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Emerging prospects of mRNA
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formulations, and challenges in
cancer immunotherapy
Umm E. Laila, Wang An and Zhi-Xiang Xu*

School of Life Sciences, Henan University, Kaifeng, Henan, China
Cancer continues to pose an alarming threat to global health, necessitating the

need for the development of efficient therapeutic solutions despite massive

advances in the treatment. mRNA cancer vaccines have emerged as a hopeful

avenue, propelled by the victory of mRNA technology in COVID-19 vaccines. The

article delves into the intricate mechanisms and formulations of cancer vaccines,

highlighting the ongoing efforts to strengthen mRNA stability and ensure

successful translation inside target cells. Moreover, it discusses the design and

mechanism of action of mRNA, showcasing its potential as a useful benchmark

for developing efficacious cancer vaccines. The significance of mRNA therapy

and selecting appropriate tumor antigens for the personalized development of

mRNA vaccines are emphasized, providing insights into the immune mechanism.

Additionally, the review explores the integration of mRNA vaccines with other

immunotherapies and the utilization of progressive delivery platforms, such as

lipid nanoparticles, to improve immune responses and address challenges

related to immune evasion and tumor heterogeneity. While underscoring the

advantages of mRNA vaccines, the review also addresses the challenges

associated with the susceptibility of RNA to degradation and the difficulty in

identifying optimum tumor-specific antigens, along with the potential solutions.

Furthermore, it provides a comprehensive overview of the ongoing research

efforts aimed at addressing these hurdles and enhancing the effectiveness of

mRNA-based cancer vaccines. Overall, this review is a focused and inclusive

impression of the present state of mRNA cancer vaccines, outlining their

possibilities, challenges, and future predictions in the fight against cancer,

ultimately aiding in the development of more targeted therapies against cancer.
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1 Introduction

Cancer remains a significant global health challenge, with

estimates projecting 34 million new cases by 2070 (1). Despite

advancements in treatment, current therapies exhibit limitations,

emphasizing the need for innovative solutions for cancer treatment.

(2). The concept of mRNA cancer vaccines has emerged as a

promising avenue for immunotherapy, following the success of

mRNA technology in producing effective COVID-19 vaccines

during the pandemic. (3–6). Immunotherapy, such as immune

checkpoint inhibitors and CAR-T therapies, have revolutionized

cancer treatment by harnessing the power of the immune system.

(7). Recently, these approaches, combined with mRNA vaccines,

offer a personalized and effective strategy against cancer, providing

a more targeted approach (8, 9).

The mRNA vaccines offer a novel prophylactic strategy,

delivering genetic instructions directly to the cells for inducing

precise protein production and triggering robust immune responses

to actively combat cancer (10). A typical mRNA vaccine harbors

synthetic mRNA molecules designed to encode cancer-specific

antigens (11). In this regard, various optimization strategies are

employed to ensure efficient translation of mRNA vaccines within

human cells (12). The advent of lipid nanoparticles, frequently

employed as delivery vehicles to encapsulate mRNA to prevent it

from degradation and facilitate cellular uptake, has significantly

revolutionized the field of mRNA vaccines (13). Once inside the

cells, the mRNA gets translated into the antigen protein by utilizing

the cellular translation machinery (14). Consequently, the antigen

protein gets processed by the antigen-presenting cells and presented

to the immune cells for eliciting a robust innate and adaptive immune

response (15). The successful development of the first mRNA cancer

vaccine in 1995, which encoded the carcinoembryonic antigen in

mice, marked a significant milestone, which prompted scientists to

critically explore the potential of immunotherapy against cancer (16).

The mRNA vaccines hold a distinctive advantage over conventional

virus-based vaccines, owing to their enhanced safety, cost-

effectiveness, purity, dismal vaccine resistance, and integration

concerns (17). Moreover, the mRNA vaccines encoding full-length

tumor antigens can generate broad-spectrum T-cell-mediated

immune responses regardless of the Human Leucocyte Antigen

(HLA) types (18, 19), hence elevating their therapeutic potential

(20). Furthermore, multiple strategies, including mRNA

encapsulation in the immune cell-specific nanoparticles and self-

amplifying mRNA (saRNA) designs, aim to improve vaccine efficacy

and minimize the potential side effects (21, 22). Additionally, novel

approaches involving the incorporation of mRNAs encodingmultiple

antigens in the vaccine are substantially explored to broaden the

protection against various diseases (23). The remarkable

advancements in mRNA vaccine technology hold great promise for

addressing health concerns through the practical utility of these

vaccines in nearby future.

The current review aims to emphasize the significance of

mRNA vaccines as an innovative immunotherapeutic approach

against cancer. It will address the intricate mechanisms and

formulations of these groundbreaking vaccines, highlighting their
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effectiveness, mechanism of immune system activation, and future

safety considerations. As the field of mRNA vaccines continues to

expand, the upcoming research strives to optimize these vaccines by

improving the efficacy, minimizing the side effects, addressing the

inherent susceptibility of mRNA to enzymatic degradation, and

ensuring successful mRNA translation in the target cells.

Consequently, these attempts will remarkably elevate the

applicability of mRNA vaccines against diverse cancers.
2 mRNA vaccine as a therapeutic tool
for cancer immunotherapy

Recently, mRNA, a molecule central to cellular protein

translation, has emerged as a notable platform in remarkably

revolutionizing cancer immunotherapy. Compared to DNA-based

vaccines, mRNA vaccines offer marked benefits making them a

promising therapeutic choice (24). In this regard, mRNA vaccines

harbor a potentially enhanced therapeutic effectiveness due to their

equivalent tendency of translation in the dividing and non-dividing

cells. Moreover, unlike DNA-based vaccines, mRNA vaccines evade

the requirement of integration into the host genome, and showcase

their effects via cytosolic translation of Tumor-Associated Antigens

(TAA), hence minimizing the subsequent cellular damage.

Consequently, mRNA appears to be an exceptionally competent

candidate for vaccine development. Despite abundant advantages,

the challenges regarding the mode of delivery, stability, and

specificity of mRNA vaccines persist. Therefore, comprehensive

research is crucial to address these challenges and fully harness the

potential of this impressive technology for targeting cancer. Table 1

illustrates an extensive review of the historical aspects

encompassing the advent and advancement of mRNA vaccine

technology for cancer.
2.1 Construction of synthetic mRNA for
mRNA vaccine

For designing an mRNA vaccine, the foremost step is the

synthetic design of the mRNA. In this regard, a typical mRNA

design includes an open reading frame (ORF) encoding the antigen

sequence, flanked by 5’ and 3’ untranslated regions (UTRs)

accompanying certain artificial modifications to promote efficacy

and cellular uptake (26). Additionally, a sophisticated innovation in

this technology employs the self-amplifying mRNA (SAM),

enabling sustained mRNA augmentation within the host cells.

This consequently ensures enhanced production of desired

protein aided via the cellular ribosomal machinery. Eventually,

the residual mRNA templates are subjected to degradation, hence

reducing the potential risk of metabolite toxicity (21). Nonetheless,

it is imperative to critically evaluate the potential safety concerns

associated with the modifications executed in the vaccine design.

Hence, extended research is crucial to ensure the safety profile of the

advanced mRNA vaccine platforms.
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2.2 Identification and optimization of the
target antigen

Careful identification and optimization of specific mRNA

sequences of target antigens is essential for developing potent

mRNA vaccines for cancer. Possible targeted antigens for the

development of mRNA vaccine are shown in Table 2. In this

context, precise sequence designing, followed by efficient synthesis

and strategic choice to targeted delivery, is paramount. To address

this, multiple strategies are devised for the selection of the target

antigen. This mostly involves the utilization of full-length cancer-

specific mutant proteins or neoantigens as target TAAs for

designing mRNA sequences (71). However, another approach

involves a multi-epitope strategy, where immunogenic peptides

from multiple TAAs are encoded within the mRNA molecule to

stimulate a wide range of immune responses (72). Furthermore, the

recent progression in personalized medicine has unlocked new

avenues for crafting personalized mRNA vaccines aimed at

engineering personalized mRNA sequences to integrate patient-

specific mutations in the neoantigens (73). Following the

meticulous design of the mRNA sequence, specific nucleotide

modifications, such as uridine substitution and the addition of

pseudouridine, are introduced to achieve maximal stability,

translation efficiency, and precise immunogenicity (26).

Additionally, codon optimization is performed using algorithms

to prioritize codons readily translated by human cells, thereby

maximizing protein expression (26).

The in vitro transcription (IVT) is a widely applied procedure

for synthesizing the mRNA. It utilizes specialized enzymes and

optimized reaction conditions for producing large quantities of

designed mRNA sequences (74). Additionally, enzymatic

amplification, such as rolling circle amplification, is frequently

administered for potentially higher mRNA yields (75). The

optimization of the carrier vehicles is equally crucial for ensuring

the targeted delivery of the vaccine in the human system. In this

regard, lipid nanoparticles (LNPs) are usually employed for

encapsulation of mRNA to ensure protection, stability, and

targeted delivery (76). Moreover, LNPs are carefully designed

based on the tumor-specific ligands for efficient delivery and

reduced systemic harmful effects. Consequently, a reliable and

optimized mRNA can be crafted to induce a robust immune

response against cancer. Although, multi-epitope strategy and

personalized vaccines offer promising therapeutic avenues against

cancer, a careful investigation is crucial to avoid potential

immunodominance or off-target effects.
3 Modifications in the synthetic
mRNA sequence

3.1 Chemical modifications

Chemical modifications involve the introduction of chemically

modified bases in the mRNA sequence. In this regard, most

frequent chemical modifications involve the addition of
Frontiers in Immunology 03
pseudouridine (Y), N1-methyl pseudouridine (m1Y), 5-

methylcytidine (m5C), N6-methyladenosine (m6A), 2-thiouridine

(s2U), and 5-methyluridine (m5U). These modifications render

potentially elevated efficiency, stability, and enhanced translational
TABLE 1 Timeline of the advent and advancements of the mRNA
vaccine technology adapted by Li et al. (25).

