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Cancer dissemination to lymph nodes (LN) is associated with a worse prognosis,

increased incidence of distant metastases and reduced response to therapy. The

LN microenvironment puts selective pressure on cancer cells, creating cells that

can survive in LN as well as providing survival advantages for distant metastatic

spread. Additionally, the presence of cancer cells leads to an immunosuppressive

LN microenvironment, favoring the evasion of anti-cancer immune surveillance.

However, recent studies have also characterized previously unrecognized roles for

tumor-draining lymph nodes (TDLNs) in cancer immunotherapy response,

including acting as a reservoir for pre-exhausted CD8+ T cells and stem-like

CD8+ T cells. In this review, we will discuss the spread of cancer cells through the

lymphatic system, the roles of TDLNs in metastasis and anti-cancer immune

responses, and the therapeutic opportunities and challenges in targeting

LN metastasis.
KEYWORDS
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Introduction

Cancer cell invasion of lymphatic vessels (1, 2) and the presence of metastatic cancer

cells in sentinel LNs indicate that cancer has progressed to an advanced stage, which can

guide treatment options and impact the overall prognosis (3–7). A higher number of

affected LNs is associated with an increased risk of cancer recurrence and a worsened

survival rate in many cancer types, including melanoma (8, 9), breast cancer (10, 11), head

and neck cancer (12), prostate cancer (13, 14), and colon cancer (15, 16). Due to the

significant importance of LN status in cancer staging, sentinel LN biopsy (SLNB) is

generally recommended as standard staging practice in various solid tumors (4, 17–21).

Further, in patients with clinically evident disease in lymph nodes, complete LN dissection
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(CLND) is often recommended to remove potentially involved LNs.

These clinical decisions assume that surgical removal of metastatic

LNs could inhibit the further spreading of cancer cells. However,

findings from several recent clinical trials have challenged this

hypothesis (22–28). These studies indicate that CLND does not

significantly improve the overall survival rates in melanoma and

breast cancer patients with early-stage disease and positive SLNB.

The lymphadenectomy procedures can lead to severe post-operative

complications, including infections and lymphedema (29). Thus,

the decision to surgically remove LNs warrants careful

consideration. Clinical decision-making has become further

complicated by the emerging significance of TDLNs for tumor

antigen presentation (30), T cell priming (31–33), immunotherapy

response (34–36), cancer vaccines (37–39) and CAR-T therapy (40–

42), underscoring the need to consider the implications of LN

removal on immunotherapy.

Lymphatic transport of antigen-presenting cells (APCs) and

soluble tumor antigens to TDLNs is critical for the initiation of an

anti-cancer immune response (43). The TDLNs are the first site

where dendritic cells present tumor-antigens to CD8+ T cells to

prime and activate them (44–46). The activated CD8+ T cells are

subsequently recruited to the primary tumor sites. However, most

intratumoral CD8+ T cells become exhausted rapidly due to the

immunosuppressive tumor microenvironment (47). The circulation

of TCF-1+ stem-like CD8+ T cells between the primary tumor and

TDLNs is critical for systemic and intratumoral immune responses

(47). Notably, the presence of stem-like CD8+ T cells in the TDLNs

has been associated with durable treatment responses (31).

Moreover, anti-PD-1 monoclonal antibodies not only act at the

primary tumor site but also display additional activity in the

periphery (48–50), particularly in the TDLNs (30, 51, 52),

promoting the magnitude and quality of tumor antigen-specific

CD8+ T cell responses in TDLNs (33).

To evade the important role of TDLNs in anti-cancer

immunity, the progression and metastasis of cancer cells to LNs

cause an immunosuppressive LN microenvironment (53–59). The

elevation of Type I and Type II interferon-signaling pathways in

cancer cells promotes their survival by evading NK cell killing (57)

and suppressing effector T cell function by enhancing the

accumulation of T regulatory (Treg) cells in the LNs (59).

Moreover, the LN microenvironment accelerates epigenetic (60)

and metabolic reprogramming of cancer cells (61, 62) that promote

resistance to ferroptosis, enhancing survival and metastasis through

the blood (62). Understanding how cancer cells escape immune

surveillance in the LN, and how interactions between cancer cells

and the LN microenvironment lead to immune evasion, is crucial to

making clinical decisions aimed at preventing metastasis and

enhancing anti-cancer immune responses.

It is likely in early-stage cancers, TDLNs play a crucial role in

the generation of anti-cancer immune responses and the prevention

of cancer spreading. The presence of TDLNs can create a favorable

solution for neo-adjuvant and adjuvant therapy following surgical

intervention. However, in late-stage cancers, the infiltration of

cancer cells results in an immunosuppressive microenvironment

within LNs, which will favor immune evasion and secondary

metastases. Of note, patients with advanced cancers are likely to
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carry distal metastases, which are the primary cause of cancer-

related mortality. In such cases, the treatment strategies are likely to

target systemic metastases, while the removal of metastatic LNs and

targeting of non-metastatic draining LNs may potentially augment

the effectiveness of immune checkpoint blockade (ICB) treatment

(52, 63). In this review, we discuss the roles of TDLNs in cancer

metastasis, the impact of cancer cell progression and invasion on

the LN immune microenvironment and the function of TDLNs in

immunotherapy, as well as the opportunities and challenges in

targeting LN metastasis for improving patient care.
Cancer metastasis in the
lymphatic system

Lymphangiogenesis in cancer

Tumor growth stimulates both angiogenesis (64) and

lymphangiogenesis (65–70), facilitating cancer metastasis through

the blood circulation and lymphatic vasculature. Tumor

lymphangiogenesis is a prognostic indicator for increased risk of

LN metastasis in various cancers, including melanoma (71), head

and neck cancer (72–74), and breast cancer (66). Cancer cells and

inflammatory cells in the tumor microenvironment secrete

lymphangiogenic factors, such as VEGF-C (65, 66), VEGF-D (67),

PDGF-BB (69), IGF-1 and IGF-2 (75), HGF (76, 77), FGF-2 (78),

interleukin-1 (79), and COX-2 (80), promoting the proliferation

and dilatation of peritumoral lymphatics, thereby favoring their

metastatic spread (Figure 1). In several types of tumors, including

fibrosarcoma and melanoma, lymphangiogenesis occurs mainly in

the tumor margin. Inside tumors, lymphatic vessels are compressed

(68, 81), possibly due to the solid stress exerted by growing cancer

cells (32, 44, 45, 55, 56, 68, 82–86), but functional lymphatic vessels

in the tumor periphery remain and can transport antigen and

metastatic cancer cells. The presence of peritumoral lymphatic

vessels accelerates LN metastasis in patients with head and neck

cancer by accelerating lymphatic intravasation (72) and actively

promotes cancer cell transport to LNs in preclinical models via

chemoinvasion that utilizes chemokine signaling pathway such as

CCR7 – CCL21 (87, 88), CXCR4 – CXCL12 (89), and CCL1-CCR8

(90) (Figure 1).

