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Background: Cancer remains a leading cause of mortality worldwide. A non-

invasive screening solution was required for early diagnosis of cancer. Multi-

cancer early detection (MCED) tests have been considered to address the

challenge by simultaneously identifying multiple types of cancer within a single

test using minimally invasive blood samples. However, a multi-cancer screening

strategy utilizing urine-based metabolomics has not yet been developed.

Methods: We enrolled 911 cancer patients with 548 lung cancer (LC), 177 with

gastric cancer (GC), and 186 with colorectal cancer (CRC), alongside 563

individuals with non-cancerous benign diseases and 229 healthy controls (HC)

and investigated the metabolic profiles of urine samples. Participants were

randomly allocated to discovery and validation cohorts. The discovery cohort

was used for identifying multi-cancer and tissue-specific signatures to build the

cancer screening and tumor origin predictionmodels, while the validation cohort

was employed for assessing the performance of these models.

Results: We identified and annotated a total of 360 metabolites from the urine

samples. Using the LASSO regression algorithm, 18 metabolites were

characterized as urinary metabolic biomarkers and exhibited excellent

discriminative performance between cancer patients and HC with AUC of 0.96

in the validation cohort. In comparison with the performance of traditional tumor

markers CEA, the screeningmodel performed higher sensitivity across the cancer

stages, with a particularly increase in sensitivity among early-stage cancer

patients. Moreover, the screening model also exhibited in high classification of

cancers from non-cancerous group, comprising with HC and benign disease

participants. Furthermore, two non-overlapping metabolic panels were selected

to differentiate LC from Non-LC and GC from CRC with the AUC values of 0.87

and 0.83 in validation cohorts, respectively. Additionally, the model accurately

predicted the origin of three lethal cancers: lung, gastric, and colorectal, with an

overall accuracy of 0.75. The AUC values for LC, GC, and CRC were 0.88, 0.88,

and 0.80, respectively.
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Discussion: Our study demonstrates the potential of urine-based metabolomics

for multi-cancer early detection. The approach offers non-invasive cancer

screening, promising widespread implementation in population-based

programs for early detection and improved outcomes. Further validation and

expansion are needed for broader clinical applicability.
KEYWORDS

urinary metabolomics, multi-cancer screening, tumor origin prediction, machine
learning, pathway
Introduction

Cancer is a leading cause of death worldwide, and it is predicted

that global cancer incidence will double by 2070 compared to 2020 (1).

It was estimated that in 2022, lung cancer (LC), colorectal cancer

(CRC), and gastric cancer (GC) were among the five most common

cancers and leading causes of cancer-related deaths in China,

representing 22.0%, 10.7%, and 7.4% of new cancer cases,

respectively, and contributing to 28.4%, 9.3%, and 10.1% of total

cancer deaths (2). Cancer screening aids in the detection of cancer at

early stage when treatment is both more effective and cost-efficient. To

date, the clinical blood tumor biomarkers are limited, including

alpha-fetoprotein (AFP), cancer antigen 19-9 (CA19-9), and

carcinoembryonic antigen (CEA), all of which demonstrate low

sensitivity. Besides, most of the current screening tests are for single

cancer, which may lead to elevated false positive rates when used

consecutively (3). Therefore, there is an urgent need for non-invasive

screening solution for pan-cancer early diagnosis.

Multi-cancer early detection (MCED) tests have the potential to

address these challenges by identifying multiple types of cancer

simultaneously within a single test, with numerous novel

technologies being investigated (4). For example, a targeted

cfDNA methylation-based assay called Galleri test was applied to

diagnose 50 different cancers (5). Moreover, the CancerSEEK test

integrates genetic mutation signals and protein markers to detect

eight types of cancer (6). However, these methods require complex

sample processing and high depth coverage of sequencing, which

are time-consuming and costly, hindering the population wide

screening (7). Previous studies have shown the potential

application of metabolomics in diagnosing certain cancers, as

cancer is acknowledged as a metabolic disorder (8). Additionally,

metabolomics technologies exhibit high reliability and

reproducibility, making them promising tools for identifying

potential biomarkers in tissues, blood, and urine samples (9).

