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Immune and inflammatory
insights in atherosclerosis:
development of a risk prediction
model through single-cell and
bulk transcriptomic analyses
Xiaosan Chen*, Zhidong Zhang, Gang Qiao, Zhigang Sun
and Wei Lu

Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China
Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
Background: Investigation into the immune heterogeneity linked with

atherosclerosis remains understudied. This knowledge gap hinders the creation

of a robust theoretical framework essential for devising personalized

immunotherapies aimed at combating this disease.

Methods: Single-cell RNA sequencing (scRNA-seq) analysis was employed to

delineate the immune cell-type landscape within atherosclerotic plaques,

followed by assessments of cell-cell interactions and phenotype characteristics

using scRNA-seq datasets. Subsequently, pseudotime trajectory analysis was

utilized to elucidate the heterogeneity in cell fate and differentiation among

macrophages. Through integrated approaches, including single-cell sequencing,

Weighted Gene Co-expression Network Analysis (WGCNA), and machine

learning techniques, we identified hallmark genes. A risk score model and a

corresponding nomogram were developed and validated using these genes,

confirmed through Receiver Operating Characteristic (ROC) curve analysis.

Additionally, enrichment and immune characteristic analyses were conducted

based on the risk score model. The model’s applicability was further

corroborated by in vitro and in vivo validation of specific genes implicated

in atherosclerosis.

Result: This comprehensive scRNA-seq analysis has shed new light on the

intricate immune landscape and the role of macrophages in atherosclerotic

plaques. The presence of diverse immune cell populations, with a particularly

enriched macrophage population, was highlighted by the results. Macrophage

heterogeneity was intricately characterized, revealing four distinct subtypes with

varying functional attributes that underscore their complex roles in

atherosclerotic pathology. Intercellular communication analysis revealed

robust macrophage interactions with multiple cell types and detailed pathways

differing between proximal adjacent and atherosclerotic core groups.

Furthermore, pseudotime trajectories charted the developmental course of

macrophage subpopulations, offering insights into their differentiation fates

within the plaque microenvironment. The use of machine learning identified

potential diagnostic markers, culminating in the identification of RNASE1 and

CD14. The risk score model based on these biomarkers exhibited high accuracy
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in diagnosing atherosclerosis. Immune characteristic analysis validated the risk

score model’s efficacy in defining patient profiles, distinguishing high-risk

individuals with pronounced immune cell activities. Finally, experimental

validation affirmed RNASE1’s involvement in atherosclerotic progression,

suggesting its potential as a therapeutic target.

Conclusion: Our findings have advanced our understanding of atherosclerosis

immunopathology and paved the way for novel diagnost ic and

therapeutic strategies.
KEYWORDS

atherosclerotic plaques, single-cell sequencing, macrophages, immuno-inflammatory
responses, riskscore model
Introduction

Atherosclerosis is a complex disease characterized by the

accumulation of lipids and fibrous elements within large arteries

and poses a considerable public health challenge globally (1). This

disease constitutes a principal causative agent for numerous

cardiovascular disorders. These include myocardial infarctions (MI)

resulting from coronary artery disease (CAD), strokes originating

from cerebrovascular disease (CVD), and limb amputations

necessitated by peripheral artery disease (PAD) (2–5). Significant

stenosis that restricts blood flow and causes critical tissue hypoxia is

the eventual outcome of the chronic accumulation of plaques, which

obstruct vessels within the subendothelial intimal layer of large and

medium-sized arteries (6). MI and stroke constitute the leading

causes of mortality, surpassing even cancer. They are responsible

for approximately 31% of deaths in the United States and a similar

proportion globally (7). Current clinical guidelines prioritize

addressing such complications. Therapies in clinical practice, that

aptly inhibit or curtail the progression of atherosclerosis, prominently

include the use of drugs that reduce low-density lipoprotein (LDL)

cholesterol (8). As the illness swiftly escalates as a leading cause of

global morbidity and mortality (9), a deep-rooted understanding of

its epidemiology, pathogenesis, and treatment methodologies, along

with the advancements in clinical and basic research, is essential.

Atherosclerosis is characterized as a disease typified by the

accumulation of excessive cholesterol, initiated through the

entrapment of lipoproteins such as low-density lipoprotein (LDL)

within the intimal layer of arteries (10). Atherosclerosis is

characterized as a disease typified by the accumulation of

excessive cholesterol, initiated through the entrapment of

lipoproteins such as low-density lipoprotein (LDL) within the

intimal layer of arteries (11). Plasma cholesterol, LDL cholesterol,

and certain apolipoproteins, particularly Apolipoprotein B (ApoB),

show strong associations with clinically apparent atherosclerosis

(12–14). Recent studies have demonstrated a significant association

between inflammatory responses, immune system activity, and the
02
occurrence and progression of atherosclerosis (15, 16).

Atherosclerosis, a chronic inflammatory disorder, is accompanied

by a persistent, low-grade inflammatory response that attracts cells

from both the innate and adaptive immune systems to the plaque

formed in the arteries. Atherosclerotic plaque, in turn, becomes a

target for certain cells that specifically recognize ApoB, the central

protein of LDL particles. Thus, autoimmune factors also contribute

to the manifestation of atherosclerosis as a chronic inflammatory

disorder (17, 18). Despite considerable research endeavors, the

precise immune mechanisms involved in these phenomena are

still largely undetermined. The inherent immune diversity

observed within atherosclerotic plaques suggests a noteworthy but

obscure role for other immune cells at the locus of plaque

development (19). Many studies propose that the circulating

immune cells significantly impact the clinical progression of

atherosclerosis, where a chronic, low-level inflammatory response

accompanies the development of atherosclerosis, attracting cells

from the innate and adaptive immune systems to the atherosclerotic

plaque (17, 20, 21). Remarkably, patients enduring acute

cardiovascular events display greater quantities of circulating

monocytes, CD4+ T cell subtypes, and macrophages (22, 23). In

addition, aberrant metabolic processes contribute to macrophage

mitochondrial dysfunction within the context of atherosclerosis (18,

24). However, substantial knowledge gaps remain concerning the

interactions between systemic immune responses and those

emerging at the rupture site of the plaque. Therefore,

investigating immune cell phenotypes and their functional

relationships within both plaques and blood samples drawn from

individual patients is vital, yet generally under-researched. These

comprehensive notions could potentially lay the groundwork for

innovative immunotherapies.

In this study, scRNA-seq was employed to analyze high-quality

immune cells from atherosclerotic plaques. Immune cell enrichment

in the atherosclerotic core compared to proximal adjacent samples

was discovered. Notable immune cell interactions revealed using the

MuSiC algorithm and intercellular communication analysis
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highlighted the importance of macrophages in atherosclerosis

pathogenesis. Macrophage heterogeneity was explored, revealing

four distinct subtypes with different functional profiles.

Macrophage development trajectories were tracked, and vital genes

along with subpopulations’ lineage differentiation were identified.

Using WGCNA, gene co-expression networks were created to isolate

critical genes for further analysis. Gene enrichment studies clarified

the biological roles of these genes. Potential atherosclerosis

biomarkers were identified using machine learning algorithms,

allowing the construction of a diagnostic model with high

predictive accuracy. Patients’ risk was further stratified using a

developed riskScore model, and molecular as well as immune

characteristics associated with different risk levels were investigated.

Validation in vivo and in vitro within atherosclerosis models

demonstrated the potential influence of targeted genes on

disease pathology.
Materials and methods

Acquisition of raw data

Human atherosclerotic plaque single-cell data were sourced

from the GEO database, under the accession numbers

GSE155512, which encompassed data from three distinct plaques

from separate individuals, and GSE159677, detailing both

atherosclerotic core (AC) plaques and corresponding proximal

adjacent (PA) plaques from three patients. Additional bulk

mRNA transcriptomic profiles were retrieved from several

repositories: GSE120521, GSE41571, GSE163154, GSE28829,

GSE43292, GSE100927, obtained through the GEO database, and

E-MTAB-2055, accessed via ArrayExpress. Detailed clinical features

and sample specifics across these bulk mRNA datasets were

compiled in Supplementary Table S1.