Lymphatic vessels also play a critical role in transporting antigens

and antigen-presenting cells to LNs to initiate an adaptive immune

response. Lymphatic endothelial cells can also archive and present

antigens (91, 92). However, instead of enhancing tumor antigen

transportation and immune cell trafficking to the TDLNs, tumor-

associated lymphatic endothelium can impede anti-cancer T-cell

response and promote cancer cell immune evasion and metastasis

(93–97) (Figure 1). In the tumor microenvironment, infiltrating CD8

+ T cells produce IFN-g which drives the expression of PD-L1 on

lymphatic endothelial cells (LECs) (94). The presence of PD-L1 on

LECs induces T cell tolerance through PD1/PD-L1 interaction and

lack of co-stimulation (98), thus restricting CD8+ T cell activation

and reducing their accumulation in the tumor microenvironment

(95). Additionally, PD-L1 on LECs in the LN prohibited LEC

proliferation, protected them from apoptosis, and regulated LN
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expansion and contraction during inflammation (99). In a murine

model of B16F10 melanoma expressing both VEGF-C and chicken

ovalbumin (OVA), overexpression of VEGF-C in cancer cells

promotes lymphangiogenesis in both primary tumors and TDLNs,

leads to CD8+ T cell immune tolerance via LEC cross-presentation

(Figure 1), protects tumors against preexisting anti-cancer immunity,

and promotes the local elimination of OVA-specific CD8+ T cells

(93). Mice lacking dermal lymphatic vessels (K14-VEGFR3-Ig mice)

with B16F10 intradermal tumors have reduced spontaneous lung

metastasis and enhanced tumor infiltration of cytotoxic CD8 T cells

(96). The presence of tumor-associated lymphatic vessels also

promotes the exit of CD8+ T cells via the CXCL12 – CXCR4

chemotaxis, reducing the retention of tumor-specific CD8+ T cells

(97). Pharmacologically blocking CXCR4 or genetically depleting

CXCL12 in LECs enhances CD8+ T cell retention and promotes anti-

cancer immunity (97).

While lymphangiogenesis is associated with cancer metastasis

and poor prognosis, it also improves the therapeutic benefit of

immune checkpoint inhibitors. In both murine melanoma models

and patients with melanoma, the presence of tumor lymphatic

vessels showed a strong correlation with a local inflammatory

response (96). Despite the immunosuppressive microenvironment

of lymphangiogenic tumors mediated in part by LEC antigen

presentation-induced T cell tolerance (94, 95, 98), they are more

sensitive to systemic immunotherapy due to the elevation of CCL21

in LECs, which promotes the retention of naïve T cells and DCs in

lymphangiogenic tumors via CCL21/CCR7 chemokine axis (100).
Frontiers in Immunology 03
Of note, in the B16F10 melanoma model, a high density of effector

T cells in the tumor promoted LEC apoptosis via the IFN-g
signaling pathway (92). Subsequently, the decline of tumor

lymphatic vessel density restricted lymphatic drainage (92), which

might prevent the egress of tumor-specific CD8+ T cells (97). Taken

together, cancer-associated lymphatic vessels can potentially drive

cancer progression, but also be utilized to improve anti-

cancer immunotherapies.
The impact of cancer cell migration on the
lymphatic system

The lymphatic vascular system is a low-pressure, unidirectional

circulation system that plays a critical role in tissue fluid

homeostasis, tissue regeneration, lipid absorption and

transportation, as well as immune surveillance (43, 101).

Lymphatic vessels can be divided into initial (capillaries), pre-

collecting, and collecting lymphatic vessels (43, 85, 102). The

tissue interstitial fluid and macromolecules enter the lymphatic

system through initial lymphatic vessels to form lymph and

subsequently drain to the collecting lymphatic vessels and LNs.

Lymph eventually transports back through the thoracic duct to re-

enter the blood (43).

The initial lymphatic vessels are composed of a single thin layer

of LECs, forming an oakleaf-like shape with button-like junctions

between them (103). The low-pressure characteristic of lymphatic
FIGURE 1

Cancer cell metastasis through the lymphatic system.During cancer progression, cancer-derived cytokines such as VEGF-C, PDGF-BB, IGF1/2, HGF,
FGF2, Interleukin 1 (IL1B), and COX-2 promote lymphangiogenesis. Subsequently, lymphangiogenesis accelerates the egress of T cells and
suppresses T cell activation via LEC cross-presentation and tolerance. The elevation of VEGF-C drives the expression of CCL21 in LECs, enhancing
the chemoinvasion of cancer cells into the lymphatic vasculature. Additionally, chemotactic signals such as CXCR4-CXCL12 and CCR8-CCL1
promote lymphatic metastasis. Lymphangiogenesis increases the transport of cancer cell-derived proteins, exosomes, and metabolites to the TDLN,
creating pre-metastatic niches that favor cancer cell invasion. The presence of CD11b+Gr1+ myeloid cells in the tumor-draining collecting lymphatic
vessels suppresses lymphatic contraction and reduces tumor-antigen transportation to the lymph nodes.
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vasculature, along with the button-like junctions of the initial LECs,

plays an important role in antigen transportation and dendritic cell

(DC) trafficking (104). The initial LECs constitutively express

CCL21 to actively recruit DCs via CCL21-CCR7 chemotaxis

(105). However, the button-like junction and the presence of

CCL21 in LECs also open a path for cancer cells to enter

lymphatic vessels (87, 88). Additionally, the initial lymphatic

vessels permit the delivery of cancer-derived cytokines (106), shed

tumor-derived factors (107), metabolites (108), and exosomes (109–

111) to LNs. Consequently, these processes remodel non-

hematopoietic cells in the LN (112–114), creating a pre-metastatic

lymphovascular niche in the LNs to facilitate cancer invasion.