Compared to other biological fluids (tissue and blood), urine has

the advantages of being inexpensive, easy to handle, and available in

large amounts, without requiring invasive treatments for collection,

which could potentially broaden its application (10). Besides, it

contains a variety of inorganic salts, organic compounds, and

diverse exfoliated cell types, providing rich metabolic information
02
reflecting the systemic metabolic status (11, 12). Moreover, urine as

a carrier for blood wastes, contains various metabolic products from

pathways (13). Hence, the application of urine-based metabolomics

in cancer screening is poised to become a powerful tool for clinical

cancer diagnosis. Currently, urinary metabolomics has been applied

to identify potential markers for the diagnosis of various cancers.

For instance, meta-analysis characterized eleven relevant urinary

metabolites for colorectal cancer diagnosis (14). In addition, Mathé

et al. (15) and Chan et al. (16) revealed specific urinary metabolic

biomarkers of diagnosing lung cancer and gastric cancer,

respectively. This demonstrated the clinical potential of urinary

metabolomics for cancer diagnosis. To the best of our knowledge,

however, a comprehensive multi-cancer screening strategy utilizing

urine-based metabolomics has not been developed yet.

Herein, the aim of this study is to develop a urinary

metabolomics-based approach for multi-cancer diagnosis by

identifying cancer-specific urinary biomarkers, enabling the

construction of screening models that can distinguish between

cancerous and non-cancerous individuals and accurately predict

the origin of three lethal cancers (including LC, CRC, and GC). The

urinary metabolomics holds promise of becoming a universally

applicable, straightforward, and cost-effective means of early

detection for these three cancers across large populations.
Methods

Study population

A case-control study was conducted between September 2018

and January 2020 at three independent centers, including the First

Affiliated Hospital of Nanchang University, the Second Xiangya

Hospital of Central South University, and the Second Hospital of

Tianjin Medical University. Participants included individuals with

LC, GC, CRC, non-cancer benign diseases (NCD) of the lung,

stomach, and colorectum, as well as healthy controls (HC). The

study was approved by the local Institutional Review Board,

adhering to the guidelines of the International Conference on

Harmonization for Good Clinical Practice and the Declaration of

Helsinki, with formal consent obtained from the participants. All
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participants were screened as described previously (17). Morning