Year Milestone

1961 Discovery of messenger RNA (mRNA)

1963 The discovery that interferon is inducible by mRNA

1965 First liposome produced

1969 First-time protein isolation from mRNA in the lab

1974 Liposomes utilized for vaccine delivery

1975 Identification of the 5’ Cap modification in mRNA

1978 First delivery of mRNA wrapped in liposomes to cells

1984 Synthesis of mRNA in a laboratory setting

1989-
1990

Proposal of mRNA vaccine concept; synthetic mRNA delivered to
human cells and frog embryos

1992 Discovery of cancer therapy through inhibition of negative
immune regulation

1993 mRNA found to induce both cellular and humoral immunity

1994 Introduction of self-replicating mRNA

1995 mRNA tested as a cancer vaccine in mice

2004 Identification of protamine-stabilized RNA as a potent danger signal

2005 The discovery that modified RNA can evade immune detection

2008 Phase I/II trials with mRNA vaccine Ractive in melanoma and non-
small cell lung cancer (NSCLC) patients

2009 First direct injection of mRNA in human cancer

2010 Intranodal delivery of mRNA transfects DCs and elicits
antitumor immunity

2012 First mRNA vaccines in lipid nanoparticles tested in mice

2013 Debate on type I INFs in efficacy & safety of mRNA vaccines

2015 Phase I/II trials with mRNA vaccine Ractive in melanoma and non-
small cell lung cancer (NSCLC) patients

2016 Anti-tumor immunity by intravenous delivery of mRNA LNPs with
type I IFN as a driving force

2017 Initial human trials of conceptual personalized mRNA cancer vaccines

2018 The first drug with lipid nanoparticles (patisiran) approved

2019 Clinical trials with RNA vaccines for infections & cancer, trends
toward LNP-based delivery; combination with checkpoints

2021 Impact of SARS-CoV-2 mRNA vaccines on tumor patients and
potential anti-tumor effects

2022 Increased focus on personalized mRNA cancer vaccines
targeting neoantigens

2023 Promising results from Phase II and III trials of mRNA
cancer vaccines

2024 Ongoing Phase III trials and potential for first regulatory approvals of
personalized mRNA cancer vaccines
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TABLE 2 Possible targeted antigens for mRNA vaccine construction for specific cancer type.

Cancer Type Antigen Intracellular Location Expression in Tumor Reference

Pancreatic CEA Cell surface (GPI-linked) 30-60% (27–29)

Her2-neu Transmembrane 7-23% (30)

K-Ras Intracellular 90-95% (31, 32)

Mesothelin Cell surface (GPI-linked) ~100% (33, 34)

MUC-1 Transmembrane 90% (Hypo-glycosylation), (35)

p53 Intracellular 75% (36, 37)

Survivin Intracellular 68% (38)

Telomerase Intracellular 88% (39)

VEGFR Transmembrane 69% (40, 41)

Melanoma Neo-antigens Varies Specific to patient (42)

MART-1/Tyrosinase Melanosomes 90% (43)

TYRP1, TYRP2 Melanosomes 57-92%

Melan-A Melanosomes 91-97% (44)

gp100 Melanosomes 63-90% (45, 46)

MAGE-A1 Cytoplasm 51% (47)

NY-ESO-1 Cytoplasm 40 (48)

BAGE, CAGE Cytoplasm 22% (49)

TERT1 Intracellular 44% (50)

Breast HER2 Cell Membrane 10-30% (51, 52)

MUC1 Cell Membrane 94% (53)

CEA Cell Membrane 43.2% (54)

NY-ESO-1 Cytoplasm 42% (55)

MAGE-A Cytoplasm 75% (56)

Lung MUC1 Secreted (Produced in Golgi) 86.3% (57)

KLRG1 Cytoplasm - (58)

CBFA2T3 Nucleus - (59)

EGFR Cell Membrane 40-80% (60, 61)

KRAS Cytoplasm 30% (62)

Colon CEA Cytoplasm, Cell membrane - (63)

MUC1 Cell membrane 12% (64)

EGFR Cell membrane 25-82% (65)

KRAS Cell membrane 35-45% (66)

Beta-catenin Cytoplasm, Nucleus 36.9-69.8% (67)

Survivin Cytoplasm 60.8% (68)

FRa Cell membrane 33-44% (69)

GUCY2C Cell membrane 95% (70)
F
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capacity of the resulting mRNA vaccine (77). An overview of

modified mRNA with modifications for mRNA vaccine

production is shown in Figure 1.

3.1.1 Pseudouridine (Y)
Pseudouridine (Y), an isomer of uridine characterized by the

replacement of a characteristic nitrogen-carbon glycosidic bond in

the nucleotide with a carbon-carbon covalent bond, is most commonly

employed for chemical modifications in the mRNA vaccine (78). This

modification is introduced into the mRNA sequence via pseudouridine

synthase (PUS) enzyme (79). Thermodynamic analysis revealed the

impact of this modification on the overall stability of mRNA. In this

regard, the replacement of uridine with Ymakes the mRNA molecule

relatively stable, whereas the level of stabilization varies depending

upon the precise location of the modified base within the molecule, the

specific base pair subjected to modification, and the orientation of

neighboring Watson-Crick base pairs (80). Moreover, the

incorporation of Y is shown to boost the translational capacity of

the mRNA molecule (81). This enhanced translational capacity is

achieved by three mechanisms that protect mRNA from decay in the

cytosol. Firstly, this modification directly confers resistance to the

mRNA molecule against RNase L-mediated degradation (82).

Secondly, Y modification masks protein kinase R (PKR) activation,

ultimately corresponding to a reduction in the PKR-mediated

phosphorylation of the eukaryotic translation initiation factor 2 a
subunit (eIF2a) (83, 84). Finally, this modification evades the activation

of intracellular receptor 2’-5’-oligoadenylate synthase (OAS), which

consequently prevents OAS-mediated RNase L activation.
Frontiers in Immunology 05
3.1.2 N1-methylpseudouridine (m1Y)
The methylated derivative of Y, N1-methyl pseudouridine

(m1Y), is also utilized for replacing the typical mRNA bases. The

incorporation of these bases not only renders the resulting mRNA

molecule markedly stable but also contributes to their safety by

making them to elicit a negligible immune response in the cell,

hence reducing their cytotoxic potential (85, 86). Besides, the

mRNA molecules harboring modified bases, Y and m1Y, are

found to be inherently inert or minimally reactogenic, hence

avoiding excessive immune stimulation (81, 83, 87, 88).

Moreover, individual or combinatorial introduction of chemically

modified bases has been shown to generate a substantially reduced

Toll-Like receptor (TLR) – mediated immunogenicity (89). In this

regard, accumulated evidence indicates that m1Y outperformsY in

achieving elevated protein production and evading TLR3 activation

(90). Also, the mRNA modified with m1Y escapes TLR7

recognition, hence leading to dismal expression of inflammation-

producing genes (91, 92). Furthermore, m1Y modification

contributes to reduced immune response generation mediated by

intracellular Retinoic acid-inducible Gene-I-Like (RIG-I-Like)

receptors owing to its ability to alter the mRNA secondary

structure (92, 93). Moreover, a direct correlation between m1Y-

based mRNA modification and enhanced size and proportion of

ribosomes is observed (85). This provides a direct link between

m1Y modification and boosted translational efficiency by

developing productive poly-ribosomal interactions as a

consequence of rapid initiation and relatively slow progression

of translation.
FIGURE 1

An overview of modified mRNA transcript for mRNA vaccine.
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3.1.3 5-methylcytidine (m5C)
5-methylcytidine (m5C), a methylated derivative of cytidine, is

frequently observed in multiple RNA species as a natural epigenetic

modification (94). This modification is exploited in mRNA vaccine

technology as well and confers impressive stability, immunogenicity,

efficiency, and sustenance in the cellular environment to the mRNA

vaccines (95, 96). In the cellular translation initiation sites, RNA

methyltransferases of NSUN and DNMT2 families are found to be

substantially enriched for potentially catalyzing the methylation of

cytidine bases (97). Similar to the Ymodification, m5C modification

also adds to the mRNA stability and protects it from enzymatic

degradation by inducing alterations in the secondary and tertiary

structural forms of mRNA (26). A study conducted by Kormann et al.

revealed that incorporation of 25% m5C and 25% thiouridine

generates 5 times higher protein levels in comparison to the

unmodified mRNA (98). Hence, by modulating the level of

methylation in the cytidine bases of mRNA sequence via

methyltransferases and demethylases, the mRNA vaccines can be

efficiently optimized (99).
3.1.4 N6-methyladenosine (m6A)
N6-methyladenosine (m6A), a methylated derivative of

adenosine, is another frequent modification observed in naturally

existing mRNA transcripts (100). In the cellular environment, this

modification regulates mRNA metabolism at various levels,

including splicing, nucleus-to-cytosolic export, and stable

translation by recruiting reader proteins, including YTHDF1 and

YTHDF3 (101). Moreover, with the induction of m6A modification

at the specific regions, such as the 5’ UTR or on the bases

neighboring the stop codon, the translation efficiency can

improve the translation efficiency manifold by active recruitment

of translation initiation factors (102). Taken together, this

modification significantly boosts mRNA efficacy and safety, and,

therefore, serves as a promising tool for improving mRNA-

based vaccines.
3.1.5 2-thiouridine (s2U)
2-thiouridine (s2U) is among the novel modifications recently

explored for their potential in promoting the activity of mRNA

vaccines, and is found to be highly promising (103). Based on the

findings of various studies, s2U modification in the IVT mRNA

markedly evades recognition from TLR3 and TLR7, hence actively

reducing the induction of subsequent inflammatory pathways (104,

105). Furthermore, this modification contributes to mRNA stability

by providing resistance against enzymatic degradation. Moreover,

the s2U modification promotes mRNA translation efficiency by

preventing the activation of PKR, which ultimately results in the

inhibition of eIF2a phosphorylation and facilitates protein

synthesis (83).
3.1.6 5-methyluridine (m5U)
5-methyluridine (m5U), is another chemically modified base

