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Introduction

Over the past several years, the field of oncology has seen rapid advances, generating a

comprehensive and intricate understanding of cancer. This body of knowledge has unveiled

cancer as a disease characterized by ongoing transformations across various physiological

and pathological processes. Based on these researches and findings, the hallmarks of cancer

have been delineated, providing a collection of essential functional attributes that human

cells undergo during their transition from a healthy state to a state of cancerous

proliferation. These attributes are pivotal for the cells’ capacity to initiate and sustain the

growth of malignant tumors. As of the latest updates, Prof. Hanahan and Weinberg have

identified a total of 14 hallmarks that characterize cancer (1–3). These hallmarks

encompass a range of cellular capabilities and adaptations, including sustaining

proliferative signaling, evading growth suppressors, resisting cell death, enabling

replicative immortality, and activating invasion & metastasis. They also address the

tumor’s interaction with the microenvironment, such as promoting genome instability &

mutation, inducing tumor-promoting inflammation, and deregulating cellular metabolism.

Furthermore, they highlight the importance of avoiding immune destruction, unlocking

phenotypic plasticity, undergoing nonmutational epigenetic reprogramming, and engaging

with polymorphic microbiomes, as well as the role of senescent cells in cancer development.

Contrary to once being viewed as discrete, the hallmarks of cancer are now recognized

as interrelated and mutually reinforcing processes. The intricate crosstalk between these

hallmarks is the subject of intense investigation, as elucidating their complex interactions

holds the key to understanding cancer’s adaptability and resistance to therapies. For

instance, research has highlighted that the gut microbiota has the capacity to both amplify

the benefits of immunotherapy by fine-tuning the body’s antitumor immune response via

checkpoint inhibitors (4, 5), and also, in some cases, to impede the immune system’s ability

to fight off cancer (6), underscoring the close connection between microbes and tumor

immunity. Meanwhile, microbiota-derived metabolites could affect anti-tumor immunity.
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It was demonstrated that the maladaptation of the host-microbiota

metabolic interaction, particularly the activation of the host’s urea

cycle metabolism and the imbalance of beneficial and pathogenic

bacteria, played a pivotal role in the development of colorectal

cancer, which uncovered the interplay between microbiota,

metabolism and tumor immunity. A series of studies on the role

of acetyl-CoA in pancreatic cancer has revealed that KRAS

mutations in pancreatic cancer mediate the production of acetyl-

CoA, which subsequently upregulates the expression of oncogenes

through histone acetylation, thereby promoting the development of

pancreatic cancer (7, 8), emphasizing the crosstalk between

nonmutational epigenetic reprogramming and cellular

metabolism. These insights are crucial for developing a more

integrated view of cancer biology.

Recently, Jia et al. published a research article in Cell entitled

“Microbial metabolite enhances immunotherapy efficacy by

modulating T cell stemness in pan-cancer”, revealing the

microbiota-metabolism-epigenetics-immunity axis in cancer. This

finding promises a more holistic understanding of the crosstalk

between cancer hallmarks, moving us closer to a paradigm where

cancer is viewed not as a collection of independent pathologies, but

as a multifaceted disease shaped by a dynamic and interconnected

biological network.
From microbiota to immunity

In order to investigate the microbiota related to sensitivity in

immune checkpoint blockade (ICB) therapy, the research team

established a Mc38 (colorectal cancer cell line derived from mice)

subcutaneous tumor xenograft model for treatment with anti-PD-1

antibodies. Previous studies have reported that the gut microbiota

could modulate immunotherapy (9, 10). The results of fecal

transplantation test confirmed that the composition of gut

microbiota was associated with ICB immunotherapy responsiveness.

