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Protease-activated receptor 2 (PAR2) is a cell-surface receptor expressed in

various cell types, including keratinocytes, neurons, immune and inflammatory

cells. Activation of PAR2, whether via its canonical or biased pathways, triggers a

series of signaling cascades that mediate numerous functions. This review aims

to highlight the emerging roles and interactions of PAR2 in different skin cells. It

specifically summarizes the latest insights into the roles of PAR2 in skin

conditions such as atopic dermatitis (AD), psoriasis, vitiligo and melasma. It also

considers these roles from the perspective of the cutaneous microenvironment

in relation to other inflammatory and autoimmune dermatological disorders.

Additionally, the review explores PAR2’s involvement in associated comorbidities

from both cutaneous and extracutaneous diseases. Therefore, PAR2 may serve

as a key target for interactions among various cells within the local

skin environment.
KEYWORDS
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1 Introduction

Protease-activated receptor 2 (PAR2), first described in 1994 (1), is a versatile

transmembrane receptor that senses and responds to active proteases in the cellular

microenvironment. As a member of protease-activated receptor and a subfamily of G

protein-coupled receptors (GPCRs), PAR2 shares several common structural features

including an extracellular NH2-terminal domain, seven transmembrane helices, three

extracellular loops, three intracellular loops, and an intracellular COOH terminus (2).

Uniquely, PAR2 can be activated by various proteases from both endogenous sources

(e.g.trypsin, mast cell-derived tryptase, kallikrein-related peptidases (KLKs), and

coagulation proteases (3) such as thrombin, Factor Xa (FXa), FVIIa, FIXa), as well as
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membrane-type serine protease-1, human airway trypsin-like

protease) and exogenous sources (e.g. bacteria, house dust mite

(HDM), cockroaches, pollens, and molds), leading to a multitude of

biological effects across various tissues and organ systems (4). To

date, PAR2 has been widely expressed on epithelial cells, immune

cells, neurons and so on, playing a critical role in homeostasis and in

various disease processes, including asthma, lung injury,

inflammatory bowel diseases, irritable bowel syndrome,

neurogenic inflammation and cancer. In the skin and its

microenvironment, functional PAR2 is primarily expressed in

epidermal keratinocytes (KCs), and neighboring cells such as

mast cells, eosinophils, neutrophils, dendritic cells, T cells and

neurons, also exhibit PAR2 expression. Proteases like Der p3 and

Der p9 from HDM (5), Per a7 from cockroaches allergens (6),

KLK5, KLK14, trypsin are notable for proteolyzing PAR2, thereby

mediating epidermal barrier homeostasis, innate and adaptive

immunity, leukocyte recruitment, pigmentation, tumorigenesis

and cutaneous paresthesia (7). Indeed, PAR2 appears to have a

significant role in atopic dermatitis (AD), psoriasis, vitiligo,

melasma, non-histaminergic pruritic skin disorders, syringoma

and squamous cell carcinoma (4). Given the growing attention on

inflammatory and autoimmune dermatological illnesses and their

various cutaneous and extracutaneous comorbidities, PAR2 is

considered a key target for facilitating cross-communication

among different cells and tissues.

Previous reviews have examined the impacts of PAR2 on skin

physiology and pathology (8, 9), however, to our knowledge, the

detailed roles of PAR2 in inflammatory and autoimmune

dermatological diseases have not yet been thoroughly investigated

considering novel developments and emerging discoveries.

Understanding the intricate connections, such as those involving

resident skin cells and neurons expressing PAR2, could clarify the

pathogenesis of diseases like AD, psoriasis, and vitiligo. Therefore,

this review focuses on the latest updates on PAR2 and its potential

effects in various cutaneous diseases from the perspective of the

local cutaneous microenvironment. The dysregulation and

abnormal expression of PAR2 in the cutaneous milieu may

promote disease progression through cell-surface interactions,

integration of extracellular signals, and induction of intracellular

signaling pathways.
2 Activation, signaling and trafficking
of PAR2

2.1 Protease-stimulated PAR2 activation

PAR2, a cell-surface receptor, primarily undergoes activation

through proteolytic cleavage, which exposes a tethered ligand at

specific extracellular N-terminal sites. The residues exposed from

this cleavage bind to an extracellular docking domain, inducing a

conformational change that triggers intracellular signaling. This

proteolytic process, extensively studied and known as “canonical

activation” was initially shown to involve trypsin cleaving mouse

PAR2 at Arg38/Ser39 and human PAR2 at Arg36/Ser37, thereby
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exposing the tethered ligands SLIGRL and SLIGKV, respectively