often assessed in the context of mRNA vaccine technology (89). In

line with the immunosuppressive mechanisms adopted by the

modifications discussed above, m5U also ensures precise immune
Frontiers in Immunology 06
response generation by evading recognition from TLR3 (90). This

promotes mitigation of the innate immune response, hence

facilitating efficient delivery of mRNA vaccine into the target

cells. Additionally, the incorporation of m5U bases in the mRNA

vaccine design renders elevated stability and translation efficiency to

the mRNA molecule, consequently improving the vaccine potency

(105). After the successful in vitro modification of raw mRNA

sequence, it is packaged within the delivery vehicles to facilitate the

vaccine delivery, protection from degradation, and active cellular

uptake (106).
3.2 5’ Cap and Poly(A) Tail

5’ Cap and Poly(A) tail mark the key characteristics of

eukaryotic mRNA. The 5’ cap, also called “cap 0”, includes an

addition of a guanosine molecule methylated at the N7 position to

the 5’ end of the first mRNA nucleotide through a 5’,5’-triphosphate

bridge (107–109). The addition of the 5’ cap to the mRNA is crucial

for appropriate translation initiation followed by ribosome

recognition. It protects mRNA from exonuclease-mediated

degradation and also facilitates subsequent transcription,

polyadenylation, splicing, and mRNA transport from the nucleus

to the cytoplasm (110, 111). Several studies have reported that most

eukaryotic viral and parasitic mRNAs also harbor a 5’ cap feature

(112–114). The addition of a 5’ cap is a well-regulated enzymatic

process, and careful monitoring is performed at the cellular level to

ensure appropriate capping, as faulty capping can result in

premature mRNA decay and compromised translational

efficiency. In this regard, the capping machinery involves three

specific enzymes, namely RNA triphosphatase, RNA guanylyl

transferase, and RNA (guanine-7)-methyltransferase (115). The

capping process typically occurs co-transcriptionally, when the

pre-mRNA transcript reaches a length of approximately 20-25

nucleotides, which begin to protrude from the RNA exit channel

of RNA polymerase II, leading to the addition of cap 0 (116, 117).

Following this, further methylation steps are executed involving the

addition of methyl groups to the first and/or second transcribed

nucleotides, resulting in cap 1 or cap 2, respectively (112). The O-

methylation in cap 2 is crucial for demarcating self mRNA from the

foreign molecules (118). The 5’ capping marks the natural

mechanism of mRNA to cope with the cellular environment and

ensure an enhanced level of translation. Hence, it should be

considered as a modification mechanism during IVT mRNA

synthesis for designing a stable and efficient vaccine.

Additionally, poly(A) tail is another characteristic feature of

eukaryotic mRNA, which critically regulates its lifespan (119, 120).

It involves the addition of multiple adenosine residues at the 3’ end of

the mRNA molecule by a specialized enzyme, Poly(A) Polymerase.

This post-transcriptional modification is incorporated into the IVT

mRNA vaccine synthesis as well, where the tail length corresponds to

overall mRNA stability and efficiency. To achieve this goal, IVT

employs various strategies. In this regard, one primarily utilized

procedure involves poly(A) tailing of mRNA mediated by

recombinant poly(A) polymerase. However, the enzymatic tailing

adds poly(A) tails of varying lengths to the mRNA transcripts,
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thereby resulting in heterogeneous mRNAs concerning the tail

lengths. Alternatively, poly(A) tail can be encoded in the template

vector designed for in vitro transcribing the mRNA molecule to

produce synthetic mRNA with uniform tail length. Nevertheless, it is

critically challenging to determine the precise duration (121).

Regardless of this, IVT attempts to optimize this modification and

administers the recombinant poly(A) polymerase to insert modified

nucleotides into the tail, preventing poly(A) specific nucleases from

deadenylating the poly(A) tail Additionally, poly (A) tailing in IVT

mRNA synthesis renders additional benefits to the synthetic mRNA

molecule. It has been observed that, for synthetic mRNA, extending

the poly (A) tail to 120 bases progressively boosted the level of protein

expression, whereas further extension in the tail was not implicated in

further uplifting the protein expression levels (98, 122). Therefore, it

is imperative to carefully optimize the addition of poly(A) tail in the

mRNA molecule for acquiring substantial benefits.
3.3 5’ UTR and 3’ UTR

5’ and 3’ UTRs comprise essential regulatory elements of mRNA

contributing significantly to the mRNA stability, modulation of

complex structures of mRNA, ribosomal recognition, and

association of mRNA with the translation machinery (123).

Moreover, UTRs can alter the rate of mRNA decay by modulating

interactions with various RNA-binding proteins. Studies have

reported that skipping the start codon by altering the non-canonical

start codons in the 5’ UTR can disrupt translation by various

mechanisms, including prevention of stable secondary structure

formation, inability to recruit ribosomal machinery and masked

codon recognition (124). On the other hand, precise 5’ UTR

modification can enhance mRNA stability and translation accuracy.

Likewise, 3’ UTR sequences play an equally crucial role in

determining mRNA stability and efficiency. In this regard, by

imparting considerable stability to the mRNA molecule, 3’ UTR

sequences may enable an extended duration of gene expression. In

particular, the 3’ UTR of a-globin mRNA is found to harbor

discontinuous stretches of pyrimidine-rich regions, which render it

extra stablility. This results in the synthesis of messenger

ribonucleoprotein a-complex upon recognition of this stretch by

cytosolic proteins (125–127). To aid this process, an integral

component of a-complex, a-globin poly(C) binding protein (aCP),
maintains the attachment of poly(A) binding protein on the poly(A)

tail (128). This ultimately renders stability to mRNA by preventing

deadenylation of the poly(A) tail. Collectively, UTRs substantially

impact mRNAmolecules, thereby demanding careful monitoring and

optimization of UTR sequences during IVT following comprehensive

research and analysis.
3.4 Purification of IVT mRNA

During IVTmRNA synthesis, ensuring high-quality production

is imperative as it has a direct impact on the efficacy of the vaccine
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and the subsequent manufacturing steps. Hence, quality control is a

critical parameter of IVT mRNA synthesis and should be

monitored during various synthesis steps. In this regard, the

synthesis process generally includes multiple steps, including a

selection of the target antigen sequence, DNA template creation,

IVT mRNA synthesis, mRNA purification, and LNP formulation

(129). IVT employs several RNA polymerases, including T3, T7,

and SP6, for artificially synthesizing high yields of relatively longer

mRNA transcripts with length ranging in kilobases (130, 131).

However, upon the introduction of modified bases in the IVT

mRNA for the first time, the necessity of rigorous purification of the

underlying mRNA transcripts for effective immune response

generation was emphasized. To address this, various purification

techniques were explored. In this regard, size-based mRNA

chromatographic purification via high-performance liquid

chromatography (HPLC) can eliminate bigger and smaller by-

products, including double-stranded RNA, mRNA trances from

non-linearized DNA templates, and abortive transcripts (104, 132).

This comprehensive purification significantly boosted the output by

potentially removing the impurities that may be implicated in

negatively stimulating the immune system. Nonetheless, the

advancements in the IVT mRNA synthesis and purification

techniques have significantly improved the quality and efficacy of

mRNA vaccines, the substantial challenges in optimization persist

and need to be addressed by thorough research activity.
4 Delivering the mRNA and activation
of immune response

Among the core challenges associated with mRNA vaccines, the

compromised delivery of mRNA inside the target cell and the

subsequent risk of immune rejection are paramount. Additionally,

failure to induce the required immune response is another significant

limitation. To address these challenges, self-amplifying mRNA

technology holds substantial promise. This technology employs an

advanced approach involving the incorporation of additional

sequences, such as viral RNA replication genes, in the mRNA

sequence alongside the target protein sequence (3, 133). Upon

expression in the target cell, these additional sequences facilitate

replication of the target mRNA, thereby boosting the target protein

production (21). The enzymatic process, In VitroTranscription (IVT),

remains the gold standard method for synthesizing mRNA from a

DNA template within a controlled laboratory setting. In this regard, by

utilizing DNA-dependent RNA polymerases, often derived from

bacteriophages, IVT eliminates the requirement of an intermediate

step involving plasmid DNA, streamlining the overall production

process (134). Consequently, the generatedmRNA is inherently fragile

and necessitates the protection for safe and directed delivery to the

target antigen-presenting cells within the body. To overcome this

hurdle, specialized LNPs are employed as carriers to encapsulate the

designed mRNA molecules (135). The LNPs ensure the safe, efficient,

and targeted delivery facilitating the intracellular release of the mRNA

(13). Upon the intracellular uptake in the target cells, the mRNA gets
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translated into the desired protein through the cellular ribosomal

machinery (13, 136). The generated proteins are subsequently

processed via the proteasomal machinery into shorter antigenic

peptides, which are then loaded onto Major Histocompatibility

Complex (MHC) molecules in the endoplasmic reticulum (137).

MHC-I and MHC-II molecules presenting the antigenic peptides on

the cellular surface of APCs engage with the T-cell receptors (TCRs),

hence activating the Cytotoxic T-cells (CTLs) and Helper T-cells

(HTLs), respectively. Additionally, B-cells recognize and internalize

intact antigens through their B-cell receptors (BCRs). After

internalization, B-cells process these antigens and present the

derived peptides on their MHC class II molecules to helper T-cells.