fasting urine samples were collected, centrifuged, and processed

using established methods (17).
Sample preparation and
metabolites detection

The extraction buffer, consisting of methanol, methyl tert-butyl

ether, water, and a mixture of chemical standards (gibberellic acid

A3: 0.45 µg/mL, 13C sorbitol: 1 µg/mL, and PE (17:0/17:0): 1 µg/

mL), was combined with the samples and sonicated for 15 minutes

at 4°C. Following this, 350 µL of methanol/water (v/v, 1:3) was

added to facilitate phase separation. The resulting upper lipophilic

phase and hydrophilic phase were collected separately after

high-speed centrifugation (18000 g, 5 minutes at 4°C, Centrifuge

5430R, Eppendorf, Germany). All aliquots were dried and stored at

-80°C for further analysis. The polar fraction was derivatized

according to Lisec et al. (18). Metabolite analysis was performed

using gas chromatography and UPLC-MS (Waters ACQUITY ultra

performance liquid chromatography (UPLC) system coupled to

Thermo-Fisher Q-Exactive mass spectrometers with an electrospray

ionization (ESI) source). The resuspended samples were injected

into a Waters ACQUITY FTN autosampler set to a temperature of

10°C. Data were acquired in both positive and negative modes, with

parameters as described previously (17).
Data processing

The raw data (.raw) were initially processed using Metanotitia

Inc.’s in-house developed software PAppLine™. This process involved

peak picking, baseline correction, alignment, removal of isotopic peaks,

annotation, and baseline noise removal. Metabolic features detected in

less than 80% of the subject samples were discarded to mitigate the

impact of noise and outliers in the data. Missing values were addressed

separately for the subject samples and the quality control samples

(QCNist), using the same strategy batch-by-batch. The imputation

method varied depending on the missing rate and average intensity

of each feature within the batch. For features with a low missing rate

and high average intensity, the MICE forest algorithm was applied. For

those with a high missing rate or low average intensity, the half-

minimum method was used for imputation. Meanwhile, features with

high missing rate or low averaging intensity were imputed by the half

minimum strategy. The MSTUS (total useful MS signals) method is

used to normalize mass spectrometry data to eliminate dilution effects

present in urine samples (19). Subsequently, normalization was

conducted utilizing the QC-based deep learning method, NormAE

algorithm. Finally, a calibration procedure, including logarithm

transformation and scaling, was employed.
Feature selection and model construction

Feature selection was independently conducted for each platform

within the discovery cohort using the least absolute shrinkage and
Frontiers in Immunology 03
selection operator (LASSO) algorithm. The LASSO method regularizes

parameters of a linear regression model by reducing some coefficients

to zero, allowing the selection of features with nonzero coefficients (20).

To enhance its stability, we applied an ensemble learning approach,

constructing and amalgamating multiple selection systems with a

recurring random data-splitting strategy. Subsequently, selected

features from the three distinct MS-based platforms were integrated

for addressing the forthcoming classification problem. For the training

model, a five-fold cross-validation procedure repeated five times was

applied to each classifier. The discovery set was divided into two subsets

at a ratio of 4:1 to compute the training error on the resulting 20%

dataset. Through five repetitions of this process, the average training

error was calculated and employed for training hyper-parameters. The

model comprises the Balanced Support Vector Machine (SVM)

algorithm, a fundamental classification algorithm. These techniques

are adept at handling high-dimensional mass spectrometry-based data,

particularly in situations with limited sample sizes. To tackle

multi-class classification, we used the One vs. Rest approach for

these three distinct cancer types and employed ensemble learning

techniques like bagging and stacking to enhance the metabolic panel

(MP) model. For the test model, parameters were determined during

training, and the validation set was used to compute validation error,

including confusion matrix, ROC curves, and AUC, for all

corresponding classifiers.
Statistical analysis

The data’s statistical significance was assessed at a 95%

confidence level (p < 0.05) using binomial distribution. Data

processing and machine learning were conducted in Python

(version 3.10.12), leveraging the Numpy (version 1.23.5) and

Pandas (version 1.5.3) libraries. Imputation was carried out with

Miceforest (version 5.6.2), while feature selection and machine

learning employed Scikit-learn (version 1.2.2) and Scipy (version

1.10.1). Matplotlib (version 3.8.2) was employed for generating the

confusion matrix to summarize classification results and plot ROC

curves. The confusion matrix for multiple classification (among

three cancers: GC, CRC, and LC) was generated using Scikit-learn

metrics. The heatmap was drawn using R (version 4.2.0). To assess

the accuracy, sensitivity, and specificity of the different groups, ROC

curves were applied for various scenarios (discovery set, validation

set). ROC curves and AUC values were performed by Scikit-learn.
Results

Characteristics of participants

This study recruited participants with three common types of

cancer: LC (n = 548), GC (n = 177), and CRC (n = 186), along with 563

patients with non-cancerous benign diseases (NCD) and 229 healthy

controls (HC). All cancer patients were diagnosed by histopathology

and/or imaging techniques, depending on cancer types, and had not

received any prior treatment at the time of urine collection. The cancer,

non-cancer disease, and HC groups were randomly assigned to the
frontiersin.org
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discovery and validation cohorts (Table 1). The discovery cohort was

utilized for profiling multi-cancer- and tissue-specific signatures and

constructing machine learning algorithms, whereas the validation

cohort was exclusively employed for evaluating the performance of

the machine learning models (Figure 1).