In the collecting lymphatic vessels, the LECs are interconnected

by tight zipper-like junctions and are surrounded by lymphatic

muscle cells (103, 115). In addition, the collecting lymphatic vessels

also contain intraluminal valves to prevent backflow (116), thus

allowing the unidirectional propulsion of lymph. The collecting

lymphatic vessels exhibit autonomous tonic and phasic contraction,

driving the lymph flow. However, during cancer progression, the

accumulation of inducible nitric oxide synthase positive (iNOS+)

and CD11b+Gr1+ myeloid cells in the peritumoral region

suppresses the contraction of tumor-draining collecting lymphatic

vessels (117) (Figure 1), which might diminish tumor antigen

transportation and DC trafficking to the TDLNs, reducing the

immune response (118). The reduction of tumor-draining

lymphatic vessel contraction could lead to the elevation of

interstitial fluid pressure in primary tumor sites (119, 120), which

might drive cancer cells to migrate toward functional lymphatic

vessels that are mainly positioned in the tumor margin (68). Of

note, in vitro experiments demonstrated that the increased pressure

can trigger cancer cells to create autocrine gradients of CCR7

ligands and secrete them into the extracellular matrix (ECM),

subsequently driving cancer LN metastasis via CCR7-dependent

chemotaxis in the direction of flow toward functional lymphatic

vessels (121). The extent to which tumor-derived factors can

directly suppress lymphatic muscle cell contraction requires

further investigation.
Stromal adaptations in tumor-draining LNs

The LN stromal cells provide a framework structure that

maintains the niches for immune cells, acts as a backbone for

immune cell migration, and forms a conduit system to filter

antigens in the lymph (122–125). In addition, the LN stromal

cells also provide survival signals and soluble factors that can

nourish immune cells to generate strong immune responses (126,

127). The LN stromal cells can be subdivided into FRCs, LECs,

blood endothelial cells (BECs), and double-negative (DN) cells

(126), based on their anatomical location and gene expression.

Furthermore, some blood vessels in the lymph node are

morphologically and functionally specialized vessels with thick

endothelial cells called high endothelial venules (HEVs) (128).

HEVs express high levels of addressins, such as PNAd and

MAdCAM-1, which bind L-Selectin/CD62L on lymphocytes and

support the migration of naïve lymphocytes from the bloodstream
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into lymph nodes (128, 129). The FRCs are mainly located in the T

cell and B cell zones, with high expression of podoplanin (PDPN)

but diminished or absent CD31 endothelial cell marker gene

expression (122). The LECs are positioned in the subcapsular

sinus, the interfollicular ridges and the medullary sinus (114, 123,

125, 130), expressing both PDPN and CD31. The BECs are positive

for CD31 but lack PDPN gene expression (131). Advancements in

single-cell RNA sequencing have characterized previously

unrecognized spatial heterogeneity and immune functions of

stromal cells in the lymph nodes (114, 122, 123, 125, 130, 131),

suggesting that the disintegration of the highly organized stromal

cell structure will impair the anti-cancer immune responses (132).

We have shown that the growth of metastatic breast cancer cells in

LNs imposes solid stress on HEVs and prevents the infiltration of T

cells into the metastatic lesions (56) (Figure 2). Moreover, in both

4T1 breast cancer and B16F10 melanoma models, LN LECs

undergo structure and gene expression remodeling even before

cancer cell invasion (113). Tumor invasion causes the expansion of

the FRC network and the down-regulation of CCL21 and IL-7,

leading to immunosuppressive features (112). In human

lymphoma, the transcriptomic remodeling of non-hematopoietic

cells has been reported, including the upregulation of CD70 in the

medulla stromal cells which drives the accumulation of CD27-

positive malignant B cells in the medullary regions (114). Taken

together, stromal cell remodeling in LNs is one of the key events

that precedes and occurs during LN metastasis and lymphoma

progression (Figure 2). Uncovering the heterogeneity and plasticity

of stromal cells in both immune-activated and immune-suppressed

lymph nodes offers potential diagnostic markers to complement

lymph node biopsy in clinical settings.
Metabolic adaptations during
lymphatic metastasis

Metabolic reprogramming supports the diverse energetic and

proliferative demands of cancer cells but also creates unique

metabolic shifts that can influence disease progression and

therapeutic targets. Tumors exhibit heterogeneous metabolic

functions driven by a combination of cell-intrinsic factors and

extrinsic influences from the tumor microenvironment (133–135).

Metabolic and lipidomic processes significantly influence cancer

cell progression and metastasis (136). For example, metabolic

pathway alterations in cancer cells, such as increased lactate

uptake and amino acid metabolism shifts, support metastasis and

cancer progression (137, 138). Moreover, cancer cells upregulate

antioxidant pathways to maintain redox balance amidst oxidative

stress and mitochondrial dysfunction, crucial for their survival

(139–141). Metabolism also plays a critical role in altering

immune cell responses, thus exacerbating cancer progression

(134, 142). Cancer cells can secrete metabolites and lipids that

alter the function of surrounding fibroblasts and compromise

immune cell function (143). For example, lipid droplet

accumulation in cancer cells has been shown to inactivate

immune signaling molecules and foster a hospitable environment

for cancer cell progression (144). Additionally, lipids
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suchas prostaglandins can modulate immune responses and

promote angiogenesis, further supporting tumor growth and

metastasis (145).

Although metabolomic and lipidomic techniques are now being

applied to understand the role of metabolites and lipids in the

lymph node microenvironment related to cancer metastasis, much

remains to be explored. Innovations in these technologies have

enabled profiling from low cell number samples (146, 147), allowing

for the study of both cancer cell and immune cell populations from

metastatic sites including TDLNs. Recent work utilizing these low

cell number metabolomic and lipidomic techniques has shown that

the distinct microenvironment of the lymph induces metabolic and

lipidomic alterations of cancer cells which enhances the

establishment of secondary metastases (62). The lymph fluid of

mice has higher levels of glutathione and oleic acid, and less free

iron compared to plasma. These conditions reduce cancer cell lipid

oxidation and promote resistance to ferroptosis in lymph node

metastases in both immunocompromised mice with humanized

melanomas and immunocompetent mice with melanomas.