(10). Subsequent research have identified other serine proteases,

including tryptase, KLK4, KLK5, KLK14, Thrombin (11), FVIIa,

FIXa and FXa, which also hydrolyze PAR2 at canonical sites with

slight variations (12) (Figure 1A). “Noncanonical activation”

describes the selective activation of specific intracellular signaling

pathways by distinct ligands that cleave at biased sites or cause a

conformational change in the receptor sufficient for activation

(Figure 1B). These cleavage sites are either proximal or distal to

the canonical sites (13). For instance, cysteine proteases Legumain

and Cathepsin S cleave PAR2 at Asn30/Arg31 (proximity) and

Glu56/Thr57 (distality), thus exposing distinct tethered ligands

RSSKGR and TVFSVDEFSA, respectively (14, 15). Elastase

similarly activates PAR2 by cleaving the receptor at Ser67/Val68 in

the extracellular N-terminal region (15). Additionally, the serine

protease chymase disrupts intestinal epithelial barrier via a biased

mechanism by cleaving PAR2 at Gly35/Arg36 (16). In a previous

study by Dulon et al (17), Pseudomonas aeruginosa cleaved PAR2 at

Ser37/Leu38, thereby revealing LIGKV and disrupting the canonical

tethered ligand. Similarly, Rayees et al. discovered later that

pseudomonas aeruginosa interacted with alveolar macrophages,

activating PAR2 and thereby affecting the macrophages’ ability to

phagocytize the bacteria (18) (Figure 1C). Synthetic peptides,

known as activating peptides, can activate PAR2 directly without

proteolysis, mimicking the activation pathways mentioned above.

They have been designed to mimic the effects of proteases, facilitate

the investigation of PAR2 functions and develop selective ligands

(agonists or antagonists). Given the varying effects of different

ligands on PAR2, biased signaling is likely to be preferred for

developing targeted drugs (19). Therefore, multiple natural and

corresponding synthetic ligands can activate PAR2 at biased sites.
2.2 Signaling

Upon activation, PAR2 initiates multiple signaling cascades

essential for maintaining homeostasis in physiological and

pathological processes (Figure 2A). These cascades regulate

cytokine production, stimulate angiogenesis, and promote

inflammatory and immune responses (20). The downstream

signaling pathways are complex and varied based on factors

including specific hydrolytic positions, types, kinetics, potency,

and post-translational modifications of PAR2. For example, at a

concentration of 1 nM, tryptase efficiently cleaved the PAR2 at

Arg36/Ser37. However, at 100 nM, while tryptase still cleaved at this

site, it could target additional sites, potentially inhibiting the

efficiency of PAR2 activation (21). The glycosylation of PAR2

may impact its susceptibility to tryptase activation. Key

phosphorylation sites (Ser383-385, Ser387-Thr392) on the C-tail and

the palmitoylation site (Cys361) on helix-8 of PAR2 also influence

subsequent intracellular signaling cascades (22). Proteolytic

disarming of PAR2 at biased sites, achieved by permanently

removing canonical proteolysis and destroying the tethered ligand

sequence, further enhances signaling complexity due to alteration in

the typical signaling response (17).
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Activated PAR2 engages multiple G protein-dependent and b-
arrestin-associated pathways. The Ga subunit and Gbg dimers

separate from heterotrimeric G proteins. Different Ga subtypes

include Gas-regulated or Gai-mediated AMP, Ga12/13-dependent

Rho-Kinase activity, and Gaq-mediated Ca2+ release from the

endoplasmic reticulum (23). In particular, once PAR2 is activated,

rapid and transient Gaq-regulated Ca2+ release occurs, leading to

the phosphorylation of mitogen-activated protein kinases, such as

ERK1/2, and PI3K/Akt signaling (24). Mutated versions of PAR2

can stimulate intracellular MAPK pathways without Gaq activation

by cleaving other tethered ligands and corresponding soluble

agonist peptides (25). The b-arrestin-associated signaling will be

narrated in the next paragraph. Activation of PAR2 by trypsin

results in Ca2+ mobilization, cAMP formation, and Rho-Kinase

activity regulation by initiating Gaq, Gas, Ga12/13, and recruiting b-
arrestin, therefore rendering PAR2 internalization and degradation.

In contrast, Cathepsin S only stimulates Gas-mediated AMP

formation, without Gaq-dependent Ca2+ signaling or b-arrestin
recruitment (26). Cathepsin S also interacts with PAR2 to trigger
Frontiers in Immunology 03
additional Ca2+-dependent release through transient receptor

potential (TRP) ion channels, bypassing the Gaq-mediated Ca2+

pathway in Xenopus laevis oocytes and mouse Dorsal Root

Ganglion (DRG) neurons (15). Here, the Ca2+ released from

intracellular stores, particularly from the Golgi apparatus upon

PAR2 activation via trypsin, cathepsin-S, and neutrophil elastase,

travels to the plasma membrane, where it plays a vital role in

maintaining cellular signaling and ensuring the cell’s responsiveness

to extracellular cues. Elastase, cathepsin-G, and proteinase-3 fail to

activate Gaq-coupled PAR2 calcium signaling, while Legumain and

its activating peptide lack b-arrestin recruitment but still participate

in other cellular signaling mechanisms (14). Therefore, the

activation modes and distribution of PAR2 in different tissues

and cell types further influence intracellular signaling pathways.