In this research, data from three datasets, specifically GSE28829,

GSE163154, and GSE43292, were integrated using the “sva”

package’s Combat function in R, resulting in a collective of 60

stable and 73 unstable atherosclerotic plaques for the test set, with

the exclusion of three outliers. Four other datasets, namely

GSE120521, GSE41571, GSE100927, and E-MTAB-2055, were

earmarked for validation purposes.

The raw datasets retrieved from the GEO were subjected to

preprocessing and normalization employing the Robust Multiarray

Average (RMA) method incorporated within the “affy” R package.
scRNA-seq data processing and
cell annotation

Datasets from the GEO repository featuring scRNA-seq data of

human arterial plaque were obtained and reprocessed utilizing the

“Seurat” R package (version 4.10). We considered genes for analysis if

they were present within a minimum of three individual cells. We

selected cells that presented a gene count in the range of 200 to 4000, a

nCount_RNA that was under 25000, and mitochondrial gene content
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below 15% to ensure the retention of premium scRNA-seq information.

The parameter settings for this single-cell analysis were referenced

based on several high-quality researches (25, 26). From this curated

dataset, a total of 55,981 cells were deemed appropriate for further

examination. Through the application of NormalizeData and ScaleData

methodologies, these cells underwent normalization and scaling

processes. After this data refinement, utilizing the Seurat toolkit’s

FindVariableFeatures function permitted the identification of the

superior 3000 variably expressed genes. To mitigate batch variation,

potentially compromising subsequent analytical steps, the

RunHarmony tool was employed. The discovery of pivotal anchoring

points was conducted via principal component analysis. The top 20

principal components were then subjected to examination using the t-

SNE approach to unveil significant cellular conglomerates. The

subsequent procedure involved the delineation of 17 discrete cell

clusters by leveraging the FindNeighbors and FindClusters routines,

setting a resolution parameter at 0.35, and then graphically representing

these clusters in a t-SNE plot. Each cluster was painstakingly classified

into recognized principal cell types based on the expression of canonical

marker genes. Finally, to catalog the signature markers for all identified

cell groups, we called upon the COSG R package, operating with

specified parameters (mu=10, n_genes_user=50).
Annotating cell types in bulk RNA
−seq dataset

The Single Cell Multi-Subject (MuSiC) approach effectively

determines cell quantity through deconvolution. By analyzing

gene expression exclusive to cell types from single-cell RNA

sequencing data, this algorithm discerns the various cellular

subpopulations’ relative abundances within the comprehensive

dataset GSE100927 ’s RNA sequencing. A conventional

methodology was utilized to deduce the proportions of cell types

within mass peripheral blood specimens. Variances across cell

populations among the different cohorts were graphically depicted.
Cell communication analysis

The CellChat objects were created by the “CellChat” R package

(https://www.github.com/sqjin/CellChat) (27) based on the UMI

count matrix for each group (PA and AC). The database for human

ligand-receptor interactions, known as “CellChatDB.human,” was

the selected source of data. Cell-to-cell communication analysis was

performed utilizing the preset default parameter configuration. To

facilitate a comparative analysis of interaction counts and the

intensity of these interactions, CellChat data from the respective

categories were merged through the “mergeCellChat” utility. The

task of portraying variances in either the quantity or intensity of

interactions across diverse cellular populations between the

examined clusters was accomplished with the help of

“compareInteractions” and “netVisual_circle” tools. Subsequently,

the expression patterns of signaling genes across different groups

were depicted using the “netVisual_bubble” function.
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Trajectory analysis

The Monocle2 algorithm was used to explore the differentiation

trajectories of the selected clusters (28). To analyze specific cell clusters,

we utilized the ‘subset’ tool within Seurat. Following this, the creation

of a CellDataSet object was completed through monocle2’s

‘newCellDataSet’ utility, applying the ‘lowerDetectionLimit’ attribute

at a threshold of 0.5. After the initial phase, which included the

computation of size factors and dispersion estimates, cells and genes

of inferior quality were eliminated. The screening was executed by

deploying ‘detectGenes’ and ‘subset’ with the ‘min_expr’ criterion

positioned at 0.1. In pursuit of identifying genes with varying

levels of expression throughout the cellular trajectory, the

‘differentialGeneTest’ was employed. To condense data into a more

manageable form, the ‘reduceDimension’was used in conjunction with

the ‘DDRTree’ technique. Visualization of the ordered cells, the

expression of genes over pseudotime, and the gene expression across

different branches were achieved through ‘plot cell trajectory’, ‘plot

genes in pseudotime’, and ‘plot genes branched heatmap’, respectively.

Which, this process was complemented by implementing a

CytoTRACE analysis—an unsupervised method that predicts the

differentiation continuum within single-cell transcriptomes (29). For

visual representation, ‘plotCytoGenes’ and ‘plotCytoTRACE’ were

utilized in alignment with the predetermined guidelines of the

recommended analytical sequences.
Estimate the scores of different
phenotypes based on the scRNA-seq data

Genetic markers characteristic of various phenotypes —

including cholesterol removal, programmed cell death related to

iron (ferroptosis), new blood vessel formation (angiogenesis), cell

debris ingestion (phagocytosis), cellular component degradation

(autophagy), digestive cellular organelle (lysosome) activity, oxygen

deprivation (hypoxia), immediate immune response (acute

inflammatory response), and stress on the protein-folding cellular

department (endoplasmic reticulum stress) — were extracted from

the comprehensive Molecular Signatures Database (MSigDB).

Following this, to calculate the phenotype-associated scores for

different cohorts, we utilized the AUCell tool, adhering to its

standard parameters, within the framework provided by the

irGSEA software package.
WGCNA analysis

The “WGCNA” package in R, which implements the WGCNA

technique, was employed to construct the gene co-expression

network of the GSE100927 dataset. To enhance the precision of

the analysis, the top quartile of genes exhibiting high variance was

selected as the input data. The procedure was meticulously carried

out in several steps. Initially, the “goodSamplesGenes” function was

employed to remove any genes with missing values. Subsequently,

an optimal soft threshold for calculating the adjacency was
Frontiers in Immunology 04
determined through visual inspection. The expression matrix was

then converted into an adjacency matrix, which was further

transformed into a topological overlap matrix (TOM) to delineate

the genetic interconnections within the network. To capture the

nuances of interconnectedness, average linkage hierarchical

clustering was conducted based on the variations observed in the

TOM. Dynamic pruning of the hierarchical clustering tree was

applied to amalgamate modules with high correlation coefficients,

thereby identifying akin modules. The module eigengenes (MEs),

representing the collective gene expression of each module, formed

the cornerstone of the gene modules. The association between the

eigengene values and clinical traits was assessed using Pearson

correlation. The final step involved selecting the genes within the

module exhibiting the most substantial correlation with

macrophages for subsequent investigation.
Machine learning approaches for feature
selection and visualization

Several machine learning techniques, specifically LASSO, SVM-

RFE, and the Random Forest (RF) algorithms, were utilized to

analyze characteristic methylation-related genes leveraging the R

libraries “glmnet,” “e1071,” “caret,” and “Boruta.” The LASSO

algorithm identified critical variables by tuning the optimal

lambda (l) value, which was determined through five-fold cross-

validation. Meanwhile, the Boruta algorithm pinpointed pertinent

genes, obliging to specific criteria (namely 300 iterations and a

significance threshold of p < 0.01).

After the removal of non-significant genes, the notable genes

discerned through Boruta were integrated into both SVM-RFE and

RF analyses, facilitated by the “e1071” and “caret” tools,

correspondingly. These analytical models incorporated default

settings and hinged on the strength of five-fold cross-validation to

curtail the risk of overfitting.