The discovery cohort included 713 cancer patients (431 LC, 142

GC, and 140 CRC), 422 NCD patients, and 172 healthy controls.

The gender ratios were comparable between the cancer, NCD, and

HC groups (p > 0.05), while the cancer patients were found to be the

oldest than the other two groups with a median age of 62 (p < 0.05)

(Table 1). To better establish an early cancer screening model, we

enrolled numerous early-stage cancer patients, with 30% of them

diagnosed at stage I. The validation cohort comprised of 198 cancer

patients, including 117 LC, 35 GC, and 46 CRC, 141 NCD patients,

and 57 HC. Consistent with the discovery cohort, the gender

distribution was comparable between the cancer, NCD, and HC

groups. Furthermore, the cancer group had a higher median age (63

years) compared to the other two groups (53 and 50 years) (p <

0.05). The distribution of cancer patients across each stage closely

resembled that of the discovery cohort (Table 1).
Establishment of metabolites-based
signature panel for pan-cancer detection

After peak alignment and removal of missing values, 125, 13, and

222 metabolites were identified and annotated on the polar, lipid, and

GC platforms, respectively, including fatty acids, carbohydrates,

amino acid and derivatives, nucleotides and derivatives, acetyl-CoA,

diacylglycerol and others. The metabolic reprogramming of cancer

cells has extensively been examined in prior studies, shedding light on

the alterations in patients’metabolism (8). The 18 metabolites for the

discrimination of pan-cancer and non-cancer group have been

selected using the LASSO regression algorithm. KEGG pathway

enrichment analysis on the metabolites panel uncovered a variety

of disrupted metabolic pathways including the starch and sucrose,

galactose, and tryptophan metabolism (p < 0.05, Figure 2A), which

has been well characterized in cancer patients in previous research

(21, 22). Subsequently, an SVM algorithm was employed to establish

the screening model based on metabolic panel selected from the

discovery dataset (named as MP-SVM), and the performance was

further evaluated in the validation dataset. Impressively, the MP-

SVM model achieved an area under the receiver operating

characteristic (AUC) of 0.98 (95% confidence interval (CI): 0.97-

1.00) and 0.96 (95% CI: 0.93-0.98) for distinguishing cancer group

from HC in the discovery and validation datasets, respectively

(Figure 2B). To evaluate the screening advancement of the MP-

SVM model, we compared its sensitivity with that of the established

clinical tumor biomarker CEA in the validation cohort. The MP-

SVM model outperformed the traditional tumor marker CEA. The

detection rate of MP-SVMmodel in the pan-cancer group was higher

than that of CEA with specificity > 99% in stages I, II, III, and

IV (Figure 2C).

Moreover, the panel exhibited an AUC of 0.83 for discerning

cancer group from the non-cancerous group including the HC and

NCD patients in the validation cohort (Figure 3A). The detection rates
Frontiers in Immunology 04
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FIGURE 1

The workflow diagram of study design.
FIGURE 2

The performance of metabolic panel-based model for discriminating cancer patients from healthy controls. Kyoto Encyclopedia of Genes and
Genomes (KEGG) metabolic pathways enriched by least absolute shrinkage and selection operator (LASSO) selected features (A). The receiver
operating characteristic (ROC) curve for the diagnosis of cancer patients vs. healthy controls (B). Detection rates of metabolic panel-based model
and carcinoembryonic antigen (CEA) at > 99% specificity in the validation cohort (C).
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of the MP-SVM model in the pan-cancer group with a specificity of