Furthermore, downstream signaling cascades of PAR2 include

the interactions with other receptor tyrosine kinases (e.g. epidermal

growth factor receptor, platelet-derived growth factor receptors,

vascular endothelial growth factor), TRP ion channels (e.g. transient

receptor potential vanilloid 1 (TRPV1), TRPV4, and transient
FIGURE 1

The molecular structure of Protease-Activated Receptor 2 (PAR2), its canonical and noncanonical activation mechanisms, and the responding
proteases at the cleavage sites. (A) The molecular structure of PAR2 and its canonical activation by trypsin, tryptase, KLK4, KLK5, KLK14, FXa, FIXa,
FVIIa, thrombin is illustrated. Canonical activation of PAR2 involves a proteolytic process that reveals the tethered ligand sequence at the Arg36/Ser37

site (highlighted in red). (B) Noncanonical activation of PAR2 includes cleavage at biased sites (highlighted in green) or generates disarming changes
(highlighted in purple). (C) major activating proteases and cleavage sites of PAR2. KLK4, kallikrein-related peptidase 4; KLK5, kallikrein-related
peptidase 5; KLK14, kallikrein-related peptidase 14; FXa, Factor Xa; FIXa, Factor IXa; FVIIa, Factor VIIa.
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receptor potential ankyrin 1 (TRPA1)), and alternative gene

expression (e.g. NF-kB, Toll-like receptor 4 (TLR4)) (27–30).

Numerous studies have shown that active PAR2 sensitizes

TRPV1, TRPV4, and TRPA1 channels, which are responsible for

neuro-inflammation and pain (31, 32). The interaction between
Frontiers in Immunology 04
PAR2 activation and TRP ion channels results in sustained Ca2+

influx from both the extracellular region and endoplasmic

reticulum, elevating intracellular Ca2+ levels and exacerbating

physiological and pathological effects. Moreover, microarray

analysis has identified hundreds of genes downstream of PAR2
FIGURE 2

Signaling and Trafficking of PAR2. (A) Once activated, PAR2 initiates multiple downstream signaling cascades, including various intracellular signaling
pathways, interactions with other receptor tyrosine kinases, and ion channel activation or releases, resulting in diverse cellular responses. (B) PAR2
trafficking involves processes such as endocytosis, degradation, and receptor recovery. MAPK, mitogen-activated protein kinases; EGFR, epidermal
growth factor receptor; TRPV1, transient receptor potential vanilloid 1; TRPV4, transient receptor potential vanilloid 4; TRPA1, transient receptor
potential ankyrin 1; NF-kB, nuclear factor kappa-B; PKD, Protein kinase D; GRK, G protein-coupled receptor (GPCR)-regulated kinase; CME, clathrin-
mediated endocytosis; Ph, phosphorylation; Ub, ubiquitination.
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signaling related to cellular metabolism, cell cycle, MAPK pathway,

inflammatory cytokines, and anti-complement function (33).
2.3 Trafficking

Upon interaction with pericellular proteases, PAR2 becomes

rapidly desensitized and irreversibly hydrolyzed, rendering it

unresponsive to similar proteases or their activating peptides. For

example, treating neurons with PAR2 agonists results in

desensitization of the receptor, abolishing its interaction with

trypsin or tryptase (34). Additionally, PAR2 is predominantly

phosphorylated at multiple COOH-terminal domains (e.g. Ser/

Thr residues) by GPCR kinases, crucial for b-arrestin recruitment

and receptor endocytosis (35). b-arrestin recruitment occurs within

minutes of PAR2 activation (36). PAR2 then undergoes uncoupling

and clathrin-mediated endocytosis (37), internalizing into early

endosomes through Rab5a, causing sustained endosomal signaling

(38). Finally, PAR2 is ubiquitinated and targeted to lysosomes for

degradation (39). However, PAR2 can recover at the cell surface

from the Golgi in Rab11-dependent, Gbg and PKD dependent

manner (40). The trafficking patterns are typical (Figure 2B), but

biased activation proteases do not involve b-arrestin recruitment,

indicating that PAR2 signaling transport is not fully elucidated.

In summary, the activation of PAR2 at different sites by

endogenous and exogenous proteases results in various

intracellular and extracellular signaling cascades. These processes

enable the adjustment of cellular responses to microenvironmental

variations. Interestingly, some reports have revealed that activating

PAR2 also suppresses inflammation. Two studies clarified that

PAR2 activated by thrombin inhibited calcium ion signaling

thereby reducing TLR4-induced inflammatory signaling (11) and

Pseudomonas aeruginosa bound to PAR2 enhanced the clearance of

bacteria therefore preventing fatal outcomes in bacterial pneumonia

separately (18). Both studies were particularly related to innate

immunity. In addition, Dr. Ruf and his team developed PAR2

mutant mice, including PAR2-deficient (PAR2−/−) models, to

study PAR2’s specific roles in breast cancer progression,

angiogenesis, diet-induced obesity and related metabolic

disorders. Their studies are crucial for investigating biased PAR2

signaling and PAR2-dependent b-arrestin pathways, providing

insight into PAR2’s unique functions (41–43). From the above

elaboration, We infer that PAR2 activation, whether through

canonical or non-canonical pathways, can result in similar or

opposing effects, depending on the activation mechanism,

receptor cleavage sites, and downstream signaling. Thus, A deeper

understanding these mechanisms could offer opportunities for

developing targeted therapies, potentially improving treatment

efficacy for diseases characterized by dysregulated PAR2 signaling.
3 Function of PAR2 in skin