The activation of helper T-cells by this interaction, along with co-

stimulatory signals, triggers the differentiation of B cells into antibody-

producing plasma cells and memory B cells. Plasma cells then produce

neutralizing antibodies that can bind to and neutralize circulating

tumor antigens (138). Hence, the mRNA vaccine prompts an immune

response within the host and offers a defense against the disruptive

influence of the tumor cells (139). Figure 2 illustrates the entire process

of immune activation mediated by mRNA vaccine administration.
Frontiers in Immunology 08
5 mRNA vaccine delivery systems

5.1 Lipid nanoparticles (LNPs) and other
delivery platforms

Nucleic acid vaccines are vulnerable to degradation by nucleases

in the body, hence requiring specific methods to improve their

distribution (140). Moreover, delivering naked mRNA is inefficient

due to rapid degradation and poor cellular uptake (141). In this

regard, vectors can serve as specialized transport systems that guard

nucleic acids from degradation and promote their cellular uptake

(142). Gene delivery vectors are broadly classified into two

categories: viral and non-viral vectors (143). Viral vectors refer to

the carrier systems obtained from the viruses, whereas the non-viral

vectors generally integrate artificial particles (144, 145). In terms of

eliciting the immune response, the viral vectors have been shown to

surpass the non-viral vectors and offer relatively higher efficacy

(146). However, non-viral vectors appear comparatively less

effective, and potentially less likely to induce immune reactions

(147). Moreover, cellular uptake of mRNA remains another
FIGURE 2

Schematic representation of designing mechanism of mRNA vaccine and its mode of action inside the cells. Step 1: The marked antigen sequence is
designed and then introduced into the plasmid DNA vector when the tumor genome has been accomplished. Step 2: Artificial mRNA designed by in
vitro transcription using the linearized plasmid DNA template is purified. Step 3: The purified mRNA is combined with delivery intermediaries to
produce the mRNA vaccine. Step 4: Endocytosis takes the mRNA vaccine up inside the cells. Step 5: Release of the marked mRNA into the
cytoplasm. Step 6: The ribosome translates the mRNA into protein. Step 7: The proteasome complex breaks down the protein product into antigenic
peptide epitopes. Step 8: In the endoplasmic reticulum, the antigenic epitopes are loaded onto MHC class I molecules. Step 9: MHC class I
molecules deliver CD8+ T cells antigenic peptides. Interchangeably, the protein product is designed, captivated by the cell, and then uncovered to
an endosomal degradation process in step 10. Step 11: MHC class II molecules present the antigenic fragments to T-helper cells on the cell surface.
Step 12: T-helper cells prompt B cells to make antibodies that neutralize target-specific cancer antigens. MHC, main histocompatibility complex,
BCR and TCR, T cell and B cell surface receptor. The figure illustrates the overview of modified mRNA for mRNA vaccine production. The structure
of mRNA is presented, starting from the 5’ cap, followed by the 5’ untranslated region (UTR), the coding region with chemically modified bases, and
the 3’ untranslated region (UTR) with a poly(A) tail. The modifications shown include methylation and isomerization of bases: N6-methyladenosine
(m6A), 5-methyluridine (m5U), 2-thiouridine (s2U), pseudouridine (Y), N1-methylpseudouridine (m1Y), and 5-methylcytidine (m5C), among others.
These modifications occur at adenosine, uridine, and cytidine bases, providing specific structural and functional benefits.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1448489
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Laila et al. 10.3389/fimmu.2024.1448489
significant hurdle owing to the inherent negative charges on both,

mRNA and cell membrane, coupled with the relative size of mRNA

molecules, and their susceptibility to degradation by ribonucleases

in the skin and bloodstream (148). Hence, to address these

limitations, strategies for delivering mRNA into the cells have

been extensively explored and pinpointed robust delivery carriers,

including polymers, peptides, and lipid-based materials (149). In

this context, liposomes have emerged as a promising drug delivery

system due to their capacity to encapsulate and transport poorly

water-soluble drugs (135). Doxil, a liposomal formulation of the

antitumor agent doxorubicin, was the initial liposomal drug to

receive clinical approval, leading to a shift in the trends in vaccine

delivery, with lipid-based nanoparticles being widely utilized in the

formulations (150). Moreover, numerous cationic lipid amphiphiles

have been developed in recent years and evaluated as carriers of

nucleic acids. The primary difference between these cationic lipids

and their natural equivalents involves the presence of an additional

ionizable (cationic) head group rather than a zwitterionic or a

usually anionic head group. Natural and cationic lipids exhibit

comparable molecular features, featuring a hydrophobic region

consisting of two alkyl chains or cholesterol, and a linker joins

their positively charged polar head groups to the hydrophobic

moiety. Regarding their vaccine delivery potential, ionizable lipids

are a superior choice compared to nonionizable cationic lipids

because they are relatively less hazardous, remaining neutral in

the circulation and exhibiting a positive charge only upon entering

the cell due to pH changes (151). These delivery vehicles can be

further optimized to increase the efficacy and safety of mRNA

vaccine and thorough research is required to develop more relevant

and innovative delivery carriers for mRNA vaccine.

Additionally, for the delivery of mRNA vaccines, many polymer-

based vectors have been developed, including poly(l-lysine) (PLL),

poly(amido-amine) (PAA), poly (beta amino-esters) (PBAEs), and

poly(ethylenimine) (152, 153). However, only PEI has been

extensively used in clinical studies. (154). Recently, new lipid-

polymer complexes known as charge-altering releasable

transporters (CARTs) have been established for the active

distribution of mRNA molecules. (155). Moreover, mRNA and

cytosine-phosphate-guanine (CpG), a synthetic toll-like receptor-9

agonist, are combined in CARTs to prepare a nanoparticle

formulation that effectively transports antigen-coding mRNA to

APCs (156). After efficient delivery of the mRNA into the target

cells, the mRNA translation, followed by antigen processing and

presentation triggers a robust immune response for effectively

eradicating existing tumors (157). Specifically, the delivery of

antigen-coding mRNA for melanoma immunotherapy, exemplified

by the technology behind the Pfizer-BioNTech COVID-19 vaccine,

has demonstrated marked effectiveness in clinical trials (158).

Furthermore, polymer-based carriers offer a hopeful strategy for

mRNA delivery. Nanoparticles made from polymers like poly

lactic-co-glycolic acid (PLGA) can provide sustained release of the

mRNA and can be potentially combined with adjuvants to further

improve the immune response (159). Hence, mRNA encapsulated in

a fatty shell offers a promising strategy for facilitating protected
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mRNA transport and cellular uptake (160). In this regard, mRNA-

1273 (Moderna) successfully employed this delivery strategy (161).
5.2 Key components of LNP formulation

LNP formulation typically involves a combination of four major

constituents, including ionizable cationic lipids, phospholipids,

cholesterol, and PEGylated lipids (162–164). Ionizable lipids play

a crucial role in LNP formulations for mRNA delivery (165).

Compared to traditional cationic lipid nanoparticles, the ionizable

lipid-based LNPs (iLNPs) maintain electrical neutrality under

physiological conditions, which helps reduce rapid elimination

from the bloodstream and minimize immune system stimulation

after intravenous administration (166, 167). Representative

ionizable lipids include DLin-DMA, DLin-KC2-DMA (168), and

DLin-MC3-DMA (169), synthesized through rational design; C12-

200 and cKK-E12 (170), identified via high throughput screening of

combinatorial libraries; and next-generation ionizable lipids, such

as DLin-MC3-DMA derivative L319 (Alnylam and AlCana

Technologies) (171), most of which are biodegradable. The key

advantage of ionizable lipids is their ability to undergo protonation

at acidic pH, allowing them to interact with the negatively charged

mRNA through electrostatic forces (167). Following the cellular

uptake and exposure to the acidic endosomal environment, the

ionizable lipids become positively charged, hence disrupting the

endosomal membrane structure and facilitating the release of

mRNA into the cytosol (172). This remarkable alteration in the

physiochemical properties of ionizable lipids in a pH-responsive

manner offers an impressive potential for mRNA delivery (173),

(174). Following this, phospholipids make up the second integral

component of LNP formulation, where they significantly contribute

to the stability and fluidic nature of LNPs. Precisely, phospholipids,

including DOPE and DSPC, generally contribute to as much as 10-

30% of the entire lipid composition within the LNP (175).

Furthermore, the polarity and degree of unsaturation of the head

and tail groups of the phospholipids, respectively, significantly affect

the overall design of mRNA-LNPs, and should, therefore, be

carefully optimized (167). In this regard, phospholipids harboring

head regions equipped with quaternary amino groups coupled with

unsaturated fatty acid tails can improve the efficiency of delivery

and enhance the potential of mRNA endosomal escape (176).

Thirdly, cholesterol serves to be a core component of LNP

formulation by contributing significantly to the LNP lipid

composition (177). Cholesterol promotes LNP formulation

efficiency by various means. In this regard, it offers fluidity for

maintaining the structural integrity of LNP during the integration

of bulk cargo (178). Moreover, in addition to facilitating mRNA

release followed by successful cellular uptake, cholesterol also

stabilizes LNP by minimizing the association of proteins on the

LNP surface (178). Finally, PEGylated lipids, such as ALC-0159 and

DMG-PEG2000, mark the fourth crucial LNP component.

Unlike the aforementioned three components, less proportion of

PEGylated lipids, generally 0.5-3%, is integrated into the LNPs.
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PEGylated lipids render ‘stealth’ properties to the LNPs,

impressively elevating the in vivo circulation duration (179).

Moreover, the PEG component provides steric hindrance,

preventing aggregation, reducing non-specific uptake, and

evading clearance by the mononuclear phagocyte system, thereby

enhancing the delivery efficacy of the LNPs (180). Nonetheless, all

these elements are essential and contribute to the stability,

transfection efficiency, and safety of LPNs (179). Key components

of LNP for mRNA vaccine formulation are shown in Figure 3.
5.3 mRNA-LNP synthesis for mRNA
vaccine designing

For mRNA-LNP synthesis, different lipids and mRNA are

usually dissolved in the ethanol and acidic aqueous phases (such

as pH 4.0 citrate buffer) with a microfluidic device at a volume ratio

of 1:3, and the execution of the self-assembly process is enabled.

Then, during the formation phase, negatively charged mRNA is

allowed to establish electrostatic interactions with the ionizable

cationic lipid after the protonation lipid becomes positively charged.

