4_AS1)+0.57*(RP11_295G20.2)+0.79*

(RP3_508I15.21) based on the basis of multivariable logistic

regression and the result was displayed as nomogram shown in

Figure 8. In the nomogram, each variable has a corresponding score

according to the value, which was read out by drawing a line straight

upward from each predictor to the point axis, and after calculating the

total scores of the 3 variables, the risk of diagnosing a patient as having

sepsis was intuitively demonstrated.
Evaluation of forecasting models

Calibration of the prediction model is an important indicator

for determining the predictive accuracy of the clinical prediction

model. It indicates how well the model’s anticipated and actual

values agree. A well-calibrated model has a high predictive accuracy,

but a poorly calibrated model may exaggerate or underestimate the

likelihood of an event. The calibration graph (Figure 9) shows a C-

value of 0.73, indicating that the predictive model is effectively

calibrated. The X-axis (Predicted Pr{Group=sepsis}) shows the

likelihood of the model predicting sepsis. Y-axis (Actual

Probability): indicates the actual probability of sepsis. Dashed line

(Ideal): represents the calibration curve for the ideal case, i.e., the
Frontiers in Immunology 07
case where the predicted probability is exactly the same as the actual

probability. The ideal line is a 45 degree diagonal. Solid (Bias-

corrected): represents the calibration curve of the model after bias

correction. This line shows how the model actually performs with

different predicted probabilities. Dotted (Apparent): represents the

model calibration curve without bias-correction.
Evaluation of predictive models for clinical
decision making

To analyze the prediction model’s usability and performance,

decision curve analysis (DCA) was used, and the decision curve was

drawn using the rmda package in Rtudio program, as shown in

Figure 10. The Y-axis (Standardized Net Benefit) displays the net

benefit of the model at various risk thresholds. X-axis (High Risk

Threshold): The High Risk Threshold shows the probability that the

model will be classified as high risk. The X-axis (High Risk

Threshold) displays the probability threshold for the model being

forecasted to be high risk. Second X-axis (Cost: Benefit Ratio): The

cost-benefit ratio, which compares the cost of a test or therapy to the

benefit. Line Descriptions: The red line (Nomogram model)

represents the net benefit of utilizing the Nomogram model. Grey

line (All): shows the net benefit if all patients are treated. The black

line (None) represents the net benefit assuming no patients were

intervened in.

Clinical impact curves were constructed using DCA to analyze

the number of patients classified as high risk based on the column

line graph, as well as the number of true positive patients at each

risk threshold. As shown in Figure 11, the X-axis (High Risk

Threshold) displays the high risk threshold, which ranges from 0

to 1.This threshold establishes the parameters for a person to be

classified high risk. The y-axis [Number high risk (out of 1000)]
FIGURE 6

(A) Dataset GSE95233; (B) Dataset GSE57065.
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shows how many persons out of 1000 are considered high risk. The

red solid line (Number high risk) represents the total number of

people classified as high risk at various high risk levels. The blue

dotted line (Number high risk with event) represents the total

number of patients classified as high risk with actual sepsis at

various high risk levels.
Discussion

In recent years, researchers have focused on the relevance of

lncRNAs in sepsis patients. lncRNAs can affect the inflammatory

response by modulating the expression of inflammatory mediators
Frontiers in Immunology 08
(9–11). Certain lncRNAs can modulate inflammatory variables

including IL-6 and TNF-a (12, 13), impacting the course of

sepsis. LncRNAs play a crucial role in the formation and function

of immune cells. They can alter the behavior of macrophages, T

cells, and B cells, which in turn influences the body’s immunological

response to infection (14, 15). Complex linkages between the

inflammatory response and immunological control in sepsis.

Sepsis causes immune cells to release cytokines such TNF-a, IL-1,
and IL-6, resulting in systemic inflammation. Activation of the

complement system increases the inflammatory response, causing

tissue damage (16, 17). Cytokine storms create positive feedback

loops that continuously activate the immune system and exacerbate

the inflammatory response (18, 19). In the early stages of sepsis, the
FIGURE 7

(A) Dataset GSE95233; (B) Dataset GSE57065.AUC values greater than 0.7 were considered diagnostic.
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patient’s immune system is engaged and hyperactive; however, as

sepsis progresses, high levels of inflammatory substances cause

death of immune cells, particularly monocytes and T cells, and

the body enters an immunosuppressive state (20–22). Immune cells

regulate lncRNAs, which influence illness changes in sepsis patients.