Metabolomic analysis revealed that melanoma cells in the lymph

compared to blood exhibited increased lipid metabolism; in

particular, melanoma cells in lymph had higher oleic acid content

in membrane phospholipids. The acyl-CoA synthetase long-chain

family member 3 (ACSL3), which is critical in converting fatty acids

into fatty acyl-CoA esters, enables cancer cells in the lymph to

incorporate oleic acid in the cell membrane to protect them from

ferroptosis (62).
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Within the context of lipidomic dependencies in lymph nodes,

recent studies have shown that a subpopulation of pre-metastatic

oral carcinoma cells expresses high levels of the fatty acid receptor

CD36 and lipid metabolism genes (148). These cells rely on dietary

lipids to promote metastasis, and blocking CD36 significantly

inhibited lymph node metastasis, underscoring the critical role of

lipid metabolism in the metastatic process (148). Further

comparative transcriptomic and metabolomic analyses of primary

and LN-metastatic tumors in mice with melanoma found that LN

metastases require a metabolic shift toward fatty acid oxidation

(FAO) (61). Yes-associated protein (YAP) is selectively activated in

metastatic lesions in LNs, which leads to increased transcription of

genes in the FAO signaling pathway. Genetic deletion of YAP or

pharmacological inhibition of FAO suppressed LN metastasis in

mice (61). Furthermore, tumor-derived lactic acid alters the

metabolic status of TDLN stroma to facilitate metastasis (108).

These studies show that metastatic cancer cells in lymph nodes

compared to cancer cells from the primary tumor undergo

metabolomic and lipidomic alterations that confer survival

advantages for metastasis. Considering that current cancer

diagnoses primarily rely on features observed in cancer cells at

primary sites, gaining a deeper understanding of the lipidomic and

metabolic adaptations that occur during LN metastasis could offer

novel solutions to prevent the spread of cancer cells. The

advancements in single-cell transcriptomics and spatial

metabolomics provide novel solutions to address the metabolic

evolution of cancer and immune cells during LN metastasis.
FIGURE 2

The remodeling of TDLN microenvironment and cancer cells.The invasion of cancer cells leads to the remodeling of stromal cells in the lymph
nodes, and cancer cell growth imposes solid stress, which compresses high endothelial venules (HEVs), preventing T cell ingress. In the lymph
nodes, cancer cells also undergo metabolic reprogramming, such as the elevation of oleic acid, to gain resistance against ferroptosis in the
bloodstream. The unique microenvironment in the lymph nodes drives cancer cell-intrinsic interferon signaling pathways, causing the elevation of
MHC class I and MHC class II in cancer cells. This leads to resistance to NK cell killing and the accumulation of Treg cells in TDLNs through
anergic mechanisms.
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LN metastasis and systemic metastasis

Different models and mechanisms of cancer metastasis have

influenced clinical practice, including the role of LN metastases as

predictors of distant metastasis. LN involvement has been

historically considered a crucial step that preceded further

metastasis, but contemporary insights suggest that distant

metastases may not solely originate from LN-seeded cells. In the

prevalent sequential progression model, cancer cells first spread to

regional LNs and then disseminate to distant organs via the

lymphatic system (149). In this model, LN metastasis serves as an

important prognostic factor and triggers lymphadenectomy to

prevent tumor cells from spreading further to distant organs (16,

19, 21, 150–152). However, in colorectal cancer (153–155) and

breast cancer (156–158), evolutionary analysis of synchronous LN

metastases and distant metastases indicates that only a small

portion of patients share clonal ancestry between their LN

metastases and distant metastases. In colorectal cancer, ~65% of

lymphatic and distant metastases arose from independent subclones

in the primary tumors, whereas ~35% of cases shared a common

subclone origin (153, 155). Evolutionary analysis of matched breast

cancer primary and metastatic tumors from 10 patients

demonstrates the presence of both monoclonal and polyclonal

origins of metastasis (156). Taken together, these data suggest

that both direct hematogenous metastasis from the primary

tumor and sequential progression from LNs can occur. Being able

to determine which processes are occurring in an individual patient

is a current unmet challenge.

Evolutionary studies of cancer in solid tumors reveal that LN

metastases display higher levels of genetic diversity than distant

metastases (154, 159), suggestive of their polyclonal nature (160). In

colorectal cancer, LN metastases exhibit higher levels of inter-lesion

and intra-lesion diversity than distant metastases (154).

Additionally, colorectal cancer LN metastases develop through a

wide evolutionary bottleneck, resulting in polyclonal and

polyphyletic phenotypes. Distant metastases form monophyletic

groups and have reduced clonality compared to LN metastases,

suggesting different evolutionary mechanisms between LN

metastases and distant metastases (154). A similar phenomenon

was observed using a molecular barcoding system in a murine

breast cancer spontaneous metastasis model, which showed LN

metastases have higher levels of clonal diversity than distant

metastases (159). These evolutionary studies reveal that fewer

clones of cancer cells from the primary tumor site can form

metastases in distant organs compared to TDLNs, which might

be attributed to the different selective pressures and

microenvironments in these organs, such as the varying

metabolites in distant organs (161, 162). Meanwhile, cancer cells

need to travel a longer distance to establish metastasis in distant

organs than in locoregional lymph nodes. Since, both human (153,

155) and murine (163, 164) LN metastases can seed distant

metastases, the abundance of heterogeneous cancer cell subclones

in LNs could potentially give rise to more treatment-resistant cancer

cells, such as the ferroptosis-resistant clones (62) or immune-

resistant clones (57, 59), which spread systemically and generate
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secondary metastases. Further study is needed to understand the

consequences of the greater diversity of LNmetastases, as well as the

selective pressures in different organs.

In the early stage of cancer progression, the sentinel LNs likely

retain anti-cancer immunity to prevent cancer cell intravasation

and metastasis through blood circulation. This hypothesis is

supported by the fact that both breast cancer (165) and

melanoma (166) patients with micrometastases (<= 0.1mm in

melanoma, and <=0.2mm in breast cancer) showed the same

clinical outcomes as patients with a negative sentinel LN biopsy.