PAR2 expression has been detected in a diverse set of cell types

within the cutaneous microenvironment, such as keratinocytes in the

epidermis, and mast cells, eosinophils together with neurons in the
Frontiers in Immunology 05
dermis and subcutaneous tissue (Figure 3A). These cells interact and

collectively influence skin inflammation, immune response and

itching sensations. In the following sections, we will delve into the

different types of cells expressing PAR2 and their respective functions.
3.1 PAR2 in keratinocytes

Keratinocytes make up approximately 95% of the epidermis and

play a major role in maintaining the epidermal permeability barrier,

mediating inflammation and immune responses, and regulating

pigmentation. In human keratinocytes, PAR2 expression is

significantly higher in the granular layer and is further enhanced

in inflamed skin (10). Importantly, PAR2 localizes to lipid rafts in

both human and murine keratinocytes (44). Studies in mice have

shown that strong PAR2 expression in the epidermis during

embryonic development, starting as early as embryonic day 17

(45). Here, the role of PAR2 in keratinocytes and the possible effects

PAR2 on them are summarized:1. Cutaneous Barrier Function:

PAR2 expressed in KCs regulates the epidermal barrier by initiating

cytoskeletal rearrangements, modifying plasma membrane

dynamics in response to barrier disruptions. Moreover,

application of SLIGRL (an exogenous PAR2 agonist) protects and

rapidly repairs the skin barrier (46). 2. Inflammation and Immune

Responses: PAR2 could activate a wide variety of inflammatory

cytokines and chemokines following the disruption of the epidermal

permeability barrier. Moniaga et al. (47) found that when disrupted

epidermal barrier occurred, activation of PAR2 led to the

production of thymic stromal lymphopoietin (TSLP), a Th2-

skewing skin inflammation and basophil accumulation were

subsequently observed. These processes were suppressed by a

PAR2 antagonist. Similarly, epidermal KLK5 (a serine protease

for PAR2) directly activated PAR2, leading to a Th2 environment

because of a series of cytokines and chemokines production (e.g. IL-

1, TNF-a, GM-CSF, TSLP) (48). Hou et al. also revealed that both

trypsin and SLIGKV could stimulate the chemokines like IL-8

secretion (49). 3. Pigmentation Regulation: In the absence of

PAR2 expression in melanocytes, the effects on pigmentation are

therefore attributed to melanosome transfer and paracrine

melanogenesis, which are mediated by keratinocyte-melanocyte

interactions. Darker skin exhibits higher levels of epidermal PAR2

compared to lighter skin due to more remarkable melanocore and

melanosomes uptake by keratinocyte phagocytosis (50, 51). Kim

et al. discovered that PAR2 also induced melanogenesis by

stimulating stem cell factor from keratinocytes (52). 4. Cell

Proliferation and Differentiation: Activated PAR2 inhibits

keratinocyte growth with growth factor-supplemented or growth

factor-free conditions (53). However, the involvement of PAR2 in

keratinocyte differentiation is equivocal. Some research suggests

that PAR2 activation promotes differentiation, while others indicate

opposite outcomes. As the same study by Derian et al., both SLIGRL

(a PAR2 selective agonist) and SFLLRN (a PAR2 stimulator)

decreased differentiation by low expression of involucrin and

transglutaminase type I (differentiation markers of keratinocytes)

(53). Another study demonstrated that in primary human

keratinocytes, decreased markers of differentiation were observed
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after PAR2 activation (54). Conversely, PAR2 promoted

differentiation of keratinocytes when the epidermal barrier was

compromised (55). The cause of the discrepancy remains unclear.

Considering PAR2’s known ability to trigger intracellular calcium

release, earlier researchers speculated that the lower differentiation

mediated by PAR2 might be because the epidermis is a stratified

epithelium, unlike other tissues (53). Recent findings from professor

Piran’s team suggest that PAR2’s dual functions, depending on the
Frontiers in Immunology 06
activation site, could explain this contradiction (56). They propose

that initial activation of PAR2 in the immune system exacerbates

injury and inflammation, while if PAR2 is activated later within

affected tissues, it promotes healing and regeneration. In their

studies on liver regeneration models, they found that PAR2’s

effects depend on the type of injury: it exacerbated immune-

mediated damage but aided in regeneration following direct tissue

injury (57). This dual role was confirmed in autoimmune diabetes
FIGURE 3

Function of PAR2 in skin. (A) PAR2 is widely expressed in the cutaneous microenvironment. (B) PAR2, expressed by various cells within cutaneous
microenvironment, serves as a complex target for interactions among sensory neurons, resident skin cells, and transiently infiltrating cells.
KCs, keratinocytes.
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and appeared to be consistent across various tissues (58). Although

keratinocyte differentiation involves limited tissue regeneration, the

conflicting roles of PAR2 in this process underscore its complex

functions and suggest that PAR2 may have different effects within

the same tissue type. Interestingly, we found that PAR2 promotes

keratinocyte differentiation when the skin barrier is compromised.