The ability of lncRNAs to modulate the processes of apoptosis and

autophagy is critical for controlling cellular damage and tissue harm

in sepsis (23, 24). Certain lncRNAs show drastically changed

expression levels in the blood of sepsis patients and can be used

as biomarkers for diagnosis and prognosis. For example, alterations

in the levels of lncRNA HOTAIR and MALAT1 in sepsis patients

were investigated (25).

In this work, we studied and analyzed using bioinformatic

analysis approach and determined that lncRNA RP3_508I15.21,

RP11_295G20.2, and LDLRAD4_AS1 were closely connected to

sepsis.RP11_295G20.2 controls gene expression by interacting with
Frontiers in Immunology 09
chromatin remodeling complexes that control genes involved in cell

proliferation, death, and stress responses (26). RP11_295G20.2

promotes tumor cell proliferation and survival by influencing the

expression of these genes in research on cancer and other

proliferative illnesses (27). Relevant investigations have

demonstrated that RP11_295G20.2 can influence the levels of

inflammatory mediators such as IL-6 and CRP via modulating

the expression of inflammation-related genes (28). Regulates the

expression of these mediators, which determines the inflammatory

response and course of sepsis.LDLRAD4_AS1 influences the

equilibrium of lipid metabolism in vivo by regulating the

expression of lipid metabolism-related genes, such as the low-

density lipoprotein receptor (LDLR) and its associated proteins

(29). In metabolic disorders like as atherosclerosis and obesity,

LDLRAD4_AS1 influences lipid metabolism pathways through the

modulation of low-density lipoprotein receptor-associated protein 4
FIGURE 8

Nomograms model for predicting the risk of sepsis.
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(LDLRAD4) expression (23). In immune-related diseases, such as

sepsis and autoimmune disorders, LDLRAD4_AS1 may influence

the strength and efficacy of immune responses by modulating

immune cell behavior (24). There are few research on

RP3_508I15.21, however the author’s current study discovered

that RP3_508I15.21 was much higher in the sepsis group than in

the non-sepsis group, and the difference was statistically significant.

This research group believes that RP3_508I15.21, by directly or
Frontiers in Immunology 10
indirectly modulating key molecules in the inflammatory signaling

pathway, may affect the intensity and duration of inflammation, as

well as the differentiation, activation, and migration of immune cells

and their function in the immune response, thereby regulating

inflammation expression and influencing the immune response in

sepsis. Further proof is required in animal or prospective research.

The methods of action of these lncRNAs in various diseases are

complicated and diverse, primarily controlling gene expression,

influencing inflammatory mediator levels, and modulating immune

cell activity. Although existing research has offered some early

evidence, the specifics of these systems require additional investigation.

Future research is likely to disclose more about the specific mechanisms

underlying these lncRNAs in sepsis. These lncRNAs’ unique expression

alterations during sepsis, inflammatory response, and immunological

damage have the potential to serve as diagnostic and prognostic markers.

By focusing on these lncRNAs, new therapeutic techniques can be

created to control inflammatory and immunological responses,

enhancing the treatment of sepsis and other disorders. Studying the

expression patterns of these lncRNAs in various patients would help to

personalize treatment and increase its precision and effectiveness.

With the rapid development of multi-omics technology, such as

genomics, proteomics, transcriptomics, immunomics, and others,

clinical applications of lncRNA in sepsis patients are now available.

LncRNA regulates gene expression, the inflammatory response, and

immunological control, which can provide in-depth insights into

pathophysiological mechanisms. LncRNA can also be detected in

bodily fluids such as blood, making it suited for non-invasive

diagnostics. LncRNAs can exhibit distinct expression patterns in

sepsis and have good diagnostic and prognostic value. However,

there are limitations. lncRNAs are diverse and functionally
FIGURE 11

The clinical impact curve of the nomogram prediction model.
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complicated, and their expression varies significantly across

individuals and illness stages, complicating model building. Many

lncRNAs’ biological functions remain unknown, limiting their

usefulness as biomarkers.
Conclusion

LncRNA RP3_508I15.21, RP11_295G20.2, and LDLRAD4_AS1

have some usefulness in the diagnosis and treatment of adult sepsis

patients, and they may be useful in guiding the precise diagnosis

and treatment of clinical sepsis.
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