The study cohort, featuring atherosclerotic plaque specimens

from diverse datasets, was arbitrarily apportioned into two groups: a

training segment (60%) for algorithm tuning, and a validation

cohort (40%) for model authentication. Integration of genes

identified by each distinct algorithm resulted in the establishment

of a definitive set of characteristic genes. To ascertain the diagnostic

accuracy of these findings, an evaluation via the receiver operating

characteristic (ROC) curve’s area under the curve (AUC) metric

was conducted, utilizing the “pROC” R.
Construction and assessment of a risk
model based on characteristic genes

A prognostic nomogram was constructed using macrophage-

related distinctive genes, with the ‘rms’ package employed as the

foundational tool. To ascertain the precision of the nomogram, a

calibration plot was devised. The clinical utility of this nomogram

was further assessed through decision curve analysis, conducted via

the ‘ggDCA’ package within R.
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For patients with atherosclerosis, individual risk scores were

calculated drawing on the LASSO machine learning algorithm’s

coefficients, aligning to the formula: riskScore = sum (Coefficients_i

× Expressioni), wherein ‘i’ indexes the macrophage-related genes

incorporated within our risk evaluation model. Patient stratification

into high or low-risk cohorts hinged on the median value of these

computed risk scores. The predictive performance of the model was

examined leveraging ROC curves. The validation of the signature’s

predictive capacity was performed using three independent

datasets, with the AUC serving as the measurement metric.
Enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene

ontology (GO) enrichment analysis were performed using the

previously described “clusterProfiler” R package (30). Biological

functions ascribed within gene ontology include three main

categories: biological processes (BP), molecular activities (MF),

and cellular constituents (CC). P-values under the threshold of

0.05 were deemed to reflect statistical significance.

A Gene Set Variation Analysis (GSVA) was undertaken to

scrutinize the diversity present in biological processes and the

actions of different pathways. The GSVA package in R was

utilized for computations (31). For the analysis of gene set

variation, we prioritized hallmark gene collections sourced from

the MSigDB repository. To establish distinctions in biological

processes and signaling cascade functionality, the “limma”

package within the R programming environment was leveraged.

Only those outcomes where absolute t-values exceeded a GSVA

score of 2 were regarded as having statistical relevance. In addition,

an evaluation of gene set enrichment (GSEA) was conducted

utilizing the “clusterProfiler” package in R, which facilitated the

examination of altered pathway activities (32). To ascertain

statistical significance, p-values less than 0.05 were considered.

The ranking of Normalized Enrichment Scores (NES) adhered to

this criterion. Additionally, the progeny R package was employed to

compute activity scores for traditional signaling pathways

associated with disease, with comparisons made between different

groups. In this context, only p-values falling below the 0.05

threshold were recognized as statistically significant.
Atherosclerotic immunity

The immune infiltrating levels were conducted using ssGSEA

algorithms based on the GSVA package (31). Briefly, the study

measured diverse immune cell proportions in each specimen

through established marker gene panels. Subsequent computation of

immune cell subset compositions or their relative quantities utilized

specific analytic algorithms. Group disparities in immune cell

penetration were statistically analyzed using the non-parametric

Wilcoxon rank-sum test. Heatmaps graphically represented the

varying degrees of immune cell presence across atherosclerotic

samples under each algorithm’s results. Moreover, the “ESTIMATE”

R package was deployed to deduce the immune infiltration in sepsis
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patients. Furthermore, immune checkpoints consist of a range of

molecules (including those for antigen presentation, cell adhesion,

co-inhibitory and co-stimulatory interactions, along with ligands and

receptors) present on immune cells, crucial for moderating immune

reaction magnitude. The research culminated in contrasting the

expression of recognized immune checkpoint genes between the

compared cohorts.
Cell culture

The RAW264.7 mouse macrophage cell line was obtained from

the Shanghai Cell Bank Type Culture Collection Committee,

Shanghai, China. Cells were maintained in Dulbecco’s Modified

Eagle Medium (DMEM) (SH30022.01, HyClone, USA)

supplemented with 10% fetal bovine serum (10099141C, Gibco,

USA), 100 units/mL penicillin, and 100 µg/mL streptomycin

(SV30010, HyClone, USA), and incubated at 37°C in a

humidified atmosphere with 5% CO2. Oxidized low-density

lipoprotein (ox-LDL) was selected as the inducer due to its

capability to stimulate endothelial cells and macrophages in the

intima of atherosclerotic lesions, prompting them to secrete pro-

inflammatory cytokines, chemokines, and adhesion molecules.

Upon recognizing and internalizing ox-LDL, monocyte-derived

macrophages transform into foam cells, which are key indicators

of unstable atherosclerotic plaques. Consequently, ox-LDL-treated

RAW264.7 cells were employed as an in vitro model to investigate

these processes.
Lentivirus transfection

Before exposure to oxidized low-density lipoprotein (ox-LDL),

RAW 264.7 cells were transfected with either rat RNASE1 short

hairpin RNA (shRNA) lentivirus or a non-targeting control shRNA

lentivirus (Genechem, Shanghai, China) at a multiplicity of

infection (MOI) of 5, following the manufacturer’s protocol.

Forty-eight hours post-transfection, the cells were utilized for

various experiments. The efficiency of RNASE1 knockdown was

verified using reverse transcription-quantitative polymerase chain

reaction (RT-qPCR). The experimental groups were designated as

follows: Control (Con), model (AS), model + non-target control

shRNA lentivirus (AS+ lv-shNC), and AS + RNASE1 shRNA

lentivirus (LDL+Lv-shRNA). All subsequent in vitro experiments

were performed a minimum of three times for consistency.
Evaluation of cell viability

For the MTT assays, RAW 264.7 cells were plated in 96-well

plates. Once adhesion was confirmed, the cells were incubated with

either 200mL of complete medium (DMEM supplemented with 10%

fetal bovine serum) as the normal control (NC) or with complete

medium containing 50mg/mL oxidized LDL (ox-LDL) to establish

the model (M). Following 24 hours of incubation, the impact of the

drugs on cell viability was determined using the MTT assay.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1448662
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1448662
Migration assay in the cultured RAW
264.7 cells

The motility of the RAW 264.7 cell line—mouse-derived

macrophages—was assessed employing transwell inserts of 6.5

mm diameter, which possess 8 µm sized pores (sourced from

Corning Costar, NY, USA). These chambers were subjected to

preliminary processes, including coating with a Poly L-lysine

hydrobromide solution at a concentration of 0.1 mg/mL (Sigma-

Aldrich, St. Louis, USA) or a control medium. Following this

coating, 1 × 10^5 macrophages in 50 µL of DMEM/F12 with a

1% FBS supplement were introduced to the upper compartment of

the transwell by the researchers. An 18-hour interval was allowed

for the cells to migrate, after which fixation of the cells was

performed using a 4% paraformaldehyde solution for 20 minutes.

Any non-migrating cells were gently swabbed from the top face of

the membrane using a cotton bud, while the migrated cells, which

had adhered to the underside of the transwell membrane, were

stained using 0.1% crystal violet for half an hour. For the

quantitative analysis, five representative photos from different

sections of each membrane—including the center and the four

quadrants—were captured via an inverted microscope

manufactured by Leica, based in Wetzlar, Germany.
Animal studies

Male Wistar rats (Beijing Vital River Laboratory Animal

Technology), weighing between 170 and 210 grams and aged 8

weeks, were housed in a climate-controlled environment

maintained at 22°C with 55% relative humidity. This research

adhered to the established guidelines in the Guide for the Care

and Use of Laboratory Animals.
Generation of adenovirus-mediated
RNASE1 knockdown rat model via
intravenous injection