We speculate that broader inflammatory and immune responses,

exacerbated by PAR2-mediated disruption of the skin barrier, may

account for its varying effects on keratinocytes. Further research is

needed to validate this.

In summary, PAR2 expressed in keratinocytes induces various

and interactive functions: it negatively impacts the barrier function

and cell proliferation, positively influences pro-inflammatory

cytokine release and pigmentation, but has contradictory effects

on cell differentiation.
3.2 PAR2 in immune and
inflammatory cells

Activation of PAR2 expressed in keratinocytes, can significantly

impact various immune and inflammatory cells (e.g. mast cells,

eosinophils, lymphocytes, mononuclear cells, neutrophils,

macrophages and dendritic cells), leading to complex immune

and inflammatory responses. Interestingly, these cells also express

PAR2, potentially amplifying and complicating these reactions.

Mast cells (MCs), which contain tryptase, express PAR2 on the

plasma membrane and intracellular granule membranes (59). Upon

activation, it induces histamine or IL-8, thereby exacerbating

inflammation and immune responses (60). In the latest research,

the tryptase/PAR-2 axis has been identified as a critical component

of the crosstalk between MCs and keratinocytes in skin

inflammation (61). Analogously, the tryptase/PAR2 axis

contributes to the hyperpigmentation of cutaneous lesions in

mastocytosis without enhancing melanocyte activity (62). PAR2 is

strongly expressed in human peripheral blood eosinophils, and

tryptase from MCs could activate eosinophils to generate IL-6, IL-8

and leukotrienes. The release of IL-6 and IL-8 can be prevented by a

PAR2 antagonist in a concentration-dependent manner (63). PAR2

also promotes neutrophils recruitment and upregulates IL-17

receptor signaling, along with promoting chemokines and

cytokines (e.g. IL-23 and CXCL2) (64, 65). Similarly, PAR2

induces dendritic cells (DCs) maturation and may play a role in

DCs trafficking to lymphnodes, thereby enhancing immune

response (66). The influences of PAR2 on T lymphocytes are

complicated. PAR2 is located on human CD4+ T cells and natural

killer cells but not on CD8+ or gdT cells (67). However, activation of

PAR2 in lymphocytes leads to the release of reactive oxygen species

(ROS) (68). Thus, PAR2 is expressed by most immune cells in both

the innate and adaptive immune systems, contributing to allergic

inflammation and immunity. The co-expression and co-regulation

of PAR2 among different cells may influence the intensity, duration,

and the outcome of immune-inflammatory responses. Importantly,

PAR2 is proposed as a potential target for the treatment of related

diseases due to its significant role in modulating immune and

inflammatory responses.
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3.3 PAR2 in neurons

The dermis and subcutaneous tissue contain a complex network

of nerves intertwined with various cell types responsible for sensory

perception and the regulation of inflammatory cytokines. PAR2 is

expressed by peripheral nerve endings, trigeminal ganglia, and

primary spinal afferent neurons in the dorsal root ganglia,

implicating it in neurogenic inflammation and sensation

perception (69). Activation of PAR2 can induce edema and

neutrophil infiltration by releasing calcitonin gene-related peptide

and substance P (70). Additionally, PAR2 can sensitize TRPV1 by

phosphorylation, amplifying intracellular processes (71). Gu et al.

found that HDM allergens significantly enhanced TRPV1 in mouse

pulmonary sensory neurons (72). Various studies suggest that

PAR2 directly evokes pain, though evidence regarding its role in

pruritus and thermal hyperalgesia is controversial. Initially,

Vergnolle et al. discovered that PAR2 agonists induced both

thermal and mechanical hyperalgesia (73). Nevertheless, Hassler

et al. illustrated that in mice with PAR2 deleted in all sensory

neurons, PAR2 expression in sensory neurons is merely responsible

for pain-related behaviors, but not for thermal hyperalgesia or itch.

The pain-relevant effects may be attributed to the mediation of the

ERK signaling pathway activity (74). Furthermore, intradermal

injection of PAR2 agonists can induce scratching behavior and

activate neurons in the superficial dorsal horn of mice, indicating a

role for PAR2 in the perception and signaling of itch at the neuronal

level (75). These differences may be due to the peripheral and

central innervation targets of PAR2-expressing neurons, as well as

the sufficient proportion of these neurons to elicit different

sensations. Furthermore, based on the study by Piran et al. (56–

58), we infer that the debate over whether PAR2 triggers pruritus

and thermal hyperalgesia, might hinge on if PAR2 is first activated

within the immune system or not.
3.4 PAR2 in other cells

Besides, it has been found that skin appendages, such as hair

follicles and myoepithelial cells of sweat glands, express PAR2 to

varying extents (16). In addition, both trypsin and synthesized

PAR2 agonists significantly enhanced the migration, adhesion, and

proliferation of fibroblasts and macrophages, underscoring its

crucial role in wound healing (76).