Moreover, to stabilize the produced mRNA-LNP, other helper

lipids such as cholesterol, phospholipids, and PEGylated lipids

self-assemble on them (181). Consequently, the ionizable lipids

become uncharged and less hazardous at physiological pH.

Following this, the mRNA-LNP solution is buffer exchanged to a
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neutral pH (182). The latest examples of mRNA vaccines utilizing

these LNP components include Moderna COVID-19 vaccine

(mRNA-1273) and Pfizer-BioNTech’s COVID-19 vaccine

(BNT162b2. Moderna COVID-19 vaccine uses the ionizable lipid

SM-102, DSPC, cholesterol, and DMG-PEG2000, whereas

Pfizer-BioNTech COVID-19 vaccine employs the ionizable lipid

ALC-0315, DSPC, cholesterol, and ALC-0159 (a PEG-linked lipid)

(183). Hence, these advanced LNP formulations have undoubtedly

played a crucial role in the success and rapid development of

mRNA-based COVID-19 vaccines.

Furthermore, when evaluating the efficiency of mRNA-LNP

complexes, a critical assessment of the zeta potential is essential, as

it significantly affects the delivery efficiency and biodistribution of

LNPs (184). In this regard, LNPs undergo a transition from a net

positive charge at low pH to a negative charge at high pH, as detected

by the broad ZP titration curve (185). This charge transition is

important for the endosomal escape of the mRNA payload. At low

endosomal pH, the positively charged LNP can form ion pairs with

anionic endosomal phospholipids, destabilizing the endosomal

membrane and releasing the mRNA. Additionally, the breadth of

the ZP titration curve (over ~4 pH units) indicates that the LNPs

maintain a positive charge across the entire endosomal pH range,

facilitating the membrane disruption and cytosolic delivery of mRNA

(185, 186). The net charge of the LNPs, as measured by ZP, also

determines the in vivo biodistribution and targeting of LNPs (187). In

this regard, cationic LNPs tend to accumulate in the lungs after
FIGURE 3

Key components involved in mRNA-LNP formulation. A typical LNP includes four key components, namely Ionizable cationic lipids, Phospholipids,
PEGylated lipids, and Cholesterol. Ionizable cationic lipids generally employed for LNP formulation include DLin-DMA; DLin-KC2-DMA; DLin-MC3-
DMA; cKK-E12; and C12-200. Phospholipids, such as 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-Distearoyl-sn-glycero-3-
phosphocholine (DSPC), are frequently utilized in this regard. Additionally, PEGylated lipids used for LNP formulation include ALC-0159 and DMG-
PEG 2000. Cholesterol is also incorporated in the LNP to maintain its structural integrity. Finally, the mRNA cargo loaded within LNP includes the
mRNA sequence of critical genes encoding Tumor-Associated Antigens (TAAs).
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intravenous (IV) administration, whereas, reducing the cationic lipid

content for crafting more negatively charged LNPs leads to

preferential targeting of the spleen after IV injection (188).

Additionally, for intramuscular (IM) administration, more

negatively charged LNPs exhibit higher off-target expression in the

liver compared to less negatively charged formulations (185). The

positive charge of LNPs facilitates their cellular uptake by interacting

with negatively charged heparin sulfate proteoglycans on the cell

membrane. These positively charged LNPs also demonstrated

correlated potency for intramuscular (IM) administration in mice

(189). Moreover, LNPs with a positive charge throughout the

endosomal pH range are more efficient for in vitro mRNA

transfection in HEK293 cells (185). In addition, the positive charge

is beneficial for IM delivery, likely due to interactions with negatively

charged proteoglycans in the extracellular matrix of muscle tissue.

Conversely, for intravascular (IV) administration, negatively charged

LNPs are favored for hepatocyte targeting (190) The negative charge

facilitates passive ApoE-mediated targeting and binding in the

bloodstream (191). Nonetheless, positively charged LNPs have

potential applications in mRNA delivery for in vivo muscle gene

expression and IV administration, as they can target the spleen (192).
5.4 Integration of novel biocompatible
nano-carriers for mRNA vaccine designing

Numerous newly synthesized materials are being utilized to

create PEG-free nano-carriers to boost biocompatibility. A recently

developed material, tB-UC18 (comprising a benzene-ring scaffold

and three unsaturated lipid tails), has been employed to self-assemble

with the aid of 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine,

forming lipid-like nanoassemblies (LLNs) (193). These LLNs have

demonstrated thermostability and resistance to nuclease degradation.

Moreover, when mRNA was encapsulated in LLNs, the delivery

system maintained thermal stability for at least two weeks without

PEG lipids. In this regard, a newly developed PEG-free mRNA

vaccine, PFTCmvac, exhibited a marked immunogenic potential.

The vaccine was capable of generating broad-spectrum adaptive

immunity with negligible side effects in mice and evasion of

complement system activation in the human serum. This strategy

can be further exploited in the mRNA vaccine technology for

developing PEG-free nano-carriers (194).

Recently, a novel drug delivery strategy, namely Lipid-polymer

hybrid nanoparticles (LPHNPs), has emerged that integrates the

beneficial aspects of liposome carriers coupled with biodegradation

polymeric nanoparticles (195). This carrier features an innovative

structure encompassing three components, including a polymeric

core, a surrounding lipid monolayer, and an outermost PEGylated

layer (196). The LPHNP formulation involves a sophisticated

combination of biodegradable polymer, zwitterionic phospholipids,

ionizable lipids, PEG-lipids, and cholesterol (196). The LPHNP-based

hybrid nano-carrier system offers striking benefits, including

improved transfection properties, targeted mRNA delivery,

enhanced stability, and upgraded mRNA release kinetics (174, 197).

Moreover, the biocompatible nature of LPHNPs renders them
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significant resistance against degradation and boosts their ability to

facilitate mRNA encapsulation, stability, and cellular uptake (174,

196, 198). Additionally, their optimized hydrodynamic parameters

including sizes within the 200-250 nm range further add to their

benefits (199). Hence, these nanoparticles significantly widen the

therapeutic window of mRNA vaccines in combating diverse cancers

and genetic disorders (197, 198).

Taken together, the incorporation of innovative delivery

methods can substantially revolutionize the mRNA vaccine

technology by offering better optimization parameters. In

addition, vaccine administration parameters should also be

carefully optimized. In this regard, the administration of

SARS-CoV-2 mRNA-LNP via a needle-free injection method

ensured a minimally invasive procedure, while achieving

enhanced immunogenicity compared to conventional needle-

based injection methods (200). In the future, further

optimizations and modifications can be executed to improve

delivery, stability, targeting, immune stimulation, cost-

effectiveness, and yield for wider applicability of mRNA

vaccines in clinical set-up (186).
6 Mechanism of mRNA endosomal
escape from mRNA -LNP complex

The efficient intracellular delivery of mRNA payloads is a

crucial requirement for the success of mRNA-based therapies (H.

Liu et al.). After cellular internalization, mRNA-loaded lipid

nanoparticles (LNPs) must escape the endosomal compartment

and release the mRNA into the cytoplasm, where it can then be

translated into the desired protein (201, 202). In this regard, two

primary mechanisms have been proposed, including “membrane

destabilization” and “proton sponge effect”.

Firstly, membrane destabilization involves the protonation of

ionizable lipids in the acidic pH of endosomes, followed by

interactions with anionic lipids on the endosomal membrane.

This induces a non-bilayer, hexagonal structure that can disrupt

the membrane and release the mRNA payload. (168). Various

studies have demonstrated that a pKa range of 6.2 to 6.5 is

optimal for effective in vivo silencing in hepatocytes, with the

highest potency observed at a pKa of 6.44 (169). Moreover, the

optimal pKa for protein expression from mRNA-LNPs can be

altered by route of administration. In this regard, a study showed

that vaccine administration via the intravenous route exhibited a

pKa lower than that required for protein expression compared to

the administration via the intramuscular route (185, 189). Secondly,

the ‘proton sponge effect’ functions by the buffering capacity of

LNPs to activate the proton pumps, increasing the membrane

potential, This leads to the influx of chloride ions, increasing the

osmotic pressure and causing the endosome to swell and burst,

thereby releasing the mRNA (203).

After the successful release of mRNA from the endosome and

into the cytoplasm, it interacts with the cellular translation

machinery to be expressed as a functional protein (204). This

process involves ribosome recognition in which the mRNA must
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be in an unstructured, single-stranded form that can be accessed by

the ribosome, the cellular organelle responsible for protein

synthesis. Certain mRNA design elements, such as the 5’ cap

structure and 3’ poly(A) tail, can enhance mRNA stability and

promote efficient translation initiation by the ribosome. Moreover,

the mRNA sequence and codon optimization can also impact

translation efficiency. Therefore, by integrating the endosomal

escape mechanisms and the subsequent mRNA translation

process, mRNA-based vaccines can effectively deliver the genetic

payload and express the target proteins within the cell.
7 Clinical efficacy of lipid-based
nanoparticles and other nanoparticles
for mRNA delivery

With the recent innovations in the delivery methods, a lot of

new approaches are employed to increase the efficacy of mRNA-

based therapeutics for cancer treatment. Recently, Miao et al.

created a range of ionizable lipid-like materials and validated the

best candidate formulations as mRNA delivery vehicles for

vaccination against cancer (205). These LNP formulations were

used to deliver ovalbumin (OVA) mRNA to the OVA-expressing

B16F10 mouse melanoma model. The egg white protein OVA is

commonly used as a model antigen owing to its potential of

enhanced cytotoxic lymphocyte-based recognition of neoantigens

(206). After the initial two doses, the LNP-based mRNA vaccines

significantly suppressed tumor growth and produced a robust

antigen-specific cytotoxic T-cell response. Additionally, rather

than activating TLRs, these LNP formulations stimulated

adaptive immune cells via the stimulator of interferon genes

(STING) pathway, which resulted in strong antigen expression,

and local production of pro-inflammatory cytokines (207).