However, in later stage cancer, TDLNs are largely immune

suppressed by soluble factors and exosomes from the primary

tumor and metastatic cancer cells (53–55, 59, 167–169). The

suppression of TDLNs leads to the induction of tumor antigen-

specific Treg cells and the reprogramming of leukocytes. Adoptive

transfer of leukocytes from metastatic lymph nodes into tumor-

naïve recipients that were then challenged with a model of

experimental metastasis showed enhanced progression of

metastases in the lung, suggesting systemic immunosuppression

caused by leukocytes from the metastatic lymph nodes (57). Thus,

the strong predictive ability of established LN metastases may be

due to the immune suppression induced by these lesions.
TDLNs in immunotherapy

TDLNs in anti-cancer immune response

In the last decade, the landscape of cancer treatment has

undergone significant changes, primarily driven by the progress

of immunotherapy. However, despite these advancements, a

significant challenge that persists is the subset of patients who are

resistant to or have limited response to immunotherapy (170),

particularly in patients with low tumor mutational burden and

immunogenic neoantigens (171, 172). Further, studies show that

about 20 ~ 30% of patients with metastatic melanoma initially

respond to immune checkpoint blockade treatment but eventually

develop resistance and relapse after therapy (173, 174). The

acquired resistance to ICB treatment might be due to cancer cell-

intrinsic and -extrinsic changes, including the loss of MHC class I

on cancer cells (175, 176), genetic mutations that diminish T-cell

infiltration (177, 178), or host microbiota (179–182). The

underlying mechanisms responsible for the lack of response

among patients are yet to be fully understood. Many researchers

have focused on investigating the impact of ICB treatment on the

interactions between immune cells and cancer cells in the tumor

microenvironment (170, 183–185), including the tertiary lymphoid

structures (186–190), as well as the T cell phenotypes in the

peripheral circulation (48, 50, 191–197). Recently, TDLNs have

received more attention due to their normal function as an immune

organ. Several studies demonstrated that TDLNs play a critical role

in anti-cancer immunity upon ICB treatment (30, 31, 33, 34, 36, 47,

51, 198, 199) (Figure 3). Traditionally, lymph node biopsy is

primarily employed for cancer staging and serves as a prognostic

marker in the clinic. These new studies suggest that examining the
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immune microenvironment phenotypes of lymph nodes might be

useful in predicting the efficacy of ICB treatment.

One key determinant of ICB treatment efficacy is the quantity

and quality of infiltrating CD8+ T cells identified before or during

the early stages of treatment (183). After ICB treatment, newly

generated CD8+ T cells that infiltrate the tumors displayed different

TCR clones compared to the pre-treatment intratumoral CD8+ T

cells (50, 197, 200, 201). T cell exhaustion is a state of dysfunction

that occurs during chronic infection and cancer. It is characterized

by reduced effector function, the expression of inhibitory receptors,

and specific transcriptional pathways that differ from those in

effector or memory T cells (202). These ICB pre-treatment CD8+

T cells in the tumors exhibit reduced effector function and lack of

proliferation after ICB treatment, indicating that the cells are

exhausted (201). In a clinical trial (NCT02919683) of patients

with head and neck squamous cell carcinomas of the oral cavity,

neoadjuvant anti-PD1 or anti-PD-1/anti-CTLA4 treatment

promoted the expansion of anti-cancer CD8+ T cell clones that

did not exist in the tumors before the treatment (197), suggesting

that these newly generated anti-cancer CD8+ T cells are derived

from the TDLNs and not from the expansion of pre-existing

exhausted CD8+ T cel ls in the tumor. Using Kaede

photoconvertible mice, experiments demonstrated that CD8+

effector T cells that enter and stay in the tumor develop an

exhausted phenotype within 72 hours, whereas non-effector TCF1

+ stem-like CD8+ T cells are continuously trafficked between the
Frontiers in Immunology 07
tumor and the TDLNs (47). In brief, the stem-like TCF1+ CD8+ T

cells do not form a stable population in the tumor; they

continuously egress to the TDLNs via lymphatic drainage (47, 97)

(Figure 3). From the TDLNs, these stem-like TCF1+ CD8+ T cells

travel through efferent lymphatics and then enter the blood

circulation and circulate back to the tumor to replenish this

population (47) (Figure 3). Analysis of CD8+ T cells from

primary human head and neck squamous cell carcinomas,

regional LNs and blood shows that the non-metastatic TDLNs are

the source of pre-exhausted CD8+ T cells (Tpex), which migrate to

the tumor (52). Similar findings were discovered in preclinical

animal models of lung cancer (31) and melanoma (199), in which

most tumor-specific CD8+ T cells in the TDLNs are functional and

exhibit a gene expression signature resembling that of stem-like

CD8+ T cells (31) or resident memory CD8+ T cells (199),

suggesting that the antigen presentation and T cell priming in

TDLNs is critical for the ICB treatment.

PD-1/PD-L1 checkpoint-blocking antibodies are thought to act

primarily in the tumor microenvironment, where PD-L1 is

expressed by tumor cells (174), myeloid cells (168, 203, 204),

LECs (94, 95, 98), blood endothelial cells (95), B cells (205, 206),

T cells (207), dendritic cells (30, 203) and NK cells (208, 209). An

evaluation of the role of TDLN in PD-1/PD-L1 checkpoint blockade

therapy in two mouse tumor models reveals that immune

checkpoint treatment induces CD8+ T cell accumulation in the

tumor-draining but not in non-draining LNs (34). Surgical removal
FIGURE 3

Tumor-draining lymph node in anti-tumor immune responses. TDLNs are the major site where dendritic cells (DCs) present tumor antigens to T
cells. Pre-exhausted CD8+ T cells (Tpex) are enriched in the TDLNs and expand after immune checkpoint blockade (ICB) treatment. For example, in
the TDLNs, tumor-specific PD-1+ T cells interact with PD-L1+ DCs. Administering PD-L1 inhibitors to TDLNs enhances anti-tumor T cell immunity
and accelerates the infiltration of Tpex CD8+ T cells into the tumor, leading to improved tumor control. The stem-like TCF1+ CD8+ T cells do not
form a stable population in the tumor. Instead, they continuously egress to the TDLNs via lymphatic drainage. From the TDLNs, they travel through
efferent lymphatics, enter the blood circulation, and then circulate back to the tumor, replenishing the population within the tumor.
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of these TDLNs abolished PD-1/PD-L1 checkpoint blockade-