Together, the roles of PAR2 in the skin are complex and

interrelated, given its varied distributions within the cutaneous

microenvironment (Figure 3B). Elucidating the mechanisms

involving PAR2 may provide important insights into the general

understanding of this class of receptors in the skin.
4 PAR2 in inflammatory and
autoimmune dermatological diseases

To date, numerous reports have demonstrated the

dysregulation of PAR2 in inflammatory and autoimmune
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dermatological diseases, suggesting it as a potential marker. This

discussion predominantly focuses on the impacts of PAR2 in atopic

dermatitis, psoriasis, vitiligo, melasma, and other conditions such as

rosacea, acne, and dermatomyositis, as summarized in Table 1.

Therefore, potent PAR2 agonists and antagonists have emerged as

enticing therapeutic agents although they are currently still in the

experimental stage, primarily tested in genetically engineered

mouse models.
4.1 Atopic dermatitis

Atopic dermatitis, also known as atopic eczema, is the most

common inflammatory skin disorder, characterized by genetic

barrier defects, allergic inflammation and intractable pruritus

(77). Recent consensus illustrates that it may be a systemic

disease involving multiple allergic and respiratory comorbidities

(78). The mechanisms are not well understood, but they are

believed to influence neuro-immune and neuro-epidermal

communications in the local microenvironment (79). Several

genes related to epidermal barrier homeostasis, including

SPINK5, and filaggrin, have been identified as abnormal in AD,

resulting in elevated skin pH and increased penetration of allergens

through the defective skin barrier. SPINK5 encodes lympho-

epithelial Kazal-type-related inhibitor (LEKTI) (80), a major

inhibitor of KLKs. Studies suggest that single nucleotide

polymorphisms E420K and D386N of SPINK5 reduce LEKTI

function, thus up-regulating KLKs expression in AD patients.

Accordingly, endogenous serine proteases of PAR2 (e.g. KLK5

and KLK14) are active, facilitating easier allergen penetration

through the skin barrier in AD (81). Many reports have revealed

elevated expression and activation of PAR2 in the lesional skin of

AD patients (82).Upon stimulation, PAR2 in epidermal

keratinocytes and peripheral nerves leads to releasing Th2

cytokines, intensifying inflammation by attracting immune cells,

and initiating neurogenic inflammation associated with itching

sensation (55, 83, 84). Owing to active KLKs in AD, PAR2 also

indirectly correlates with the regulation of antimicrobial peptides,

which are key for innate immunity (83). Moreover, a transgenic

mouse model overexpressing epidermal PAR2 presents AD-like

appearance, with enhanced PAR2 in nerve fibers contributing to

itching behavior due to direct neuro-epidermal communication

(85). Another study indicated that elevated PAR2 expression on

nerve fibers prompted itching following the application of PAR2

agonists (86). Briefly, current data focus primarily on keratinocytes

and slightly on neurons, without exploration of the role of PAR2 on

immune and inflammatory cells. In a study by Smith, after

treatment with HDM, model mice with epidermal overexpression

of PAR2, particularly cell-specific, exhibited typical AD symptoms

and significant infiltration of mast cells and eosinophils, though

there was no deeper investigation into PAR2’s role in these cells

(87). Thus, we infer that PAR2 is implicated in inflammation,

pruritus, and barrier regulation in AD, but also affects relevant

comorbidities caused by overactive mast cells.

These findings illustrate that PAR2 could be a promising

therapeutic target in AD. Studies on PAR2 antagonists, including
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ENMD-1198 (88) and NPS-1577 (89), have demonstrated varying

degrees of alleviation in AD symptoms. In 2019, Barr et al.

demonstrated that PZ-235 could be a promising option for AD

by targeting neuro-immune interactions in vivo, thereby reducing

scratching behavior, attenuating the production of inflammatory-

immune factors, and decreasing lesion severity (90). Furthermore,

latest data reveal that topical doxycycline monohydrate hydrogel,

which downregulates PAR2 activity, exhibits significant clinical

efficacy in AD patients (91).
4.2 Psoriasis

Psoriasis is a prevalent chronic inflammatory dermatological

condition, characterized by a multifactorial etiology involving both

immune dysregulation and genetic predispositions. In genetically

susceptible individuals, various external and internal stimuli

activate the immune system, triggering a series of cellular

responses that include the participation of plasmacytoid dendritic

cells, macrophages, mast cells and T cells. The immune activation

results in the hyperproliferation and aberrant differentiation of

keratinocytes, as well as severe pruritus (92). Current research has

predominantly focused on the role of PAR2 in plaque psoriasis,

revealing differential expression levels of PAR2 across various cell

types within psoriatic lesions. In previous studies, patients with

psoriasis vulgaris have exhibited lower levels of PAR2 in

keratinocytes. This reduction may be attributed to a process of

PAR2 internalization, where excessive stimulation promotes PAR2-

mediated IL-8 production, leading to an accumulation of

inflammatory cells in the epidermis without sufficient PAR2

replenishment (93). In the context of mast cells, Carvalho et al.

demonstrated a significant increase in PAR2 levels in the lesional

skin of psoriasis patients compared to healthy skin. This could

result from the persistent activation of mast cells, which is a

characteristic feature of psoriasis. Moreover, interaction of PAR2-

activating peptides with mast cells results in elevated secretion of IL-

8 rather than histamine release (94). Notably, Nattkemper et al.