Furthermore, recently a formulation was designed based on a

common tumor suppressor gene, phosphatase, and tensin

homolog deleted on chromosome ten (PTEN), which is mutated

or deleted in a variety of human cancers. In this regard, the lipid

materials G0-C14, polylactic-co-glycolic acid (PLGA), and lipid-

PEG were used to synthesize mRNA-LNP, and PTEN was

reintroduced into cancer cells to restore its ability to serve as a

tumor suppressor (208). Another research, focused to craft and

refine a platform of mRNA nanoparticles, targeted at C-X-C-

Motif Receptor 4 (CXCR4) to effectively increase p53 expression

in models of hepatic cell carcinoma (HCC). They combined anti-

PD-1 immunotherapy with CXCR4-targeting p53 mRNA

nanoparticles, which revealed the massive potential of this

combination strategy in enhancing the liver cancer anti-tumor

immune response and suppressing tumor growth (209). The

researchers demonstrate immense confidence in the potential of

this therapy to effectively treat immunosuppressive cancers,

alongside liver cancer, and are eager to apply the potential

findings from animal models to human clinical trials.

Recently, lipid calcium phosphate nanoparticles (LCPs) were

used in the development of a vaccine against melanoma to deliver

two essential components, including siRNA directed against the
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immunological checkpoint PD-L1 and mRNA encoding the tumor

antigen TRP-2. Following their loading onto the dendritic cells

(DCs), these LCPs were injected into mice. The outcomes

demonstrated the effective transport of siRNA and mRNA to DCs

in the lymph nodes, which prompted CD8+ T cells to mount a

targeted immune response against TRP-2, which significantly

slowed down tumor development in mice models (157). Overall,

the promising results indicate that LNP-based mRNA vaccines

have the potential to become an effective strategy for cancer

immunotherapy. To completely comprehend the mechanics and

long-term impacts of these formulations, additional meticulous

research and critical evaluation are required.
8 mRNA vaccine for specific
cancer types

Therapeutic mRNA cancer vaccines have emerged as a

promising novel approach to cancer immunotherapy (25),

offering high specificity, better efficacy, and fewer side effects

compared to traditional therapeutic strategies (210). In this

regard, multiple therapeutic mRNA cancer vaccines are subjected

to stringent evaluation in preclinical and clinical trials, with

promising early-phase results (211). Recently, preclinical research

has been conducted on mRNAmelanoma vaccines using orthotopic

mice models, where B16F10 melanoma cells were employed as an

experimental cell line. The findings revealed strong stimulation of T

cells immune response in the mice model upon vaccine

administration, suggesting the promising effectiveness of the

vaccine in clinical settings (212). Moreover, immune checkpoint

inhibitors, including monoclonal antibodies to counter CTLA-4,

PD-1, and PD-L1, have been permitted for therapeutic use. These

drugs are explicitly intended to address melanoma, suggesting a

synergistic or combined mRNA vaccine approach against

melanoma, which can further enhance both efficacy and strength

of immune response (213). Furthermore, an mRNA vaccine

designed by integrating several MHC classes I and II-restricted

neoepitopes produced from B16F10 melanoma cells was shown to

be efficacious by Kreiter et al. in 2015 (214). In a mouse model, this

vaccination effectively generated strong tumor-specific CD4+ and

CD8+ T cell responses, which resulted in considerable tumor

rejection (60–80% survival). Expanding on this achievement,

Chen et al. created a new formulation of lipid nanoparticles (113-

O12B) that demonstrated improved lymph node targeting

compared to conventional LNP formulations (215). Notably, an

mRNA vaccine expressing a Trp2 180-188-specific epitope was

more effective owing to the enhanced delivery method, resulting in a

40% complete response rate in mice challenged with melanoma

(216). The injectable vaccination Melanoma FixVac BNT111,

administered by liposomal RNA (RNA-LPX), was the subject of a

recent clinical trial (Lipo-MERIT, NCT02410733) (217). This first-

ever human Phase I trial assessed the vaccine safety and

effectiveness in patients with metastatic melanoma. Four

frequently occurring, non-mutated tumor-associated antigens in

melanoma were targeted by melanoma FixVac BNT111. The trial’s
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initial dose-escalation phase established the safety and tolerability of

the vaccination. Also, encouraging findings from an intermediate

analysis were found (218).

Recently, a novel adjuvant therapy strategy for melanoma

combining anti-PD-1 medication with a personalized mRNA-

based cancer vaccine has been constructed. The neoepitopes have

been shown to efficiently induce robust anticancer immunity in vivo

(219). In the KEYNOTE-942 stage II test, patients with resected

high-risk stage IB–IV melanoma were randomized to receive either

pembrolizumab alone or the mRNA-4157 vaccine, leading to

enhanced immune response generation (220). Another study

examined the immunogenic potential of GM-GSF as an adjuvant

along with the mRNA vaccination encoding six melanoma-specific

TAA genes in a phase I/II clinical trial involving 21 melanoma

patients in 2009. The data showed that immunization significantly

reduced the number of immunosuppressive cells (Foxp3+/CD4+T

cells) without creating any adverse side effects (221). Furthermore,

an mRNA vaccine, namely Lipo-MERIT, combining PD-L1 with

four TAAs, was introduced to melanoma. Consequently, it

effectively triggered IFN-g production and encouraged the

recruitment of T cells specific to the antigen (NCT02410733)

(222). Afterward, recently developed lymph node-targeted LNP-

based mRNA vaccination enhanced antitumor immunity and

produced robust CD8+ T cell responses in B16F10 melanoma-

bearing mice (215). Additionally, Christian et al. demonstrated high

efficacy in mouse tumor models by encoding a variety of cytokines,

including GM-CSF, IL-15, interleukin-12 (IL-12) single chain, and

interferon-a (IFN-a), in an mRNA combination through multiple

intratumoral injections against melanoma. Furthermore, when the

tumor growth was effectively controlled, the majority of them

completely disappeared. This was further linked to several factors,

including the formation of immunological memory, amplified

granzyme B+, T-cell infiltration, intratumoral IFN-g induction,

systemic antigen-specific T-cell growth, and anticancer activity of

mRNAs encoding four different cytokines. This defensive response

was also evident in metastatic areas external to the initial tissue,

where mRNA-encoded cytokines are generated in vivo (215). This

offers a promising hope for combining cytokines with mRNA

vaccine as an adjuvant therapy for melanoma.

Recently, a phase II clinical trial of the GP2 peptide-based

vaccine, under the vaccine ID NCT00524277, showed

groundbreaking outcomes of a 100% 5-year survival rate in

patients with HER2+ breast cancer (223). Although no breast

cancer vaccine has yet been permitted for either treatment or

inhibition, this evokes a general interest that breast cancer mRNA

vaccine would have great implications in significantly improving

the survival rate. Another ongoing clinical trial (NCT03289962)

targeting TNBC with RO7198457 (individualized mRNA

vaccination) + atezolizumab (anti-PD-L1) has shown that tumors

overexpressing HER2 show less response to immune checkpoint

blockade (224). However, by revitalizing T-cells, HER2-specific

mRNA vaccination may enhance the sensitivity of cancer cells to

immune checkpoint inhibitors (225). Moreover, research has

revealed that the mRNA vaccination and the anti-CTLA-4

monoclonal antibody can work in conjunction to produce a

strong CTL response against TNBC (226). Moreover, another
Frontiers in Immunology 13
study has revealed the effectiveness of mannose-modified lipid-

core nanoparticles (LCP) in delivering MUC1 TAA encoding

mRNA to the dendritic cells, triggering a robust immune

response against TNBC cells (227). In addition, new research

investigated the efficacy of VRP-HER2, a viral-based HER2 RNA

vaccine, in a mouse model. Based on the findings, a considerable

induction of HER2-specific T-cells mediated by VRP-HER2 was

revealed, substantially restricting tumor growth. The HER2-specific

T-cells induced by this vaccination were CD8+ T-cells capable of

expressing perforin, which has been previously reported to be

implicated in promoting disease-free survival in breast cancer

patients (228). Additionally, clinical trials of TriMix vaccine

(NCT03788083) are in progress to evaluate the safety and efficacy

parameters of intratumoral mRNA vaccine against breast cancer

(229). Besides this, individualized mRNA neoantigen vaccine

(iNeST) is also under assessment in amalgamation with added

lipoplex-formulated mRNA-producing TAAs (BNT114), and RNA

encrypting p53 in patients with TNBC (NCT02316457). Currently,

CARvac, an mRNA lipoplex vaccine encoding claudin-6 protein

(CLDN6), is under inspection in a phase 1/2 clinical trial

(NCT04503278) for patients with advanced solid CLDN6-positive

tumors. Moreover, this vaccine can also be combined with mRNA

technology to further boost its efficacy. To improve CAR T-cell

treatment, BNT211, an autologous CLDN6, and CARVac are

simultaneously injected intravenously. Early findings showed that

four (57%) of the seven evaluable patients treated with a

combination of CARVac and CLDN6 CAR T-cell therapy

exhibited a partial response, while one patient (14%) remained

stable at the 6-week evaluation (230, 231). BioNTech is currently

developing BNT114, a pre-made set of common cancer antigens.

Conversely, BNT-122 is a personalized vaccine targeting a patient-

specific tumor mutation (211). Following this, the phase I clinical

trial of AVX901, an amplifying mRNA vaccine based on a self-

amplifying VEEV vector articulating HER2, has been completed.

Next, phase II clinical investigation aims at assessing the efficacy of

AVX901 in combination with pembrolizumab (232). Moreover,

NCT01837602, a phase 0 clinical trial, is now investigating the

safety and feasibility of anti-cMet chimeric antigen receptor T cells

(CAR-T cells) to treat patients with metastatic breast cancer (233).