To further investigate the role of RNASE1 in atherosclerosis, an

in vivo RNASE1 knockdown model was established. Briefly,

adenoviral vectors containing RNASE1-specific short hairpin

RNA (shRNA) (Ad-shRNASE1) and a scrambled negative control

shRNA (Ad-shNC) were obtained from RiboBio (Guangzhou,

China). Each rat received an intravenous injection of

approximately 3x10^10 plaque-forming units (PFU) of Ad-

shRNASE1 in 200 mL of normal saline, comprising the treatment

group. Similarly, the control group was given an equal quantity of

Ad-shNC. The knockdown efficiency was quantified by quantitative

real-time PCR (qRT-PCR) 14 days post-injection. Total RNA was

isolated from the blood samples using a commercially available

RNA extraction kit, in accordance with the manufacturer’s

protocol. The qRT-PCR analyses were then conducted using

specific primers targeting the rat RNASE1 gene to determine its
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expression levels. Additionally, on day 14, the models were

evaluated, and peripheral blood was collected as described.
Animal treatments

The model of rat atherosclerosis was constructed according to the

method of previous studies (33, 34). In brief, following a 7-day

acclimatization period, the animals were assigned to four groups:

normal control (Con), model (AS), AS+Ad-shRNASE1, and AS+Ad-

shNC. The development of the atherosclerosis (AS) model and

adenovirus administration were carried out concurrently over 14

weeks. Before the initiation of the model, Vitamin D3 (VD3) at a dose

of 600,000 IU/kg was administered intraperitoneally. Throughout the

14 weeks, the animals were maintained on a high-fat diet. At the

study’s conclusion, after 14 weeks, the rats were euthanized.
RTq-PCR

Total RNA was extracted from rat peripheral total blood

samples or RAW 264.7 cells using the Trizol reagent (Invitrogen,

USA). The extracted RNA was then reverse-transcribed into

complementary DNA using the RevertAid First Strand cDNA

Synthesis Kit following the manufacturer’s instructions. The

quantitative RT-PCR was performed using the Mx3000P QPCR

System (Stratagene, La Jolla, CA). The primer sets utilized were as

listed: RANSE1:forward 5’-TGCAGGGACTAGGGTAGTGG-3’

and reverse 5’-CATGACACAGGACAGGAACG-3’. CD14:

forward: 5’-CACAGCCTAGACCTCAGCCACAAC-3’; reverse: 5’-

CCAGCCCAGCGAACG ACAG-3’) To quantify the relative

mRNA expression, the cycle threshold (CT) of the target gene

was compared to that of b-actin, and the findings were presented as

fold changes using the 2-DDCt method.
ELISA and serum lipid detection

The concentrations of serum total cholesterol (TC), low-density

lipoprotein cholesterol (LDL-C), and high-density lipoprotein

cholesterol (HDL-C) in cells were quantified using specific ELISA

assay kits. Standards and samples were dispensed, followed by the

addition of the appropriate reaction reagent. The absorbance was

subsequently measured at the designated wavelength, and the

concentrations of the samples were calculated using the formula

provided in the kit’s instructions.
Histopathological observations

After the excision of the aorta, the tissues were immediately

fixed in a 10% solution of formaldehyde, followed by a gradual

dehydration process using ethanol. They were then embedded in

paraffin and sectioned into slices with a thickness ranging from 3 to
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5 micrometers. After hematoxylin and eosin (H&E) staining, the

pathological condition of the rat aortic tissue was evaluated using a

light microscope.
Oil red O staining in lipid-rich plaque of rat
aortic sinus

To analyze the lipid-rich plaque in the rat aortic sinus, the freshly

obtained cardiac tissues were fixed using a 4% paraformaldehyde

solution. The fixation process lasted for a minimum of 48 hours.

After that, a gradient dehydration technique was employed using

sucrose solutions of concentrations 10%, 20%, and 30%. Optimal

cutting temperature (OCT) compound was used to embed the

tissues, and subsequently, the hearts were sliced into 10-µm-thick

sections using a cryostat. This slicing technique effectively exposed the

atrial and aortic sinus regions. Staining the sections was done by

immersing them in a solution containing 0.5% Oil Red O in

isopropanol, with dilution achieved using di-deionized water

(ddH2O) at a ratio of 3:2. The staining process occurred at a

temperature of 37°C for 2 hours. To facilitate visualization,

hematoxylin was utilized as a counterstain for 2 minutes. For

quantification purposes, ImageJ software was employed to measure

the areas indicating lipid-rich plaques stained withOil RedO. Statistical

analysis involved calculating the proportion of positively stained

regions relative to the overall intimal area.
Data processing and statistical evaluation

All data and statistical assessments were conducted employing

the R computational environment. To examine the association

between two continuous metrics, Spearman’s rank correlation

method was applied. To assess the disparities in continuous

metrics across two distinct groups, we utilized either the

Wilcoxon rank-sum test or the two-sided Student’s t-test,

contingent upon the data distribution. For analyses involving

categorical variables, the chi-square test was the chosen method.

Our statistical examinations were uniformly processed through the

R platform. Significance thresholds were designated as follows: non-

significant (ns) for p-values exceeding 0.05, and levels of

significance indicated by *p < 0.05, **p < 0.01, ***p < 0.001, and

****p < 0.0001 for lower p-values.
Result

scRNA-seq analysis of
atherosclerotic plaques

scRNA-seq analysis was utilized to meticulously characterize the

immune cell landscape within atherosclerotic plaques. Following

quality control, we identified 55,981 high-quality cells, comprising

11,178 from proximal adjacent (PA) plaque samples and 44,803 from

atherosclerotic core (AC) plaque samples, as eligible for subsequent

analysis. The distribution of cell clusters across the combined dataset
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is illustrated in Figure 1A, while the cell cluster distribution for the

AC and PA groups is depicted in Figure 1B. Subsequently, we

confirmed 10 immune cell subtypes within these two groups

(Figure 1C), including T cells (n=19,178) expressing CD3D,

smooth muscle cells (SMCs, n=9,122) marked by MYH11,

macrophages (n=7,681) identified by FBLN1, endothelial cells

(n=7,276) characterized by S100A8, fibroblasts (n=4,767) associated

with NKG7, neutrophils (n=4,382) positive for C1QC, B cells

(n=2,185) denoted by VWF, mast cells (n=795) signified by

CD79A, natural killer (NK) cells (n=495) distinguished by

TPSAP1, and plasma cells (n=100) labeled with SDC1

(Supplementary Figure S1). The proportion of each cell type within

the two groups is presented in Figure 1D. The proportion of each cell

type within the two groups is presented in Figure 1D. The fraction of

these ten cell types in each dataset was presented in Figure 1Da. In

comparison to the PA group, the AC group exhibited higher

proportions of most cell types, particularly macrophages and NK

cells, whereas epithelial cells were less prevalent (Figure 1Db). The

absolute numbers of these cells are illustrated in Figure 1Dc. These

findings reveal a higher enrichment of all immune cell types in the

AC group, suggesting that AC patients may experience a more robust

immune response compared to PA patients throughout the disease.

Additionally, the top six characteristic genes for each cell type are

shown in Figure 1E. Specifically, the distinguishing genes for T cells

are CD2, IL7R, CD3E, CD3D, CD3G, and TRBC2; for SMCs, they are

CNN1, RGS5, PLN, ACTG2, MYH11, and RAMP1; for

macrophages, FOLR2, C1QC, C1QB, C1QA, SLCO2B1, and

IGSF21; for endothelial cells, ECSCR, CLEC14A, VWF, PLVAP,

RAMP2, and SOX18; for fibroblasts, SFRP2, MFAP5, LUM,

SCARA5, LRRN4CL, and CHRDL1; for neutrophils, S100A8,

FCN1, S100A12, APOBEC3A, CFP, and LGALS2; for B cells,

CD79A, BANK1, MS4A1, TNFRSF13C, VPREB3, and

TNFRSF13B; for mast cells, TPSAB1, CPA3, TPSB2, MS4A2,

HDC, and SLC18A2; for NK cells, MKI67, UBE2C, BIRC5,

PCLAF, DLGAP5, and TOP2A; and for plasma cells, CLEC4C,

SCT, SHD, LILRA4, AC097375.1, and LRRC26. And the

enrichment of functional pathways in immune cells is detailed in

Supplementary Figure S2A. The AC group exhibited elevated scores

in nearly all evaluated phenotypes (angiogenesis, ferroptosis,

phagocytosis, autophagy, and lysosome function), whereas the PA

group demonstrated heightened scores exclusively in cholesterol

efflux (Supplementary Figure S2B).
Intercellular communication analysis

In this study, we employed the MuSiC algorithm to estimate the

distribution of cell subpopulations within the GSE100927 bulk

transcriptome dataset by referencing the single-cell data. We

conducted intercellular communication analysis between

macrophages and other cells within each group (Figure 2A). In the

PA group, macrophages demonstrated substantial interaction

strength with endothelial cells, and neutrophils. Endothelial cells

and T cells exhibited a considerable number of interactions with

macrophages in the PA group. Additionally, T cells and SMCs

exhibited substantial interactions with macrophages in the PA
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group. Neutrophils, NK cells, and other macrophages demonstrated