95% for stages I, II, III, and IV were 22.5%, 57.1%, 53.3%, and 45.2%,

respectively (Figure 3B). The heatmap was applied to delineate the

metabolite trajectories (LASSO-selected metabolites) in stage I, II, III,

and IV (Figure 3C). The distinct variations of these metabolites were

observed across the four stages of cancer, reflecting intricate shifts in

metabolic dynamics throughout cancer progression. More specifically,

the changes in most metabolite levels in stage I were not pronounced

(e.g., 5-Hydroxyindoleacetate, N-Carbamylglutamate, kynurenine, and

indolelactate). And the levels of certain metabolites in stages II and III

significantly increased (e.g., kynurenine, indolelactate, indoxyl sulfate,

galactinol, methylimidazoleacetate, and isomaltose). The 5-

Hydroxyindoleacetate and N-Carbamylglutamate in stage IV showed

the most significant increase, while pipecolate and glycocyamine

exhibited the most notable decrease. Next, we assessed the potential

confounding effect of age on our model by examining the correlation

between the model prediction scores and the participants’ ages. The

results exhibited no significant correlation (R = 0.05, P = 0.32),

indicating that age differences are unlikely to impact the accuracy of

our model (Supplementary Figure S1).
Establishment of cancer classification
model for tumor origin prediction

The accurate prediction of the tumor origin is essential in early

cancer detection, as it guides subsequent diagnostic procedures and

treatment decisions (23). Given that both GC and CRC originate in

the digestive tract, they have been reported to exhibit certain shared

metabolic characteristics (24). Thus, in this study, the feature

selection process for the cancer classification model consisted of
Frontiers in Immunology 06
two stages: distinguishing between LC and non-LC samples (GC and

CRC), and then differentiating between GC and CRC samples.

Seventeen metabolites were selected by LASSO algorithm to

differentiate LC from Non-LC, achieving AUC values of 0.88 (95%

CI: 0.83-0.93) and 0.87 (95% CI: 0.82-0.91) in the discovery and

validation datasets, respectively (Figure 4A). Among these

metabolites, metabolites such as 3-Hydroxybutanoate, cadaverine,

N-Cinnamylglycine, and anabasine exhibited upregulation in the

non-LC group, whereas 3-Ureidopropionate, O-Acetylhomoserine,

4-Hydroxyphenylpyruvate, xanthurenic acid, N-Carbamylglutamate,

3-Methyl-2-pentenedioic acid, methionyl-aspartate (Met-Asp), and

3-Methylhistidine were found to elevate in the LC group (Figure 4B).

These 17 metabolites were further mapped to the KEGG metabolic

pathways for pathway analysis. Histidine metabolism, glutathione

metabolism, tyrosine metabolism, and phenylalanine, tyrosine, and

tryptophan biosynthesis were the most significantly changed pathway

when comparing LC and non-LC groups (p < 0.05) (Supplementary

Figure S2A).

An additional set of 21 metabolites were selected for classifying GC

and CRC, without overlapping with features selected for the LC and

non-LC classification. The AUC for the MP-SVM model in the

discovery and validation datasets were 0.91 (95% CI: 0.84-0.97) and

0.83 (95%CI: 0.74-0.91), respectively (Figure 4C), with acetylhistamine,

trisaminol, and sucrose being the three most significant contributing

metabolites (Figure 4D). The 21 metabolites were enriched in 17

metabolic pathways, with 5 pathways (galactose metabolism,

carbohydrate metabolism, fructose and mannose metabolism,

neomycin, kanamycin, and gentamicin biosynthesis, arginine, and

proline metabolism) exhibiting significant differences (p < 0.05)