TNBC patients have undergone evaluations of the safety,

immunogenicity, and effectiveness of a customized mRNA

vaccine made with neoantigen liposomes (NCT02316457), where

the preliminary results reflect a strong generation of poly-epitopic

T-cell response (234). Recently, a stage 1 clinical trial of a custom-

made mRNA vaccine, autogenous cevumeran, displayed that it can

initiate improved immune responses in 50% of PDAC patients after

medical resection, which increases the hope of treating this deadly

disease. In this regard, the vaccine design is equipped with 20

neoantigens and is transported using LNPs via circulatory injection

in amalgamation with chemotherapy and immune checkpoint

therapy (235). The Phase I clinical trial results confirmed the

clinical benefits for patients with surgically resected PDAC

(NCT04161755) and the ability of autogene cevumeran to expand

neoantigen-specific and functional CD8+ T cells (236). Moreover,

MUC1 is distinguishably an overexpressed TAA in pancreatic

cancer, making it a superlative target of therapeutic design (237).
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Furthermore, the high frequency of KRAS point mutations in

pancreatic cancer suggests it to be a potential target for

therapeutic strategy against pancreatic cancer (238). In this

regard, a personalized mRNA vaccine can be constructed by

targeting patient-specific KRAS mutations. Moreover, an ongoing

medical trial has recruited patients for appraisal of the safety and

acceptability of mRNA5671/V941, either unaccompanied or in

grouping with pembrolizumab, for the treatment of progressive or

metastatic pancreatic cancer (NCT03948763) (107). Another

mRNA-based vaccine trial is undergoing in clinical settings to

assess the protection and effectiveness of progressive adjuvant

atezolizumab (Genentech) and autogene cevumeran in patients

with PDAC (235).

Following this, another clinical trial to appraise the protection and

worth of a customized mRNA neoantigen vaccine (iNeST), in

grouping with mFOLFIRINOX, a first line of therapeutic

combination for PDAC, in patients with surgically resectable PDAC

is in progress. The main aim for designing this vaccine is to intensify

neoantigen-specific T-cells repressed by PD-1 signaling and major

naive T-cells in response to vaccine neoantigens. The iNeST has been

shown to be considerably safe with marked feasibility and dismal side

effects in patients. It has also been shown to produce significant

neoantigen-specific T-cells in 50% of unselected patients with

resectable PDAC. Furthermore, vaccine-induced T-cells are shown

to be resilient and can last up to two years after receiving

mFOLFIRINOX treatment (235). Additional ongoing clinical trials

for solid tumors, including PDAC, are mounting on Phase 2 with the

reference IDs: NCT03289962 and NCT04161755 (236). Afterward,

mRNA-4650, an mRNA vaccine targeting KRASmutations, developed

by Moderna and Merck, was used in amalgamation with or without

pembrolizumab for the treatment of pancreatic carcinoma to create

adjuvant or combinational therapy. The result of the therapy evaluated

that the LNP distribution system for mRNA-4650 was well endured

and provoked an anti-tumor immune response (19). Likewise, hTERT

vaccination shows promise in inducing an immune response against

cancer, with a case study demonstrating complete remission in a

pancreatic cancer patient following DC vaccination with hTERT

mRNA. This successful treatment also identified novel epitopes that

can be incorporated into future hTERT vaccines for broader

application (239). The latest mRNA-based and peptide-based

combinational vaccines have been constructed to incorporate specific

antigens and mRNA. In this regard, one such vaccine, mRNA-5671/

V941, targets four KRAS mutations, including G12D-, G12V-, G13D-,

and G12C-, is tested in combination with pembrolizumab in stage I

experimental trial for patients with KRAS-mutant advanced colorectal

cancer under the clinical reference ID of NCT03948763 (240–242).

During the trials, the vaccine was administered intramuscularly in

LNPs for nine cycles every three weeks. Consequently, significant

antitumor response was observed with marked tolerance of the

formulation in vivo. Upon translation and processing of the antigen

protein, peptide epitopes were presented via MHCs and enabled the

generation of T-cell mediated immune responses (6). Additionally, two

NSCLC-specific mRNA vaccines, CV9201 (NCT00923312) and

CV9202 (NCT01915524) were evaluated in clinical trials to assess

their therapeutic potential against lung cancer in combination with

checkpoint inhibitors. CV9201 targets five TAAs specifically linked to
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NSCLC, whereas CV9202 is a self-adjuvating mRNA vaccine that

targets six antigens commonly expressed in NSCLC (NY-ESO-1,

MAGEC1, MAGEC2, 5 T4, survivin, and MUC1) (243). By

facilitating antigen expression and stimulating TLR7/8 and

intracellular RNA sensors, they aim to activate immune cells against

NSCLC cells (244). Based on the initial results, the vaccines were

shown to be safe and efficient in producing antigen-specific T-cell

immune responses in 63% (for CV9201) and 84% (for CV9202) of

individuals. Nevertheless, neither progression-free survival nor overall

survival was observed to be enhanced by CV9201 (245, 246).

Moreover, a vaccination trial, NCT00004604, is carried out to

evaluate the safety and dose-limiting toxicity of a vaccine including

DCs injected with CEA-encoding mRNA. Phase I data indicated that,

while all patients felt malaise and subcutaneous nodules at the injection

site, no major toxicities were noted. As a result, it was established that

giving CEA mRNA-transfected DCs was safe (247, 248). Recently,

multi-epitope neoantigen was synthesized as a KRAS mRNA vaccine,

mRNA-1521, that wholly covered all predominant KRAS mutations to

attain a broad-spectrum immune response. Following this, immune

response and anti-tumor effectiveness were measured in the colon

cancer Balb/c mice model. It was noted that prophylactic

immunization with mRNA-1521 pointedly repressed tumor growth

in the mouse model of colon cancer. The repressive effects of the

vaccine were additionally improved upon the combination with anti-

PD-1 antibodies (249). mRNA-1521 also provoked specific T and B

cell responses vital for anti-cancer immunotherapy (249). A single

intratumorally administered injection of (murine) IL-12 mRNA-LNP,

under the vaccine ID (NCT03946800), produced a tumor clearance

rate of approximately 86% in MC38 mouse models with colon

adenocarcinoma, and almost all of the mice were resistant to tumor

recurrence (250). A vaccination based on OMV-LL-mRNA has been

shown to dramatically slow the growth of melanoma and induce 37.5%

full remission in a colon cancer model. After 60 days, OMV-LL-

mRNA markedly protected the mice from tumor challenges by

inducing a long-term immunological memory (251). Furthermore,

the mRNA cancer vaccination expressing the MC38 neoantigen

successfully suppressed MC38 colon cancer mice and prevented

tumor recurrence when given in concert with immune checkpoint

blockade therapy (152, 252). Finally, phase I/II clinical trials are

currently ongoing to evaluate the therapeutic potential of a KRAS-

targeting mRNA vaccine, ELI-002 against operable colorectal cancer

(242). The successful findings revealed by these clinical trials boost the

confidence of researchers in the clinical applicability of mRNA

vaccines against cancers. Nonetheless, extended evaluation is

imperative to unfold the long-term effects of these vaccines before

their utilization in cancer therapeutics. mRNA vaccine for different

cancer types is shown in Table 3.
9 Conclusion

Cancer is declared the deadliest clinicopathological condition

encompassing the whole globe owing to its prevalence and impact.

However, recent advancements in molecular medicine, particularly the

development of mRNA vaccines and cancer immunotherapy, offer

great promise for effectively treating cancer. Numerous clinical trials
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TABLE 3 mRNA vaccine for different cancer types.

Results or recruitment status Sponsor/
Collaborators

oing Phase 3 trial Hasumi
International
Research
Foundation

oing Phase 1 trial Memorial Sloan
Kettering
Cancer Center

pleted Phase 2 randomized trial –

nth disease control rate of 51%, overall tumor
onse rate of 38% (8 complete responses and 7 partial
onses). Some patients remained disease-free for over
ars

Universitair
Ziekenhuis Brussel,
with Bart Neyns as
the
principal
investigator

oing, no results reported University Hospital
Erlangen, Germany

nth disease control rate of 51%, overall tumor
onse rate of 38% (8 complete responses and 7 partial
onses). Some patients remained disease-free for over
ars.

Universitair
Ziekenhuis Brussel,
Vrije
Universiteit Brussel

ixDC-MEL was well-tolerated and may improve the
ar disease-free survival rate compared to the
rol group

Melanoma

uiting, evaluating safety and tolerability of
venous administration of Lipo-MERIT vaccine. The
noma FixVac vaccine, alone and with anti-PD1
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kpoint inhibitor-experienced patients with
nced melanoma

BioNTech
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Trail
identifier

Targeted malignancy Vaccine type Target antigens Combination
therapy

Route
of

administration

NCT04335890 Uveal Melanoma Personalized dendritic
cell (DC)

Autologous tumour
RNA with gp100,
tyrosinase, PRAME,
MAGE-A3, IDO, and
different
driver mutations

V940 (mRNA-4157)
+ KEYTRUDA

Intravenous infusion Ong

NCT01456104 Melanoma Langerhans-type dendritic
cell vaccine

Murine tyrosinase-
related proteins

Langerhans-type
dendritic cells +
checkpoint
inhibitor antibody

Intravenous
injection

Ong

NCT02285413 Melanoma Autologous monocyte-
derived dendritic cell
(DC) vaccine

gp100, tyrosinase
(melanoma-
associated antigens)

Standard
chemotherapy

Intradermal
and intravenous

Com

NCT01302496 Previously treated unresectable
stage III or IV melanoma

Autologous TriMix-DC
therapeutic vaccine

MAGE-A3, MAGE-
C2, tyrosinase,
and gp100

TriMix-DC vaccine
combined with
ipilimumab (anti-
CTLA-4
monoclonal antibody)

Intravenous
and intradermal

6-m
resp
resp
5 ye

NCT01983748 Uveal melanoma Autologous tumour
RNA vaccine

autologous tumor
RNA antigens.