significant interaction strengths with macrophages (Figure 2B). The

strength and quantity of macrophage interactions with other cells

were compared between the two groups. A higher interaction

strength and a greater number of interactions with other cell types

were exhibited by macrophages in the PA group compared to the AC

group (Figure 2C). These findings indicate that immune cells,

specifically macrophages, might play a pivotal role in the

pathogenesis of PA and AC. Subsequently, we identified distinct

signaling pathways linked to macrophages in both groups by

analyzing the differences in interaction strengths. In the PA group,

pathways such as EGF, SEMA3, ANGPTL, IL-1, LIGHT,

CHEMERIN, CD40, CCL, LIFR, IGF, PROS, IFN-II, OSM,

CALCR, CXCL, MIF, RESISTIN, TNF, ANNEXIN, and VISFATIN

showed elevated activity, with CCL, CXCL, MIF, and ANNEXIN

being notably more active than others. In contrast, in the AC group,

CD70, GALECTIN, GRN, ANGPT, and SPP1 pathways were active,

with SPP1 exclusively so (Figure 2D). Intriguingly, MIF exhibited

significant activation in both groups. We further investigated key

ligand-receptor pairs between macrophages and other cell types

(Figure 2E). In the PA group, macrophages as ligand cells

upregulated interactions such as SPP1-CD44, SPP1-(ITGA8

+ITGB1), MIF-(CD74+CXCR4), MIF-(CD74+CD44), and LGAS9-

CD45/CD44 while downregulating TNF-TNFRSF1B/TNFRSF1A

and CXCL12-CXCR4. Conversely, as receptor cells in the AC
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group, macrophages enhanced ANX1-FPR1, MIF-(CD74+CD44),

GAS6-MERTK/AXL, and LGAS9-CD45/CD44 pathways while

inhibiting TGFB1-(TGFBR1+TGFBR2), MIF-(CD74+CXCR4), and

MIF-(CD74+CD44) interactions (Figure 2F). In this section, we

found macrophages in the PA group exhibited stronger and more

numerous interactions with endothelial cells, fibroblasts, neutrophils,

and B cells compared to those in the AC group. Key signaling

pathways in PA included notably active CCL, CXCL, MIF, and

ANNEXIN, whereas the AC group showed exclusive activity in

pathways like SPP1. Both groups displayed significant MIF

pathway activation. Ligand-receptor pair analyses highlighted

varied regulatory mechanisms across groups, underscoring

macrophages’ critical role in PA and AC pathogenesis.
The analysis of macrophage heterogeneity
in AC

A detailed characterization of macrophages within the combined

dataset was conducted, initially resulting in the identification of six

distinct subclusters (Figure 3A). Subsequently, based on the expression

of key marker genes, these macrophages were classified into four

subtypes: Macro_C1_CCL3L1, Macro_C2_C1QC, Macro_C3_SPP1,

and Macro_C4_THBS1 (Figures 3B, C). Functional enrichment

analysis revealed distinct biological processes associated with each
FIGURE 1

scRNA-seq cell annotation. (A) The UMAP plot displays the distribution of the cell clusters of the combinatorial dataset. (B)The UMAP plot displays
the distribution of the cell clusters of the two types of atherosclerotic plaque. (C) The UMAP plot displays the distribution of the cell types of two
types of atherosclerotic plaque. (D) Cell type fractions of the two types of atherosclerotic plaque. (E) A heatmap displayed the distribution of the top
6 differentially expressed genes specific to different cell subtypes.
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subtype: Macro_C1 was predominantly involved in oxidative

phosphorylation, epithelial-mesenchymal transition, complement

activation, coagulation, and adipogenesis. Macro_C2 was associated

with cholesterol homeostasis and the complement and coagulation

pathways. In contrast, Macro_C3 was linked to adipogenesis,

angiogenesis, coagulation, and cholesterol homeostasis, while

Macro_C4 was involved in oxidative phosphorylation, epithelial-

mesenchymal transition, myogenesis, and Myc targets V1

(Figure 3D). Additionally, we calculated classic phenotypic scores for

each macrophage subtype (Figure 3E) and assessed the variability in

immune modulators to elucidate the distinctions among the subtypes.

Significantly higher levels of immune genes related to antigen

presentation, chemokine receptors, and matrix metallopeptidases

(MMPs) characterized Macro_C1, while Macro_C2 was noted for

elevated immune genes pertinent to surface markers, chemokine
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receptors, proinflammatory responses, and MMPs. Macro_C3

displayed a high expression of surface marker and protein export-

related immune genes alongside notable MMP activity. Finally,

Macro_C4 was distinguished by its upregulation of genes involved in

proinflammatory responses (Figure 3F).
Development trajectory of
macrophage subpopulations

To elucidate the immune dynamics further, an analysis of

pseudotime developmental trajectory was conducted on

macrophages to establish the optimal curve representing cell

development or differentiation. This analysis inferred the lineage

structure of macrophages within the milieu of atherosclerotic plaques.
FIGURE 2

Intercellular communication analysis. (A) The cell abundance in the bulk transcriptome dataset GSE100927. (B)The strength of interaction between
macrophages and other cells in the GSE100927 dataset is depicted graphically. A thicker line represents a stronger interaction, while a larger round
dot indicates a larger number of interactions. (C) Enumeration and determination of the interaction strength of macrophages in both groups. (D)
Variations in the intercellular signaling networks between the two groups. (E) The macrophages’ functions as a ligand to other immune cells in the
two groups are evaluated. (F) The macrophages function as receptors to other immune cells in the two groups and are evaluated *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001. ns means “no significant”.
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It portrayed a primary developmental trajectory in which

macrophages differentiate into two distinct fates over time

(Figure 4A). Examination of macrophage subtypes revealed that

Macro_C3_SPP1 macrophages were situated at one extremity, in

contrast to Macro_C2_C1QC macrophages. Meanwhile,

Macro_C4_THBS1 and Macro_C1_CCL3L1 macrophages were

predominantly centralized, suggesting that Macro_C3_SPP1

macrophages represent a terminal differentiation state (Figure 4B).

Progression through pseudotime indicated that Macro_C1_CCL3L1

and Macro_C3_SPP1 populations differentiated along the same

branch, whereas Macro_C2_C1QC and Macro_C4_THBS1 formed

two separate branches, reflecting their inherent heterogeneity

(Figure 4C). Additionally, the analysis verified differentially

expressed genes (ANXA2, SLC40A1, and CD163) along this

trajectory. ANXA2 was highly expressed in both C3 and C4

subtypes, SLC40A1 was predominantly expressed in C2, and
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CD163 was mainly present in C3 and C4 (Figure 4D). According

to CytoTRACE, Macro_C4_THBS1 macrophages exhibited a higher

differentiation potential compared to the other three subtypes, which

had lower potential (Figure 4F). The abundance of cell state in PA

and AC group was presented in Supplementary Figure S3A, B. The

phenotypes of these four subtypes are presented, with C4 comprising

the broadest array of phenotypes and C3 the narrowest (Figure 4F;

Supplementary Figure S3C). The gene expression patterns dependent

on lineage along the shifting cell fates were visualized in Figure 4E.
Identification of characteristic genes

The WGCNA algorithm was utilized to establish a gene co-

expression network for GSE100927. An optimal soft-thresholding

power b of 6 facilitated the application of a hierarchical clustering
FIGURE 3

The analysis of macrophage heterogeneity in AC (A) The UMAP plot displays the distribution of the cell subclusters of Macrophages in a combined
dataset. (B)The UMAP plot displays the distribution of the cell subtypes of macrophages in a combined dataset. (C) Expression level of marker genes
of each subtype of macrophage in AC. (D) Functional enrichment analysis subtypes of macrophage in AC. (E) Classic phenotypic scores of each
macrophage subtype. (F) Immune modulators of each macrophage subtype.
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algorithm to the sample dataset, culminating in the elucidation of

nine distinct gene co-expression modules differentiated by color in

the clustering dendrogram as depicted in Figures 5A-C. Notably,

the turquoise module demonstrated a robust correlation (R=0.97)

with macrophages, yielding 6028 genes for further investigation

(Figure 5D). In addition, we observed a significant positive

relationship between the turquoise module and its associated

genes. Pseudotime analysis yielded 1491 module-related genes,

among which 220 hallmark genes were validated by comparing

stable and unstable plaque samples from E-MTAB-2055.