recently discovered that epidermal expression of PAR2 was

significantly increased in scalp psoriasis accompanied by severe

itch. The difference may be due to the distinct distribution of PAR2

across different body areas, as it is present on sensory nerve endings,

epidermal keratinocytes, and the inner root sheath (IRS) in scalp

hair follicles (95). Furthermore, a study measuring PAR2 levels over

time in psoriasis patients treated with a combination of ultraviolet

rays and methotrexate reported a significant decrease in PAR2

levels. This decrease may result from alterations in antigen-

presenting cells, intracellular signaling pathways, and anti-

inflammatory processes induced by this combined therapy.

However, the study did not clarify which specific cell types had

varying PAR2 levels (96). These pieces of evidence indicate that

PAR2 in psoriasis exhibits diverse effects depending on its location

in different cell types-lower expression in keratinocytes versus

higher expression in mast cells and enhanced epidermal

expression of PAR2 in scalp-indicating a closely correlated

pathophysiology involving multiple cell variants in the cutaneous

microenvironment. In this context, immune and inflammatory cells
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TABLE 1 Summary of effects of PAR2 on inflammatory and autoimmune dermatological diseases.
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closely interact with basal keratinocytes or adjacent blood vessels in

the dermis. Consequently, PAR2 antagonists may present a

potential therapeutic strategy for managing inflammation and itch

associated with psoriasis.
4.3 Vitiligo

Vitiligo is an autoimmune skin disorder characterized by the

loss of functional melanocytes, resulting in white patches on the

skin and mucous membranes, as well as white hair (97). It is

increasingly recognized as a systemic disease with various

comorbidities, such as AD, alopecia areata, and systemic lupus

erythematosus (98). Currently, the essential pathogenesis involves

persistent oxidative stress resulting from dysfunction in the nuclear

factor erythroid 2-related factor 2 pathway, along with

autoimmunity stemming from hyperactive innate and adaptive

immune responses. Consequently, treatments have primarily

targeted antioxidants and immunosuppressants (99). In recent

years, PAR2 has been identified as a key player in the

pathogenesis of vitiligo, despite not being present in melanocytes.

In 2009, Moretti and colleagues (100) first discovered that PAR2

levels were significantly reduced in the lesions of white patches

compared to non-lesional skin in vitiligo. Interestingly, this

phenomenon was not observed in other non-vit i l igo

depigmentation conditions, such as pityriasis versicolor and

lichen simplex chronicus. This implies that PAR2 downregulation

is specific to vitiligo-related depigmentation. The reduced PAR2

may impair the function of keratinocytes in white patches,

including the inhibition of melanosome transfer to neighboring

cells. Kim et al. later illustrated that PAR2 can enhance Nrf2-

mediated antioxidant responses, protecting the skin from excessive

oxidative damage and thus maintaining pigmentation through

interactions between keratinocytes and melanocytes (101). Their

study may explain the lower levels of PAR2 in vitiligo. Additionally,

Tang found that phototherapy such as narrow band, may regulate

pigmentation in vitiligo by affecting PAR2 on keratinocytes,

influencing melanosome uptake and malondialdehyde level (102).

Collectively, the decrease in PAR2 plays a critical role in the

pathogenesis of vitiligo. Further research is necessary to

understand whether PAR2 influences immunity and whether

other cells, such as mast cells and T cells, undergo similar PAR2

changes in vitiligo. Understanding the exact mechanism of PAR2

may enhance our knowledge of the crosstalk between melanocytes

and their surrounding cells, inform the potential for comorbidities,

and aid in the development of effective therapeutic strategies

for vitiligo.
4.4 Melasma

Melasma is a common chronic acquired hyperpigmentation

disorder that usually affects photoexposed areas in predisposed

individuals, with ultraviolet (UV) radiation being the primary risk

factor. Although the exact pathogenesis remains unclear, it is
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cell types, including melanocytes, keratinocytes and mast cells.

These changes lead to the production and transfer of mature

melanosomes throughout the epidermis (103). PAR2 has been

increasingly recognized as a significant contributor to the

pathogenesis of melasma, especially in melanosome transfer and

melanogenesis through a specific paracrine mechanism. For

instance, Lee et al. discovered that the PAR2 expression was

increased in melasma patients and positively correlated with

clinical telangiectatic erythema. Upregulation of PAR2 by VEGF

stimulation was clearly evident, suggesting that abnormal PAR2

activity may facilitate inflammatory erythema (104). A recent study

by Kim et al. indicated that PAR2 might be involved in a series of

reactions involving the NRF2 pathway, which subsequently inhibits

primary cilia formation and the Hedgehog signaling pathway, while

also stimulating keratinocyte differentiation. These processes

ultimately lead to increased melanin synthesis and excessive

transfer of melanosomes to keratinocytes in melasma (105).