(Supplementary Figure S2B). The two metabolites’ panels were

pooled together, forming the basis for constructing the tumor origin
FIGURE 3

The performance of metabolic panel-based model for discriminating cancer patients from non-cancer group. The receiver operating characteristic (ROC)
curve for the diagnosis of cancer patients (A). Detection rates of metabolic panel-based model at 95% specificity in the validation cohort (B). Heatmap of
18 least absolute shrinkage and selection operator (LASSO)-selected metabolites in non-cancer group and the cancer group at different stages (C).
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classification model. In the validation cohort, the model yielded an

accuracy of 0.75, with AUC of 0.88 (95% CI: 0.83-0.93) for LC, 0.88

(95% CI: 0.81-0.93) for GC, and 0.80 (95% CI: 0.72-0.87) for CRC,

respectively (Figure 5A). Among the three cancer types, LC showed the

highest detection rate (0.83), while CRC exhibited the low detection

rate (0.52) (Figure 5B).
Frontiers in Immunology 07
Discussion

In this study, we developed a novel urine metabolites-based

model and revealed urinary metabolic biomarkers exhibiting high

discriminative capacity for multi-cancer early detection. Despite the

wide range of genetic changes observed in various types of cancer,
FIGURE 4

Classification of cancers by metabolic panel-based model. The receiver operating characteristic (ROC) curve for the discrimination of lung cancer (LC)
patients from non-lung cancer patients (A). Heatmap of the least absolute shrinkage and selection operator (LASSO)-selected metabolites between LC
and non-LC patients (B). The ROC curve for the discrimination of gastric cancer patients (GC) from colorectal cancer patients (CRC) (C). Contribution of
the selected metabolites to the discrimination model for GC vs. CRC (D).
FIGURE 5

The performance of the multi-cancer classification model. The receiver operating characteristic (ROC) curves evaluating the model in discriminating
tumor origins in the validation cohort (A). Confusion matrix summarizing the cancer classification results in the validation cohort (B).
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there is a possibility that cancer development could impose similar

requirements on cellular metabolism, regardless of its tissue of origin

(25). Besides, subtle distinctions exist among cancers originating from

different sites, which can be also identified through metabolomics.

The common patterns of these biomarkers selected by LASSO across

various cancers in our study, predominantly corresponded to

dysregulated pathways in cancer, as reported in previous research,

encompassing carbohydrate metabolism and amino acid metabolism

(22, 25). Specifically, it exhibited outstanding performance by adeptly

discerning cancers from healthy subjects, comparable to the

performance of the model built by Zhang et al. (26), which

incorporated blood-derived metabolites. Differently, our model

utilized less invasive urine samples. Furthermore, besides effectively

discerning between healthy individuals and cancer patients, we also

exhibited robust discriminative capability between cancer patients

and individuals with benign conditions, as these systemic factors have

been documented to influence the metabolic profile (27).

During the early stages of tumor development, there is a

demand for nutrient uptake and biosynthesis, leading to the

metabolic reprogramming (28). Remarkably, in our investigation,

we noted a decline in the model’s sensitivity for detecting cancer at

stage IV compared to the earlier stages, such as stages II and III in

comparison with the non-cancerous group. We hypothesize that the

irregular variations in selected metabolites across various stages of

cancer progression could be the underlying factor, corroborated by

prior research indicating the specific metabolic changes in tumor

progression (28). For instance, MYC, a proto-oncogene, promotes

the conversion of pyruvate to alanine, whereas in advanced

malignant lesions, stimulates the transformation of pyruvate into

lactate (29). Investigation of the metabolic evolution from

preneoplasia to lung adenocarcinoma, researchers observed a

gradual alteration in metabolic pathways, suggesting that cancer

progression may not uniformly change metabolic patterns (30). In

another study, metabolic profiles of patients with chronic

obstructive pulmonary disease (COPD) were compared with

those of lung cancer patients across various stages. The findings

revealed notable differences in certain metabolite levels between

early-stage lung cancer and COPD patients, while metabolite levels

in late-stage lung cancer patients closely resembled those of COPD

patients. This suggests that the serum metabolome may reflect lung

dysfunction and systemic changes in advanced stages, which are

absent in early stages (31). This finding may suggest the advantages

of using metabolomics for early diagnosis of cancer, however, the

specific mechanism needs to be further investigated.