Subsequently, by intersecting data from WGCNA, pseudotime

analysis, and the hallmark genes derived from E-MTAB-2055, we

identified 91 distinctive genes, as illustrated in Figure 5E.

Enrichment analyses were subsequently conducted to elucidate the

potential biological functions of these 91 genes. Gene Ontology (GO)

analysis indicated a broad involvement of these genes in biological

processes (BP) such as neutrophil activation, intracavitary enzyme and

cytokine secretion (cellular component, CC), and protein complex

binding (molecular function, MF), detailed in Supplementary Figure

S4A. Furthermore, Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis revealed extensive enrichment in the
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activities and metabolism of lysosomes, cytokines, and cholesterol, as

shown in Supplementary Figure 4SB.
Screening of characteristic genes based on
machine learning

To identify potential biomarkers for atherosclerosis diagnosis,

we utilized machine learning algorithms to pinpoint salient features.

Before merging, we examined the distribution of the three datasets

and assessed the uniformity of data following background

calibration, as depicted in Supplementary Figures S5A, B. This

analysis confirmed the successful mitigation of batch effects among

the datasets. The combined datasets, which included both the

training and validation sets, then underwent further processing.

Initially, we identified genes with non-zero coefficients—TTYH3,

CD83, CCL19, RNASE1, CD14, C2, CSTB, and FABP4—using the

Least Absolute Shrinkage and Selection Operator (LASSO)

technique (refer to Figure 6A; Supplementary Figures S5C, D).

Subsequently, the Boruta algorithm pinpointed 27 significant

variables (shown in Supplementary Figure S5E). These variables
FIGURE 4

Development trajectory of macrophage subpopulations. The trajectory is depicted using color coding based on pseudotime (A), cell types (B), and
states (C). To illustrate the progression of pseudotime, scatter plots (D) show the expression levels of specific genes in various cell states. The
intensity of color corresponds to the normalized expression of each gene. Additionally, the development pathway of macrophages is represented by
assigning colors based on CytoTRACE scores and Phenotype (F). Representative findings highlight the lineage-specific patterns of gene expression
during the transformation of cell fate (E).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1448662
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1448662
were individually assessed within Support Vector Machine (SVM)

and Random Forest (RF) models to refine variable selection

(Figures 6B, C). In the training set, Receiver Operating

Characteristic (ROC) curve analysis revealed that the LASSO

model possessed an Area Under the Curve (AUC) of 0.929, while

in the test set, the AUC was 0.952, demonstrating superb predictive

capacity for atherosclerosis (Figure 6D). The SVM with Recursive

Feature Elimination (SVM-RFE) and RF models were similarly

effective, showing high predictive accuracy with robust AUC values

for both the training and test sets (Figures 6E, F). Ultimately, a

Venn diagram pinpointed CD14 and RNASE1 as the distinctive

characteristic genes for atherosclerosis, derived from the intersected

findings of the three modeling techniques (Figures 6G).
Establishing and validating a diagnostic
riskScore model

A risk score model was developed utilizing the formula derived

from the respective least absolute shrinkage and selection operator

(LASSO) model coefficients of two distinct genes: Risk Score =

(-0.22231781 × Expression of CD14) + (0.257829399 × Expression

of RNASE1). Receiver operating characteristic (ROC) analysis

across the combined dataset and the individual datasets
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(GSE41571, GSE120521, and GSE10097) yielded a high area

under the curve (AUC) values exceeding 0.8. This result

demonstrates the diagnostic model’s high accuracy, as indicated

by the risk score (Figures 7A-D). Furthermore, we constructed a

nomogram for predicting atherosclerosis based on the risk score

model. We confirmed the nomogram’s stability using a calibration

curve (Figures 7E, F). Additionally, decision curve analysis (DCA)

for the nomogram revealed potential clinical benefits for patients

diagnosed with atherosclerosis (Figures 7G).
Molecular characteristics and functional
annotation of the riskScore model
in atherosclerosis

To better understand the mechanisms underlying atherosclerosis,

we investigated the feature genes of both high- and low-risk groups.

We identified 462 genes that were downregulated and 653 genes that

were upregulated, isolating the top 5 genes in each category: RNASE1,

MFNG, C1QA, HCK, and SLAMF8 for upregulated genes, and

SHROOM3, SVIL, VCL, NEXN, and LMOD1 for downregulated

genes (Supplementary Figures S6A-C). Subsequent annotation of the

associated biological functions, and pathway enrichment analyses

using GSVA and GSEA, revealed distinct profiles between the groups.
FIGURE 5

Identification of characteristic genes. (A) To compute adjacency in the weighted gene co-expression network analysis (WGCNA), an optimal soft
threshold is determined. (B) The co-expression modules are clustered, and the resulting dendrogram is displayed. (C) The modules that show the
strongest correlation with Macrophages are analyzed in the WGCNA. (D) The turquoise module is highlighted, and a scatter plot shows the
membership of genes in this module. (E) The interaction among the characteristic genes identified from the WGCNA, pseudotime analysis (MRGs),
and hallmark genes in E-MTAB-2055 (unstable vs stable plaques) is examined.
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The low-risk group showed significant enrichment in biological

functions related to hormone secretion and cellular development,

including UV response down, myogenesis, early estrogen response,

KRAS signaling down, apical junction, spermatogenesis, mitotic

spindle, adipogenesis, Wnt beta-catenin signaling, late estrogen

response, and protein secretion. In contrast, the high-risk group’s

functions are predominantly related to immunoinflammatory

responses and cholesterol metabolism (Figure 8A). We further

characterized the top 6 upregulated pathways (Toll-like receptor

signaling, cytokine-cytokine receptor interaction, antigen processing

and presentation, NOD-like receptor signaling, natural killer cell-

mediated cytotoxicity, and B cell receptor signaling pathway) and the

top 6 downregulated pathways (dilated cardiomyopathy,

arrhythmogenic right ventricular cardiomyopathy ARVC,

hypertrophic cardiomyopathy HCM, vascular smooth muscle

contraction, propanoate metabolism, TGF-beta signaling pathway)

in the high-risk group using GSEA (Figures 8B, C). Moreover,

pathogenic pathway activities were markedly different between

patients with varying atherosclerosis risk levels. High-risk patients

exhibited significant activity in pathways including NF-kB, TNF-a,
MAPK, EGFR, VEGF, and JAK-STAT, whereas low-risk patients

demonstrated an upregulation of JAK-STAT and downregulation of

PI3K pathways (Figure 8D).
Immune characteristics analysis

To elucidate the immune cell landscape in patient populations

stratified by risk and stability status, we first analyzed 28 distinct
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immune cell subtypes using the ssGSEA algorithm and compared

their infiltration between high-risk and low-risk groups (Figure 9A).

Generally, the high-risk group exhibited increased infiltration

across the majority of immune cell subtypes. Furthermore,

samples from the high-risk group were predominantly associated

with an unstable condition. Aligning with prior findings,

individuals in the high-risk category consistently demonstrated

elevated immune cell scores for nearly all cell types (Figure 9B).