None Intravenous Ong

NCT01302496 Previously Treated,
Unresectable Stage III or
IV Melanoma

Autologous TriMix-DC
Therapeutic Vaccine

MAGE-A3, MAGE-
C2, tyrosinase, gp100

Ipilimumab Intradermal (ID)
and
Intravenous (IV)

6-m
resp
resp
5 ye

NCT01676779 Unresectable AJCC stage III or
IV melanoma

Autologous monocyte-
derived dendritic cells
(DCs) electroporated with
synthetic mRNA

MAGE-A3, MAGE-
C2, tyrosinase,
and gp100

TriMixDC-MEL
vaccine alone and in
combination with the
CTLA-4
inhibitor ipilimuma

Intravenous (i.v.)
and
intradermal (i.d.)

TriM
1-ye
con

NCT02410733 Advanced melanoma,
specifically stage IIIB-C and
stage IV

Tetravalent RNA-lipoplex
cancer vaccine

MAGE-A3, NY-ESO-
1, tyrosinase,
and TPTE

Melanoma FixVac
vaccine in combination
with anti-PD1 therapy

Intravenous Rec
intr
mel
ther
chec
adv

NCT04526899 Melanoma Tetravalent RNA-lipoplex
cancer vaccine

NY-ESO-1, tyrosinase,
MAGE-A3, and TPTE

With cemiplimab Intravenous Ong
o

o

t

r
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a
a
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Results or recruitment status Sponsor/
Collaborators

Ongoing Phase 2 clinical trial Genentech

Recruiting Not reported

Recruiting ModernaTX, Inc.

Completed, Safety and Toxicities - H. Kim Lyerly
- Susan G. Komen
Breast Cancer
Foundation
- Duke University

Active, not recruiting Duke University

Completed, Safety and Toxicities Inge Marie Svane

Active, Not Recruiting Duke University

Active, Not Recruiting Antwerp University
Hospital, Center
for Cellular
Therapy and
Regenerative
Medicine

Active, Not Recruiting BioNTech SE
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Targeted malignancy Vaccine type Target antigens Combination
therapy

Route
of

administration

NCT03815058 Advanced melanoma Personalized cancer
vaccine encoding
individual tumor
mutations (BNT122)

Personalized set of
tumor mutations

With pembrolizumab Intravenous

NCT03394937 Resected melanoma (stages IIc,
III, and IV)

Non-formulated (naked) CD40L, CD70,
caTLR4; tyrosinase,
gp100, MAGE-A3,
MAGE-C2,
and PRAME

None Not reported

NCT03897881 Resected high-risk cutaneous
melanoma (stage IIIB-IV)

Personalized cancer
vaccine mRNA-4157

Up to 34 patient-
specific
mutated neoepitopes

Pembrolizumab mRNA-4157:
Intramuscular
-
Pembrolizumab:
Intravenous

NCT01526473 HER2+ Breast Cancer SAM (self-amplifying
mRNA)
vaccine (AVX901)

HER2 None Intramuscular

NCT03632941 HER2+ breast cancer SAM vaccine (AVX901) Tumor-associated
antigens (TAAs)

HER2 vaccine +
Keytruda
(pembrolizumab)

Intramuscular

NCT00978913 Breast Cancer,
Malignant Melanoma

Autologous Dendritic
Cell Vaccine

Survivin, p53,
HER2 (ERBB2)

Cyclophosphamide Intradermal (i.d.)

NCT00004604 Metastatic Cancer (including
Colon Cancer
and Adenocarcinoma)

CEA RNA-Pulsed
Dendritic Cell Vaccine

CEA, MUC-1 a-
gal Epitope

Gemcitabine
Chemotherapy

Not Specified

NCT01291420. dvanced breast cancer,
malignant mesothelioma,
glioblastoma multiforme
(Grade IV), sarcomas,
colorectal tumors, and
rare tumors

autologous dendritic cell
(DC) vaccine

Wilms' Tumor Gene
(WT1) mRNA

With
TMZ (temozolomide)

Not specified

NCT02316457 Triple-negative breast
cancer (TNBC)

Liposome-formulated
intravenous RNA vaccine

Neoantigens based on
next-generation
sequencing screening

None mentioned Intravenous
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Results or recruitment status Sponsor/
Collaborators

e 1, open-label, multicenter study actively recruiting
cipants, with Dose Escalation, Dose Confirmation,
Dose Expansion Parts

ModernaTX, Inc.

uiting, results not yet available Universitair
Ziekenhuis Brusse,
eTheRNA
immunotherapies

pleted Phase 1 study Memorial Sloan
Kettering
Cancer Center

uiting Stemirna
Therapeutics

specified Changhai Hospital,
other
institutions (OIs)

uiting University Medical
Center Groningen
(Groningen,
Netherlands

inated Oslo
University Hospital

pleted Radboud
University, OIs

inated Steinar Aamda
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NCT03739931 Advanced solid tumors In situ vaccine (ISV) with
mRNA-2752 (Human
OX40L, IL-23, and
IL-36g)

Tumor-associated
antigens, with a focus
on neoantigens

Intratumoral injections
of mRNA-2752 alone
and in combination
with intravenously
administered
durvalumab

Intratumoral
injection

Pha
part
and

NCT03788083 Early-stage Breast Cancer ISV Trimix mRNA
encoding CD40L,
CD70, acTLR4,
administered using
synthetic
naked mRNA

Monotherapy, no
combination therapy

Intratumoral Rec

NCT01995708 Multiple Myeloma Autologous CT7/MAGE-
A3/WT1 mRNA-
Electroporated
Langerhans-Type
Dendritic Cells

CT7, MAGE-
A3, WT1

Standard treatment for
multiple myeloma
patients undergoing
autologous stem
cell transplantation

Intradermal Com

NCT03908671 Esophageal cancer, Gastric
adenocarcinoma, Pancreatic
adenocarcinoma,
Colorectal adenocarcinoma

Personalized mRNA
Tumor Vaccine

RNA, Solid tumors Personalized mRNA
Tumor Vaccine

Subcutaneous Rec

NCT03468244 Gastric adenocarcinoma,
Pancreatic adenocarcinoma,
Colorectal adenocarcinoma

mRNA
neoantigen vaccination

Mutated neoantigens,
Oncoviruses,
Endogenous retroviral
elements (HERVs),
Unconventional
antigens

Personalized
mRNA vaccine

Subcutaneous Not

NCT04163094 Ovarian cancer BNT115 (ovarian cancer
tumor-
associated antigens)

Not applicable Carboplatin
and paclitaxel

Intravenous Rec

NCT01334047 Ovarian cancer Cell therapy based on
dendritic cells transfected
with mRNA

Survivin Not applicable Intradermal Ter

NCT00243529 Melanoma Autologous dendritic
cell vaccine

gp100 and tyrosinase Not applicable Not applicable Com

NCT00961844 Metastatic
Malignant Melanoma

Dendritic cells transfected
with hTERT-, survivin-

Not applicable Not applicable Not applicable Ter
s
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Results or recruitment status Sponsor/
Collaborators

proved recurrence-free survival with combination vs.
mbrolizumab alone. Currently recruiting, estimated
mpletion: September 9, 2029.

ModernaTX, Inc.
Collaborator:
Merck Sharp &
Dohme (subsidiary
of Merck & Co.)

t applicable National Cancer
Institute (NCI), OIs

mpleted Phase 1 study on safety and immunogenicity Bart Neyns, OIs

t specified University Hospital
Tuebingen, OIs

ase 2 study, status not specified National Cancer
Institute (NCI),
University
of Chicago

ase -1 MD Anderson
Cancer Center

I Oslo
University Hospital

mpleted, encoding PSA, PAP, survivin and
ERT antigens

Inge Marie Svane

rminated CureVac AG
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Targeted malignancy Vaccine type Target antigens Combination
therapy

Route
of

administration

and tumour cell-derived
mRNA + ex vivo T cell
expansion and reinfusion

NCT03897881 High-risk resected
cutaneous melanoma

mRNA-4157/V940 (novel
mRNA-based
personalized
cancer vaccine)

Individualized mRNA
encoding for up to
34 neoantigens

mRNA-4157 (V940) +
pembrolizumab
(Keytruda)

Intramuscular Im
pe
co

NCT03480152 Metastatic gastrointestinal
cancers (esophageal squamous
carcinoma, gastric
adenocarcinoma, pancreatic
adenocarcinoma,
colorectal adenocarcinoma)

Personalized mRNA
cancer vaccine

Defined neoantigens,
predicted neoepitopes,
mutations in driver
genes expressed by
the patient's cancer

Monotherapy
(no combination)

Intramuscular No

NCT01066390 Melanoma TriMix-DC Not specified Not specified Intradermal (i.d.)
and
Intravenous (i.v.)

Co

NCT00204516 Melanoma mRNA coding for
melanoma-
associated antigens

gp100, tyrosinase Not specified Not specified No

NCT00087373 Metastatic melanoma Recombinant fowlpox-
TRICOM vaccine

Not specified Not specified DC-vaccine Ph

NCT00514189 Colon Cancer,
Gastrointestinal Cancer

Monocyte-derived
dendritic cells

AML mRNA + lysate Not specified Not specified Ph

NCT01278914 Prostate Cancer mRNA-transfected
dendritic cells

Not specified Not specified Not specified I/I

NCT01446731 Metastatic castration-resistant
prostate cancer

DC vaccine Tumor-specific
antigens or tumor-
associated self-
antigens,
encoding PSA, PAP,
survivin and
hTERT antigens

Not specified Intramuscular (i.m.) Co
hT

NCT02140138 Prostate cancer CV9104 (mRNA-based
multivalent
cancer immunotherapy)

– – Not specified Te
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are underway for the formulation of novel vaccines against cancer,

either as standalone or administered in combinational therapies.

Although, initial vaccine trials have reported promising results, a

substantial follow-up alongside critical improvements is still needed

before a finalized product can be made accessible to the general public.

Hence, enhancing the vaccine technology to boost efficacy and safety

remains a pivotal challenge to be addressed shortly.
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