Moreover, UV radiation was found to upregulate epidermal PAR2

expression and proteolysis, with notable variations among different

skin phototypes (106). Given that mast cells degranulate under UV

radiation, it is inferred that PAR2 present in mast cells may also

influence the associated pathogenesis of melasma. Therefore,

promising PAR2 antagonists may offer a novel therapeutic

approach for the treatment of melasma. Further research is

needed to fully elucidate the role of PAR2 in melasma.
4.5 Others

Rosacea is a chronic inflammatory dermatosis characterized by

facial flushing, telangiectasia, inflammatory papules and pustules,

primarily affecting the central face. Neurovascular and

neuroimmune dysregulation are significant contributors to the

mechanisms underlying rosacea (107). External stimuli such as

heat or alcohol can exacerbate the condition due to heightened skin

sensitivity. Among the factors involved, the cathelicidin LL-37 (an

antimicrobial peptide) activation pathway is the best understood

and most classical pathway in rosacea pathogenesis (108). In 2014, a

positive correlation between PAR2 and cathelicidin was observed in

rosacea patients. Additionally, treatment with PAR2-activating

peptides in vitro led to increased levels of cathelicidin and VEGF

(109). Moreover, TRPV1, found on neurons and keratinocytes, was

activated via upregulated PAR2 in rosacea (110). PAR2 also appears

to influence the development of acne. A study by Lee et al. found

greater PAR2 expression in sebaceous glands, rather than the

epidermis, in inflammatory acne lesions (111). Allergic contact

dermatitis (ACD), a type IV hypersensitivity reaction, often

requires treatment to reduce inflammation induced by re-

exposure to allergens (112). Remarkably, a latest study revealed

that myeloid cells expressed increased PAR2 in human ACD,

promoting the development of T cell-mediated inflammation

(113). Dermatomyositis, a rare autoimmune disease characterized

by skin rash and muscle weakness, was found to involve increased

levels of Cathepsin G in peripheral blood mononuclear cells and
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muscle tissues. This increase correlated with disease severity and

was found to induce PAR2 secretion, suggesting an indirect role for

PAR2 (14–115). Skin photoaging arises from long-term exposure to

UV irradiation, leading to ROS production and inflammatory

responses (116). A 2021 report illustrated that active PAR2 in

keratinocytes promoted inflammatory responses through Akt-

mediated phosphorylation of NF-kB and FoxO6, while also

suppressing the antioxidant enzyme MnSOD, thereby

progressively increasing ROS levels (117). Drawing from the

research by Piran et al (56–58), We speculate that active PAR2

here was related to both T-lymphocyte-mediated immune

inflammation and PAR2 activation within the affected

keratinocytes themselves. PAR2 could eventually aggravate

inflammation, suggesting that the two processes above may have

a synergistic effect in skin photoaging, where tissue regeneration is

not involved. PAR2 is also implicated in various chronic pruritic

conditions, particularly in histamine-independent pruritus caused

by cowhage spicules, dermatophytes, and scabies (118). The

pathogenesis of pruritus involves a complex network of

interactions among keratinocytes, sensory neurons, mast cells and

transiently infiltrating immune cells (119). Emerging reports

suggest that keratinocytes act as the initial sensor for itch

signaling, and that interaction with various cells excessively

exacerbates inflammation and itching. Activation of epidermal

PAR2 triggers intracellular PLC-Ca2+ signaling, leading to TSLP-

relevant scratching behavior. TSLP then promotes the generation of

type 2 cytokines and stimulates PAR2, TRPV1, and TRPA1 in

sensory neurons, exacerbating itch responses. Additionally, PAR2

activation in dorsal root ganglia enhances the function of epidermal

TRPV3, perpetuating the itch-scratch cycle (120). In a study by

Park et al (121), the PAR2-TRPV3-TSLP pathway was identified as

critical in the pruritus experienced by burn scar patients. Another

study by Kristen et al. found that PAR2 expression was significantly

increased in the epidermis and mast cells near the dermal-

epidermal junction in scabies-infested tissues, explaining why

conventional antihistamines are often ineffective against scabies

itch (122). Collectively, these findings highlight the potential of

PAR2 agonists and antagonists for developing new therapeutic

strategies that could not only address the limitations of classical

antipruritics but also circumvent the side effects associated with

topical corticosteroids.
5 Conclusion

In summary, our comprehension of the role of PAR2 in

cutaneous immune and inflammatory processes is advancing

swiftly, uncovering novel insights and potential therapeutic targets.

This review underscores several critical aspects: (a). The proteolytic

activation of PAR2 at different sites initiates intricate signaling
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cascades, emphasizing the importance of biased activation for a

deeper understanding of its roles in specific diseases. (b). PAR2,

present in various cells within the cutaneous microenvironment, acts

as a multifaceted target for interactions among sensory neurons,

resident skin cells, and transiently infiltrating cells. Accordingly,

potent PAR2 agonists and antagonists hold promise for addressing

the complexities of inflammatory and autoimmune dermatological

diseases. (c). PAR2 plays a crucial role in elucidating neuro-immune

and immune-inflammatory interactions in these conditions, thereby

offering valuable insights into the mechanisms underlying their

diverse cutaneous and extracutaneous comorbidities.
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