Additionally, we evaluated the differential expression of immune

modulators between the high- and low-risk cohorts, whether stable

or unstable, to provide deeper insight into the immune landscape

pertinent to atherosclerosis pathology (Figure 9C). Predominantly,

genes involved in antigen presentation (HLA-A, B, C, DPA1,

DQB1, MICB), cell adhesion (ICAM1, ITGB2, SELP), immune

checkpoints (BTN3A1, BTN3A2, CD276, PDCD1LG2, SLAMF7),

co-stimulation (CD28, CD80, ICOSLG), ligand production (CCL5,

CD40LG, CD70, CXCL10, CXCL9, IL10, IL12A, IL1B, TGFB1,

TNF, TNFSF9, VEGFA), receptor expression (BTLA, CD27,

CD40, CTLA4, EDNRB, HAVCR2, ICOS, IL2RA, LAG3, PDCD1,

TRL4, TNFRSF14, TNFRSF18), among others (ENTPD1, GZMA,

PRF1), were substantially increased in the high-risk group. By

contrast, the low-risk group primarily showed elevated levels of

antigen presentation (MICA) and ligands (CX3CL1) expression

(Supplementary Figure S7A-G). Immune scores were quantitatively

compared across risk profiles, reflecting a comprehensive evaluation

of immunological characteristics, with the high-risk group

presenting with higher immune scores than their counterparts

(Figure 9D). In addition, correlation analysis linked higher risk

scores with greater immune cell type abundance and infiltration
FIGURE 6

Machine learning-based feature gene selection. (A) Variables with non-zero coefficients identified by LASSO. (B) In variable selection using SVM, the
highest accuracy was achieved when N=5. (C) Top 10 variables ranked by importance in the RF model. The ROC curves and AUC values of models
are built based on their characteristic genes constructed by the LASSO (D), SVM-RFE (E), and RF (F) algorithms in the training and testing cohorts.
(G) Venn plot of feature genes selected by LASSO, SVM-RFE, and RF.
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(Figure 9E). In conclusion, the findings from this section confirm an

intensified immune cell activity and response in high-risk

atherosclerosis patients.
Validation of characteristic genes

Furthermore, we developed both in vivo and in vitro AS models

to validate the role of characteristic genes. In vitro, Expression

analyses revealed differential levels of CD14 and RNASE1 in AS

(Figure 10A). Quantitative RT-PCR was utilized to evaluate the

efficiency of the knockdown models. In the AS+Lv-shRNASE1

group, RNASE1 expression was reduced to approximately one-

quarter of that observed in the AS+Lv-shNC group (Figure 10B).

In vivo, a similar reduction was noted in the AS+Ad-shRNASE1

group, with a threefold decrease in RNASE1 expression compared

to the AS+Ad-shNC group (Figure 11A). These results confirmed

the effective knockdown in both in vivo and in vitro settings.

In vitro, RNASE1 knockdown resulted in enhanced cell viability

and a reduction in total cholesterol (TC) and lactate dehydrogenase

(LDH) release in the AS model (Figures 10C-E). The migration

intensity of cells in the AS intervention group was significantly

higher than that in the control group, suggesting enhanced

activation and recruitment of macrophages in the AS model.

Furthermore, the silencing of RNASE1 was shown to diminish

macrophage migration in this model (Figure 10F). Additionally,

rats in the AS+Ad-shRNASE1 group showed lower levels of TC and

low-density lipoprotein cholesterol (LDL-C) and higher levels of

high-density lipoprotein cholesterol (HDL-C) in peripheral blood
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compared to the AS+Ad-shNC group (Figures 11B-D). These

findings suggest knocking down RNASE1 may diminish the risk

of atherosclerotic plaque formation. Oil Red O staining of the aortas

revealed the absence of lipid plaques in the control group, whereas

extensive red lipid plaque formation was observed along the

thoracic aorta in the AS model. This plaque was remarkably

reduced in the aortas of AS+Ad-shNC rats (Figure 11E).

Additionally, hematoxylin and eosin (HE) staining indicated that

the AS-induced pathological changes in the aortas were significantly

ameliorated in the AS+Ad-shNC group (Figure 11F). Collectively,

these findings underscore the pivotal role of RNASE1 in

atherosclerosis development, implicating this gene in LDL, HDL,

and cholesterol metabolism.
Discussion

Cardiovascular disease (CVD) accounts for nearly half of all

fatalities from non-communicable diseases worldwide, establishing

it as the primary cause of death on a global scale (35). While

commonly recognized risk factors for coronary artery disease, the

most prevalent form of CVD, include hypertension, high

cholesterol, age, and genetics, it is now understood that CVDs are

chronic inflammatory conditions (36). The accumulation of excess

cholesterol within the arterial wall leads to the development of

arterial blockages, known as atherosclerosis, creating a state of

perpetual inflammation. This inflammatory state causes changes

in the surrounding components of the vessel wall, such as the

endothelial, smooth muscle, and extracellular matrix, leading to
FIGURE 7

Establishing and validating a diagnostic riskScore model. To assess the model’s performance, ROC curves were employed for the combined dataset
(A), GSE41571 (B), GSE120521 (C), and GSE100527 (D). Additionally, the riskScore model in the combined dataset is presented as a nomogram (E). To
ensure its stability, a calibration curve was utilized (F). Furthermore, the clinical benefit of the nomogram is illustrated through DCA analysis (G).
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disease progression (37). Macrophages, which can originate from

either resident tissues or monocytes, play a crucial role in the

advancement and regression of atherosclerotic disease (38, 39).

During the initial stage of atherogenesis, the endothelial cells secrete

chemokines, which attract macrophages to the arterial wall. This

attraction is facilitated by the interaction between chemokines and

receptors, as well as the expression of cell adhesion molecules like

intercellular adhesion molecule 1 (ICAM1) and vascular cell

adhesion molecule 1 (VCAM1) (40). The accumulation of

cholesterol in macrophages stimulates inflammatory reactions,

which involve the activation of Toll-like receptor (TLR) signaling

and NF-kB-mediated activation of the NLRP3 inflammasome. As a

result, pro-inflammatory cytokine production increases, further

intensifying the chronic inflammatory state in atherosclerosis

(41). Diminishing macrophage apoptosis and enhancing their

efferocytic activity may constitute an innovative therapeutic

approach aimed at mitigating necrotic core formation and

vascular calcification, consequently augmenting the stability of

atherosclerotic plaques (42). Diverse macrophage populations are

present within human atherosclerotic lesions, although much of
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their functional characteristics remain elusive. A recent study has

demonstrated that crosstalk between macrophages and endothelial

cells exacerbates atherosclerosis in male mice (43). Macrophage

angiotensin-converting enzyme mitigates atherosclerosis by

enhancing peroxisome proliferator-activated receptor alpha,

thereby substantially altering lipid metabolism (44). Acquiring a

comprehensive understanding of the mechanisms that dictate

macrophage phenotypes in the context of atherosclerosis may

unveil novel therapeutic prospects.

In our research, we conducted scRNA-seq analysis on both

proximal adjacent (PA) plaques and the atherosclerotic core (AC)

plaques. This analysis revealed a heightened immune cell activity

within the AC plaques, designating them as “immune plaques.”

Macrophages, in particular, were identified as the predominant cell

type within these immune plaques. Furthermore, the study elaborates

on the intricate intercellular communication, specifically the ligand-

receptor interactions and the associated pathways, between

macrophages and other immune cells. Macrophages interacted

robustly with endothelial cells, fibroblasts, and others in PA, while

exhibiting strong interactions with neutrophils and T cells in AC. This
FIGURE 8

Molecular characteristics and functional annotation of the riskScore model in atherosclerosis. (A) Investigation of the variances in biological function
among high and low-risk groups is conducted. (B) The top 6 pathways showing up-regulation in the high-risk group are identified. (C) The top 6
pathways that display down-regulation in the high-risk group are identified. (D) A heatmap illustrating the disparities in pathogenic pathways
between AS patients at low and high risk is exhibited. The patient annotations signify their stable and unstable status. Statistical significance levels:
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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suggests macrophages’ pivotal role in PA and AC pathogenesis.