induced tumor regression and was associated with decreased

immune infiltration in the primary tumors (34). Moreover, the

immunomodulator FTY720—which blocks the egress of

lymphocytes from secondary lymphoid organs and thymus by

agnostic activation of sphingosine 1 phosphate receptors (210)—

abrogated checkpoint therapy, suggesting that TDLNs function as

sites of T cell invigoration required for PD-1/PD-L1 checkpoint

blockade therapy (34). PD-L1 can interact with other binding

partners such as CD80 to form heterodimers on the same cell

(211, 212). In APCs, CD80 interacts with PD-L1 in cis to disrupt

PD-L1/PD-1 interaction between APCs and T cells, limiting the

PD-1 coinhibitory signal, while promoting CD28/CD80

interactions and enhancing T cell activation (213). Meanwhile,

the presence of PD-L1 on T cells may also interact with CD80 on

APCs (214) leading to tumor-promoting tolerance through varying

mechanisms (207). Notably, TDLNs are enriched for tumor-specific

PD-1+ T cells, which frequently interact with PD-L1+ conventional

dendritic cells (30). Targeting TDLNs with PD-L1 inhibitors

induces enhanced anti-cancer T cell immunity and accelerates the

infiltration of progenitor-exhausted T cells into the tumor, leading

to improved tumor control in mice (30) (Figure 3). Given that a

variety of cells in the lymph nodes possess the ability to express PD-

L1, including LECs (94, 95, 98), FRCs (215), dendritic cells (30,

203), macrophages, B cells, T cells, and NK cells (204, 208, 209),

understanding the impact of PD-1/PD-L1 immune checkpoint

blockade on these cells and their interactions with T cells in the

TDLNs might provide novel solutions to further enhance the

efficacy of immunotherapy. In summary, TDLNs are crucial for

the maintenance and trafficking of tumor antigen-specific Tpex and

stem-like CD8+ T cells. These cells can be primed and activated

after ICB treatment, enabling them to migrate to the tumor site and

exert their effector function on cancer cells.
Immune evasion in the LNs

Despite TDLNs being recognized as key organs in response to

immunotherapy and modulating anti-cancer immunity, emerging

data suggest that TDLNs are often immunosuppressed by cancer

cells. In melanoma, cancer cells inhibit the activation of different

DC subsets (169), including the CD5+ DC (58), and suppress

immune activation in the LNs. The accumulation of Treg cells in

TDLNs has been reported in several different types of solid tumors,

including breast cancer (55, 59, 216), lung cancer (53), colorectal

cancer (167), melanoma (57, 169), gastric cancer (217), head and

neck cancer (218), and cervical cancer (168). Recently, we showed

that the invasion of breast cancer cells in the LN blunts the CD4+

effector T cell proliferation and promotes the expansion of Treg

cells (59). Mechanistically, we uncovered that breast cancer cells in

the LN displayed high levels of interferon-induced gene signatures,

including a subpopulation of cancer cells that had MHC-II gene

expression and an absence of co-stimulatory molecules (Figure 2).

Of note, the presence of MHC-II in cancer cells is not restricted to

breast cancer. It has also been reported in other types of solid

tumors (219), including colorectal cancer (220), lung cancer (221,
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222), ovarian cancer (223) and melanoma (224, 225). Additionally,

MHC-II is present in LECs within tumors and lymph nodes (43,

226–228), as well as the cancer-associated fibroblasts in pancreatic

cancer (229). Without co-stimulatory signals on the antigen-

presenting cell (in this case the cancer cell), CD4+ T cells will not

differentiate into effector cells in response to antigens, which

prevents an effective immune response. Subsequently, we reported

that the MHC-II+ cancer cells suppress Th1 responses and promote

the expansion of Tregs in the LNs. Furthermore, we found that

depletion of MHC-II in 4T1 breast cancer cells significantly reduced

LN metastasis and attenuated Treg cell expansion in the TDLNs. In

contrast, overexpression of Ciita—a transcriptional activator of

MHC-II—in 4T1 breast cancer cells promoted LN metastasis and

enhanced Treg cell expansion in the TDLNs (59). While not shown,

it is possible that the Treg cells in metastatic LNs subsequently enter

the bloodstream to suppress systemic anti-cancer immunity and

promote the establishment of distant metastases (230).

Tregs can also directly inhibit natural killer (NK) cell effector

functions by the down-regulation of NKG2D receptors on the

surface of NK cells caused by membrane-bound TGF-b on Tregs

(231). NKG2D receptor downregulation impairs the ability of NK

cells to recognize tumor cells. The depletion of mouse Treg cells

enhanced NK cell proliferation and cytotoxicity in vivo (231, 232).

Depletion of Treg cells from tumor-infiltrating lymphocytes also

restored human NK cell-mediated tumor recognition (231). In a

syngeneic melanoma mouse model featuring a serial selection of

cancer cells with a preference for dissemination to the LNs,

Reticker-Flynn et al. revealed that the LN microenvironment can

reprogram cancer cells, leading to an elevation in interferon-

induced gene signatures, which subsequently caused the

upregulation of MHC class I and PD-L1 gene expression in

cancer cells (57). The elevation of PD-L1 and MHC-I shielded

melanoma cells from attack by (NK cells). They also found more

Treg cells in LNs invaded by melanoma cells Figure 2. The tumor

antigen-specific Treg cells subsequently leave the LN and

systemically disseminate, thus rendering distant organs more

hospitable to metastatic seeding (57). Similarly, in a murine

breast cancer LN metastasis model, the expansion of Treg cells in

LNs suppresses NK cell activity leading to breast cancer metastasis

in LNs (216). Immune-activated T and B lymphocytes typically

migrate to sites of inflammation rather than remaining in LNs for

extended periods. Thus, NK cells, not T and B lymphocytes, may

also participate in immune responses against targets inside LNs,

opening an opportunity to target LN metastasis using NK cells.
Opportunities and challenges in
targeting TDLNs

LN-targeted immunotherapy

As TDLNs are widely recognized for playing a key role in

driving the immunotherapy response, it is hypothesized that the

effectiveness of ICB relies predominantly on an influx of newly

primed T cells into the tumor from peripheral lymphoid organs,

particularly the TDLNs, rather than on reinvigorating exhausted
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and fully differentiated T cells that already exist in tumors (31, 33,