Then, they collected the fecal samples from the responder or non-

responder mice and analyzed for microbial composition by 16S rRNA

sequencing, revealing a significant positive association between the

presence of Lactobacillus johnsonii (L.j.) and the efficacy of anti-PD-

1 treatment.
Microbiota’s metabolic impact
on ICB therapy of cancer

To determine if the observed effects were due to L.j. itself or its

metabolic byproducts, the researchers conducted a series of

experiments. They treated mice with various forms of L.j.,

including heat-killed bacteria, sonically disrupted samples, the

original growth medium (MRS), and the conditional culture

medium (Lj. CM), alongside live cultures of L.j. Notably, it was

the group treated with the conditional medium (Lj. CM + anti-PD-

1) that exhibited an immunotherapeutic response similar to that of

the group treated with live L.j. (L. j + anti-PD-1), suggesting that the

metabolites derived from L.j. contributed to bolster the response to
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ICB therapy. By utilizing plasma liquid chromatography-tandem

mass spectrometry (LC-MS/MS), they identified significant

enhancement in tryptophan metabolism in the group treated with

live L.j. The experiments utilizing a tryptophan-deficient diet have

confirmed the indispensable role of tryptophan in the L.j.-mediated

promotion of ICB therapy responsiveness. Subsequently, the

research team employed targeted metabolomics to identify indole-

3-propionic acid (IPA) as a key metabolite in the tryptophan

metabolism pathway. This was followed by a series of in vivo

experiments that affirmed IPA’s capacity to augment the efficacy

of immune checkpoint blockade (ICB) therapy. Notably, treatment

with IPA led to an increased infiltration of CD8+ T cells into the

tumor microenvironment, thereby enhancing the responsiveness to

ICB treatment, which was not observed in Rag1-deficient mice (the

mice lack mature B and T cells). Together, the above findings

indicated that L.j.-derived IPA could promote the responsiveness to

ICB therapy, dependent on CD8+ T cells.

However, tryptophan is typically metabolized through the

pathway involving indole-3-pyruvate acid (IPYA), indole-3-lactic

acid (ILA), indole-3-acrylic acid (IA), and ultimately IPA (11). In

the conditional medium of L. johnsonii, only ILA was detected, and

experiments showed that ILA alone could not sensitize ICB therapy.

Consequently, the research team delved further into the reasons

behind L. johnsonii’s production of IPA, discovering that C.

sporogenes (C. s.) could convert ILA into IPA. This finding was

corroborated through corresponding animal experiments, which

confirmed that the production of IPA by L. johnsonii is contingent

upon the metabolic activity of C. sporogenes.
The epigenetic bridge between
metabolism and immunity

To elucidate the specific mechanisms by which IPA sensitizes

ICB therapy through CD8+ T cells, the research team conducted

single-cell RNA sequencing (scRNA-seq), single-cell T cell receptor

sequencing (scTCR-seq), and single-cell ATAC sequencing

(scATAC-seq) analyses on CD8+ T cells from tumor-bearing mice.

The findings revealed that IPA reduces the proportion of naive CD8+

T cells while increasing the ratios of progenitor exhausted T cells

(Tpex) and effector T cells (Teff). Conditional knockout mouse

experiments with TCF7—a marker for Tpex cells—demonstrated

that the sensitization of ICB therapy by IPA is dependent on Tpex

cells. Given previous reports that Tpex cells are primarily regulated by

histone modifications (12), the authors performed an integrated

analysis of scRNA-seq and scATAC-seq data, uncovering that IPA

upregulates the chromatin accessibility at the super-enhancer of the

Tcf7 gene. Subsequently, further confirmation was achieved through

Chromatin Immunoprecipitation (ChIP), Cleavage Under Targets

and Release Using Nuclease (CUT&RUN), and Cleavage Under

Targets and Tagmentation (CUT&Tag) assays, which substantiated

that IPA enhances the level of H3K27 acetylation at the Tcf7 super-

enhancer. In summary, IPA, produced by L. johnsonii and C.

sporogenes, upregulates Tcf7 expression through histone

acetylation, promotes the differentiation of CD8+ T cells into Tpex,
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and thereby strengthens anti-tumor immunity and the

responsiveness to ICB therapy. These results collectively confirm

the existence of the microbiota-metabolism-epigenetics-immunity

axis, highlighting its critical role in the modulation of

cancer immunotherapy.
Microbiota-derived IPA in
immunotherapy of CRC organoids
and other types of cancer