Pathway analysis highlighted active signaling in PA, notably CCL,

CXCL, MIF, and ANNEXIN, whereas AC showed distinct activity in

pathways like SPP1. Specific ligand-receptor pairs further underscored

differential regulatory mechanisms in macrophage interactions

between the two groups. In addition, we classified macrophages into

4 subtypes (Macro_C1_CCL3L1, Macro_C2_C1QC, Macro_C3_SPP1,

and Macro_C4_THBS1), conducted enrichment analysis, and accessed

immune-modulators of the 4 subtypes. Cell trajectory analysis

demonstrated that Macro_C3_SPP1 macrophages appeared primarily

toward the end of the differentiation trajectory. Differentially expressed

genes (ANXA2, SLC40A1, and CD163) along the trajectory were

verified. Annexin A2 (ANXA2) is an integral protein within the

annexin family, ubiquitously expressed on the surfaces of

macrophages, and exhibits a high affinity for calcium and

phospholipids, playing a pivotal role in diverse biological processes
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such as endocytosis, cell-to-cell communication, and plasminogen

activation (45). Solute carrier family 40 member 1(SLC40A1)

mediates ferroptosis in diseases including diabetes, cardiac

dysfunction, and hepatocellular carcinoma (46–48). A recent study

has identified SLC40A1 as a pivotal gene implicated in ironmetabolism

within airway macrophages, specifically in the context of childhood

allergic asthma (49). Hemoglobin-haptoglobin receptor CD163

positive macrophages were associated with plaque progression,

microvascularity, and a high level of HIF1a and VEGF-A expression

in atherosclerosis (50). ANXA2 had high expression levels in C3 and

C4, SLC40A1 predominantly expressed in C2 and CD163 mainly

expressed in C3 and C4. Investigations into the roles of ANXA2 and

SLC40A1 in the pathogenesis of atherosclerosis are notably scarce.

Given the established involvement of these proteins in macrophage-

associated mechanisms within atherosclerotic processes, they merit

more in-depth examination. In this part of the study, we provide a
FIGURE 9

Immunological features of AS patients at low and high risk. (A) The heatmap displays the level of infiltration of 28 subtypes of immune cells in the
two risk groups. (B) Contrasts in immune cell scores are observed between the high- and low-risk categories. (C) The heatmap highlights the
variances in immune-modulating factors as well as the survival status of patients between the high- and low-risk groups. (D) A comparison of the
immuneScore is made between the high- and low-risk groups. (E) Understanding the relationship between the riskScore and the various subtypes of
immune cells is explored. **p < 0.01, ***p < 0.001, ****p < 0.0001. ns means “no significant”.
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comprehensive delineation of macrophage heterogeneity in

arteriosclerotic tissues, outlining their possible functional targets.

Additionally, we have characterized the subtypes and phenotypic

traits apparent during distinct differentiation phases, revealing

putative therapeutic endpoints for the tailored management

of arteriosclerosis.

Transcriptome analyses were then used to further screen for

signature genes associated with macrophages in atherosclerosis and

91 genes were acquired by interacting genes from WGCNA,

pseudotime analysis, and hallmark genes in E-MTAB-2055.

Enrichment analyses were performed to further demonstrate the

potential function of the 91 genes. Then machine learning
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algorithms were conducted to predict the characteristic genes and

the diagnostic efficiency was confirmed by ROC curve analysis.

Based on the distinct characteristic genes (CD14 and RNASE1), a

macrophage-related risk riskScore model and nomogram were

established with reliable diagnostic performance. Based on the

risk scoring, patients were stratified into high-risk and low-risk

groups. A subsequent analysis was conducted to examine the

differential expression of characteristic genes between these

groups. Furthermore, GSVA and GSEA were employed to assess

their functional implications. We discovered that the high-risk

group exhibited a substantial enrichment of genes associated with

immune-inflammatory responses and immune-related pathways
FIGURE 10

In vitro validation of distinct genes. (A) The relative expression levels of these characteristic genes were assessed in different groups. (B) The analysis
specifically focused on RNASE1 expression in various groups, including the control, AS, AS+Lv-shNC, and AS+Lv-shRNASE1 groups. (C) Additionally, the
viability of cells was measured for each group. (D, E) The levels of TC and LDH release were also evaluated in each group. (F) Transwell assay and
quantitative analysis of each group. Statistical significance is indicated by *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001. ns means “no significant”.
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(NFK-b, TNF-a, MAPK, EGFR, VEGF, and JAK.STAT).

Subsequent immune characteristics analysis further validated our

previous findings.

Interestingly, the findings suggest that RNASE1 may be a

potential key gene implicated in the involvement of macrophages

in the pathogenesis of atherosclerosis. RNASE1 is an essential enzyme
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for maintaining vascular homeostasis by safeguarding endothelial

cells against the damaging effects of extracellular RNA during acute

inflammation (51). It is pivotal in averting endothelial dysfunction, a

central factor in vascular pathologies like atherosclerosis (52, 53).

However, recent research indicated that RNASE1 can act as a

protective agent in acute inflammatory settings, yet may contribute
FIGURE 11

Verification of characteristic genes in vivo (A) Relative expression levels of RNASE1 in the control group, AS group, As+Ad-LvNC group, and AS+Ad-
shRNASE1 group. (B) Levels of TC in each group. (C) Levels of LDL-C in each group. (D) Levels of HDL-C in each group. (E) Aortas of rats in the
Control, AS+Ad-shNC, and AS+Ad-shRNASE1 group stained with oil red O. (F) Aortas of rats in the Control, AS+Ad-shNC, and AS+Ad-shRNASE1
group stained with hematoxylin and eosin. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001. n=3 in each group.
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to disease progression in chronic inflammation (54–56). We further

confirmed the function of RNASE1 in atherosclerotic disease models

at both the in vivo and in vitro levels. Inhibition of RNASE1 in an

atherosclerosis macrophage cell line resulted in decreased total

cholesterol (TC) and lactate dehydrogenase (LDH) release. In vivo,

RNASE1 knockdown lowered TC and low-density lipoprotein

cholesterol (LDL-C) levels, and increased high-density lipoprotein

cholesterol (HDL-C) in the peripheral blood of AS rats. Furthermore,

the knockdown of RNASE1 could reduce the migration level of

macrophages in the AS model. macrophage migration, recruitment,

and activation play pivotal roles in plaque formation, and modulating

their activity can have beneficial effects (57). Additionally, RNASE1

suppression led to a reduction in the aortic plaque area in these rats.

Our findings highlight RNASE1’s integral role in atherosclerosis

progression, implicating the gene in low-density lipoprotein (LDL),

high-density lipoprotein (HDL), and cholesterol metabolism. Yet, to

elucidate the detailed molecular mechanisms behind RNASE1’s

impact on macrophage function in atherosclerosis, further

experimental inquiry is crucial.

This study is subject to inherent limitations, primarily due to its

retrospective nature and the relatively small sample size drawn from

public datasets, highlighting the necessity for validation through

prospective studies in diverse institutions. Moreover, the accuracy

of the outcomes could be compromised by the reliance on

transcriptomic data derived from microarray datasets, which may

lack the consistency of data obtained from more controlled

experimental conditions. Enhancing the study ’s clinical

applicability to atherosclerotic patients with varied molecular

profiles and risk factors would require the inclusion of a larger

participant pool, thus facilitating a more thorough evaluation of

prognostic and therapeutic implications.
Conclusion

The study provides significant insights into the immune-

mediated mechanisms underlying atherosclerosis by precisely

identifying diverse macrophage subpopulations and elucidating

their complex interactions within atherosclerotic plaques.

Diagnostic biomarkers, RNASE1, and CD14 have been identified,

and a high-precision risk score model has been developed, which

are considered valuable tools for clinical diagnosis and patient

stratification. Furthermore, the potential of RNASE1 as a

therapeutic target has been unveiled, enhancing the current

understanding and opening avenues for pioneering treatment

strategies for atherosclerosis.
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