47, 52). Thus, leveraging the CD8+ T cell pools in the TDLNs is one

of the promising approaches in immunotherapy. In the B16F10

melanoma model, directing anti-CTLA4 and anti-PD-1 treatment

to the TDLN reduces the risk of immune-related adverse events,

reduces distant metastases and recurrence, and enhances the anti-

cancer T cell repertoire (233). A phase 1 clinical trial evaluated the

efficacy of locally administering anti-CTLA-4 into TDLNs in

patients with stage I/II melanoma (NCT04274816) (36). The

results showed activation of migratory dendritic cells in sentinel

LNs, an increase in effector T cells, and a decrease in Tregs in both

sentinel LNs and peripheral blood (36). These findings suggest that

local administration of ICB regimens is a safe and promising

adjuvant treatment strategy for patients with early-stage

melanoma. In preclinical breast cancer models, the CD8+ T cell

viability and responses within the primary tumor were severely

impaired. However, CD8+ T cell priming within LNs, which is

dependent on lymphatic drainage from the primary tumor,

remained intact (32). Therefore, TDLNs represent an important

component of the cancer immunity cycle in melanoma and triple-

negative breast cancer for which strategies may be developed to

improve the effects of anti-PD-1 immunotherapy (32) (Figure 3).

Notably, TDLN-derived lymphocytes with abundant tumor-

reactive pre-exhausted T cells (52) are relatively easy to obtain.

This has been utilized in several phase I/II trial (NCT05981014,

NCT06121570, NCT06121557) that investigate the safety and

effectiveness of infusion of autologous lymphocytes derived from

TDLNs in patients with HER2-negative breast cancer who did not

respond to neoadjuvant chemotherapy.

Chemoimmunotherapy is an experimental therapeutic

approach for cancer that combines traditional chemotherapy,

such as paclitaxel, with immunotherapy. Mechanistically, this

approach leverages chemotherapy to induce immunogenic cell

death, whereby the release of danger signals and tumor antigens

boost the anti-cancer efficacy of immunotherapy (234). LN-

targeting nanotechnology that delivers the chemotherapeutic drug

paclitaxel to direct chemoimmunotherapy to TDLNs resulted in T

cell mobilization into the circulation and improved control of both

primary and metastatic tumors as well as animal survival in

multiple murine models of triple-negative breast cancer (35).

These data show that TDLNs mediate the effects of

chemoimmunotherapy in advanced murine breast cancers (35).

Further, a pre-clinical study of metastatic lung cancer reported that

TDLNs help control metastases after the primary tumor is removed

but are not required for adjuvant immunotherapy efficacy (235).

Using orthotopic murine breast cancer and melanoma that develop

spontaneous LN metastases, we also showed that resection of

TDLNs did not prevent ICB responses (63), which was attributed

to the rerouting of antigen drainage to distant LNs. It is worth

noting that these pre-clinical studies were conducted in mice, whose

tumor lymphatic drainage and lymphosome are distinct from those

of humans. The rate of positive SLNB after neoadjuvant ICB

therapy in patients with melanoma or breast cancer will be an

interesting secondary endpoint to follow.

Tumor-derived secreted factors preferentially drain to

lymphatic vessels before dilution in the blood. A recent study
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examined the cancer-derived secreted factors in lymph exudate in

patients with metastatic melanoma after lymphadenectomy. This

work demonstrated that tumor-derived extracellular vesicles were

enriched in the lymph exudate (110), suggesting that exosomes may

offer a novel solution for drug delivery to the LNs. However, tumor-

derived exosomes often cause stromal remodeling in the LNs to

facilitate lymphatic metastasis by cancer cells (109). To overcome

this, a recent strategy involved creating macrophage-tumor hybrid

cells by introducing nuclei isolated from tumor cells into activated

M1-like macrophages, resulting in the production of chimeric

exosomes. These exosomes entered LNs and primed T cell

activation through both the classical antigen-presenting cell–

induced immunostimulatory pathways and a unique ‘direct

exosome interaction’ mechanism (236). Of note, despite the

interesting concept presented in this study, the clinical

implementation of this strategy remains challenging.
LN-targeted cancer vaccination

Tumor-specific vaccines are emerging as a promising strategy to

prevent tumorigenesis, as well as suppress the growth of existing

tumors (39). Delivering these vaccines more efficiently to TDLNs,

which are often the first sites where lymphocytes are presented with

tumor-associated antigens, is under extensive exploration (38, 40,

41, 237–244). Intranodal administration of antigen plasmids

(pMEL-TYR) and peptides (E-MEL and E-TYR) against Melan A

Tyrosinase in patients with metastatic melanoma yielded an overall

immune response rate of 50% (243). In both the B16F10 melanoma

and E.G7-OVA lymphoma model, TDLN-targeting nanoparticle

(NP)-conjugate vaccines induced substantially stronger local and

systemic cytotoxic CD8+ T-cell responses when compared to non-

TDLN-targeting vaccination, leading to enhanced tumor regression

and host survival (237). Amphiphile modification improves the

delivery of conjugated cancer vaccines and adjuvants to the lymph

nodes, leading to 30-fold increases in T-cell priming and enhanced

anti-tumor efficacy (238). A recent study demonstrated that

amphiphile modification of G12D and G12R mutant KRAS

(mKRAS) peptides (Amph-Peptides-2P) in combination with

CpG oligonucleotide adjuvant (Amph-CpG-7909) enhanced the

delivery of cancer vaccines to lymph nodes and promoted anti-

tumor immune responses in pancreatic and colorectal cancer (38).

In addition, other strategies have also been developed to enhance

the lymph node-targeted vaccination, including the pullulan

nanogel system (240), synthetic vaccine nanoparticles (239), LN-

targeted lipid nanoparticles (242, 245), and LN-targeted

immunization formulation (244, 246, 247). For example, oil

immunization led to rapid transportation and retention of

antigens in the interfollicular region of the LN, whereas without

oil, the antigens were enriched in the medullary region (246). The

PEGylated lipid NPs together with mannose facilitated the

phagocytosis and antigen presentation by dendritic cells in the

lymph nodes after subcutaneous administration (244). PEGylated

reduced graphene oxide nanosheets (RGO-PEG, 20–30 nm in

diameter) rapidly accumulated in LNs, elicited neoantigen-specific

T cells and eradicated established MC-38 tumor (37). Furthermore,
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in the murine melanoma model, mesoporous silica (MPS) rod-

based vaccines enhanced durable expansion of lymph nodes and

were associated with better and prolonged vaccine efficacy (247).