In a cancer-screening scenario, a high specificity was uniformly

predefined to diminish false positivity and thereby prevent

overdiagnosis and anxiety. However, such specificity may

compromise sensitivity to some extent, potentially undermining

the benefits of multi-cancer early detection. For individuals with

high-risk factors such as ulcerative colitis or adenomatous polyps

for CRC (23), emphysema, chronic bronchitis, pneumonia, and

tuberculosis for lung cancer (32), atrophic gastritis, and H. pylori

infection for GC (33), a higher sensitivity is preferable, even with a

slight compromise in specificity. In our study, the higher specificity

of the model (> 99%) may be applicable for low-risk populations,

which showcased higher diagnostic sensitivity compared to
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conventional blood tumor marker-CEA, indicating its potential

suitability for routine health check-up. The slightly lower

specificity (95%) for discriminating cancer patients from non-

cancerous groups (including HC and NCD) might be more

suitable for high-risk populations to reduce the likelihood of

missed cancer detection for clinical use. In practice, determining

the balance between sensitivity and specificity requires further

exploration through cost-effectiveness studies in various

intended populations.

In our study, we selected metabolites that are commonly

dysregulated across three different types of cancer and uniquely

dysregulated within specific cancer subtypes. These metabolites

were mapped in KEGG metabolic pathways, providing robust

biomarkers for our model (34). Specifically, the features across

cancer types were selected (LC vs. Non-LC, GC vs. CRC) to build

the tumor classification model. Several studies have shown that

gastrointestinal cancers shared similar mechanisms (24). Thus, we

first compared the LC and gastrointestinal cancers (including GC

and CRC), these selected biomarkers were mainly involved in

amino acid metabolism. Furthermore, the biomarkers involved in

carbohydrate metabolism were chosen to discriminate against GC

and CRC. In a meta-analysis aimed at identifying biomarkers

distinguishing between GC and CRC, it was observed that

galactose metabolism was significantly enriched only in the GC

group (24), consistent with our study findings. Additionally,

utilizing TCGA pan-cancer database analysis, dysregulation of

genes involved in fructose and mannose metabolism was observed

specifically in GC patients, whereas no such dysregulation was

found in the CRC group (35).

There are still several limitations in our study. The comprehensive

follow-up was lacking for all non-cancerous participants to ensure their

non-cancerous status, which could potentially result in an inflated false

positive rate (FPR) and an underestimated positive predictive value

(PPV). Besides, it’s noteworthy that the variability in metabolites levels

among both healthy individuals and those with diseases necessitates the

validation of metabolic biomarkers using independent assay platforms

and external validation cohorts. When millions of individuals undergo

cancer screening, even a highly selective assay utilized in population

screening may produce a significant number of false positives. Hence,

it’s crucial to eliminate false positives, as they could lead to significant

and unnecessary stress for the individual. Furthermore, the current

study only analyzed three cancer types, although these are among the

most prevalent cancers in China, expanding the analysis to include

other prevalent and significant cancers in the multi cancer strategy,

such as liver, kidney, gynecological, and pancreatic cancers, would

certainly broaden its clinical applicability.
Conclusions

In summary, we have developed a urine-based metabolic

biomarker panel for early detection of multi-cancers. The selected

metabolic panel, identified through the integration of algorithms

and biological significance, effectively differentiated cancer patients

from healthy controls and those with benign conditions.

Additionally, a cancer classification model accurately predicted
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tumor origin. Our findings demonstrated that urinary

metabolomics can be applied as a universally applicable,

straightforward, and cost-effective method for early cancer

detection across large populations. In the future, with larger-scale

external validation and the expansion to more types of cancer, the

pan-cancer screening method based on urine metabolomics has the

potential to be translated into clinical settings to support precision

medicine, aiding in the identification and localization of

common malignancies.
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