In the culmination of their study, the authors explored the role of

microbiota-derived IPA in enhancing the efficacy of ICB therapy at a

pan-cancer level. Utilizing transplantable models of breast cancer and

melanoma, as well as the MMTV-PyMT spontaneous breast cancer

model and the cecum orthotopic implantation model, they further

confirmed that IPA can increase the infiltration of Tpex cells within the

tumormicroenvironment, thereby sensitizing ICB treatment for breast,

melanoma, and colorectal cancers. Additionally, the research team

established an air-liquid interface (ALI) patient-derived organoids

(PDOs) system, which includes a more comprehensive immune

microenvironment and additional matrix components, allowing for a

more precise representation of immunotherapy dynamics (13). Within

the ALI-PDOs, it was similarly observed that IPA could enhance the

infiltration of CD8+ T cells in tumors and upregulate the expression of

effector proteins in Teff cells. These findings collectively validate the
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potential of microbiota-derived IPA to reinforce the effectiveness of

tumor ICB therapy across various cancer types, laying a robust

foundation for its potential clinical application.

Discussion

This study presents a groundbreaking revelation that the gut

microbiota, specifically L.j. and C.s., can synthesize IPA to enhance

the infiltration of CD8+ T cells into the tumor microenvironment.

The augmentation of Tpex and Teff cell populations through histone

acetylation mechanisms significantly sensitizes cancer to ICB

therapy. The findings are robust and solid. Most importantly, this

study also provide substantial evidence supporting the role of the

microbiota-metabolism-epigenetics-immunity axis in modulating

cancer immunotherapy responses (Figure 1).

Previous studies have laid the groundwork for understanding the

microbiota’s role in cancer. Early research established the gut

microbiota’s influence on cancer development, with subsequent

studies revealing its impact on the efficacy of chemotherapy and

radiotherapy. More recent investigations have highlighted the

microbiota’s capacity to modulate the immune response, particularly

in the context of ICB therapy. The discovery that specific microbial

metabolites, such as butyrate (14) and indole-3-lactic acid (ILA) (15),

can directly shape the epigenetic landscape of immune cells,

particularly CD8+ T cells, has opened new horizons in our

understanding. These metabolites not only enhance the cytotoxic T
FIGURE 1

The microbiota-metabolism-epigenetics-immunity axis in cancer. Ac, Histone acetylation.
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cell response but also reprogram tumor metabolism, potentially

reversing therapeutic resistance. The identification of Lactobacillus

iners (16) and its role in conferring chemoradiation resistance

through lactate-induced metabolic rewiring, as well as the

ameliorative effects of L. plantarum-derived ILA on tumorigenesis,

underscores the microbiota’s metabolic byproducts as key regulators of

the tumor microenvironment. This study synthesizes these insights,

offering a comprehensive perspective on how the microbiota’s

metabolic output can be harnessed to fine-tune immunotherapies

and improve patient outcomes.

The findings from this study point towards several promising

directions for future research. First, in addition to the gut microbiota,

the recently discovered intratumoral microbiota (17) merits attention

and exploration for its role in the progression and therapy of cancer.

Second, there is a need to further explore the specific mechanisms by

which microbiota-derived metabolites interact with the host’s

metabolic and epigenetic machinery. Third, the development of

strategies to modulate the gut microbiota for therapeutic benefit,

such as through probiotics or dietary interventions, warrants

investigation. Finally, the translational potential of these findings

into clinical practice, including the use of IPA as an adjuvant in ICB

therapy, must be rigorously evaluated in clinical trials.

In conclusion, the research by Jia et al. provides a compelling

case for the microbiota-metabolism-epigenetics-immunity axis in

cancer. The study’s findings not only enhance our understanding of

the intricate relationship between the microbiota and cancer

immunotherapy but also offer a foundation for the development

of new therapeutic strategies. As we continue to unravel the

complexities of this axis, we move closer to a paradigm where

cancer is viewed as a multifaceted disease shaped by a dynamic and

interconnected biological network, offering a more holistic

approach to cancer treatment.
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