Beyond LN-targeted cancer vaccines, amphiphile CAR-T ligands

delivered to the lymph nodes can be presented by APCs in the

native lymph node microenvironment to enhance CAR-T cell

expansion (40), promote tumor antigen spreading and elicit

endogenous anti-tumor T cells (41, 241).

Radiotherapy triggers abscopal effects to control tumor growth

(248). In radioimmunotherapy, the synergy between radiotherapy

and ICB treatment acts similar to in situ vaccination. Recent studies

showed that TDLNs play a critical role in the efficacy of radio-

immunotherapy (249–251), particularly in the adjuvant setting

(251). In a syngeneic hepatocellular carcinoma mouse model,

combining radiation and anti-PD-1 enhanced activated dendritic

cells in the TDLNs, accelerated infiltration of activated cytotoxic T

cells in both irradiated and non-irradiated tumors, and triggered

abscopal effects in the non-irradiated tumors (248). In the B16F10

melanoma model, local tumor irradiation improved distant tumor

control and was associated with the expansion of total CD8+ T cells

and stem-like CD8+ T cells in the TDLNs (249). Interestingly, the

delayed (adjuvant) TDLN irradiation enhanced the efficacy of

radioimmunotherapy, unlike the concomitant TDLN irradiation

which failed to promote the efficacy of radioimmunotherapy (251).

Given that the sentinel lymph nodes or TDLNs are often surgically

removed during the processes of cancer diagnosis and treatment, a

better understanding of the roles of TDLNs and the tumor-draining

lymphosomes in cancer vaccination and radioimmunotherapy is

needed to enhance treatment efficacy.
Target lymphangiogenesis to enhance ICB
treatment efficacy

VEGF-C-induced lymphangiogenesis promoted immune

tolerance in murine melanoma (93, 94). Mechanistically, LECs

associated with lymphangiogenesis in tumors or the draining LN

promoted immune tolerance by eliminating anti-cancer CD8+ cells

(95) and accelerating T cell egress (97). Thus, LECs in the local

tumor microenvironment may be a target for immunomodulation.

Further, data showed that pharmacologically blocking VEGFR-3

decreases Treg cell accumulation in melanoma (100). However,

despite the immunosuppressive microenvironment in highly

lymphangiogenic melanoma, heightened sensitivity to ICB

treatment and adoptive T cell transfer therapy was measured.

Mechanistically, the VEGF-C signaling pathway induces CCL21

expression in LECs, subsequently enhancing the infiltration of

CCR7+ naïve T cells and DCs to the tumors (100). In

glioblastoma and melanoma brain metastases, ectopic expression

of VEGF-C promotes the drainage of meningeal lymphatics and

enhances CD8+ T cell activation in the draining deep cervical LNs.

Subsequently, activated CD8+ T cells migrate to and enter the

tumor, resulting in better tumor control and long-lasting memory

responses with anti-PD1 therapy (252). Taken together, these

results demonstrate the multifaceted roles of VEGF-C and LECs

in the tumor microenvironment. The presence of high levels of
Frontiers in Immunology 10
VEGF-C and tumor lymphangiogenesis is associated with

immunosuppression but might also indicate better efficacy for

ICB treatment. This might be due to the enhancement of T cell

infiltration and increased lymphatic drainage, APC trafficking, and

antigen transportation to TDLNs.
Challenges of SLNB and CLND

The sentinel LN biopsy is a standard method for the clinical

staging of cancer. The decision to remove additional LNs in patients

with a positive SLNB or to forgo completion lymph node dissection

depends on various factors, including the type and stage of cancer,

and individual patient characteristics. Emerging evidence suggests

that CLND does not always provide significant clinical benefits (24,

25, 253). In both melanoma (23, 24, 253, 254) and breast cancer (22,

28, 255, 256), CLND did not show an overall survival benefit

compared to SLNB alone in early-stage cancer patients. In

addition, in patients with early-stage breast cancer (< 5 cm) and

minimal sentinel LN involvement (one or more micrometastases <

2 mm), CLND did not show significant overall survival benefit

compared to the no LN dissection group (256). In patients with

clinically node-negative primary T1 to T3 breast cancer with at least

one positive lymph node identified by SLNB, SLNB-only was not

inferior to complete axillary LN dissection for recurrence-free

survival with the addition of standard-of-care adjuvant systemic

therapy and radiation (28). In patients with small primary breast

tumors and negative results on ultrasonography of the axillary

lymph nodes, it is safe to skip SLNB (257). Due to the limited

benefits of CLND and the significantly higher incidence of

lymphedema following the procedure (29), frequent follow-up

observations, including the use of serial nodal ultrasound, may be

offered to patients with low-risk micrometastatic melanoma (258).

Currently, there is no cure and no FDA-approved drug for

lymphedema making prevention an important clinical

consideration. Lymphedema after cancer treatment causes

swelling, discomfort, and limited mobility in the arm, hand, or leg

on the affected side. It also increases the risk of infection and

interferes with daily activities and quality of life. There is an urgent

need to find a less aggressive strategy to target LN metastasis to

prevent lymphedema and significantly improve the quality of life

for cancer survivors while maintaining excellent cancer control.
Concluding remarks

It is important to note that the optimal management of LN-

positive patients remains an active area of research, and

personalized treatment approaches are continually evolving.

Clinical trials and further studies are crucial to provide more

evidence and guidance on the most effective strategies for

addressing LN metastasis while maximizing anti-cancer immune

responses. In some cases, sparing the LN and exploring alternative

treatment strategies may be a practical option. These strategies

include targeted therapies, radiation therapy, or systemic treatments

such as chemotherapy, immunotherapy, and cancer vaccines. The
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decision should be made through a multidisciplinary approach

involving input from surgeons, oncologists, and other relevant

specialists, taking into account the specific characteristics of the

patient’s tumor type and individual factors. Ultimately, the choice

between LN removal and alternative treatment strategies should be

a data-driven, collaborative decision between the patient and their

healthcare team. Further clinical trials exploring therapies that

maximize cancer outcomes while minimizing lymphedema risk

are critical to informing these decisions.
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