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Introduction: Vaccine-induced immunity against COVID-19 generates antibody

and lymphocyte responses. However, variability in antibody titers has been

observed after vaccination, and the determinants of a better response should

be studied. The main objective of this investigation was to analyze the

inflammatory biomarker response induced in healthcare workers vaccinated

with BNT162b2, and its association with anti-Spike (a SARS-CoV-2 antigen)

antibodies measured throughout a 1-year follow-up.

Methods: Anti-spike antibodies and 92 biomarkers were analyzed in serum,

along with socio-demographic and clinical variables collected by interview

or exploration.

Results: In our study, four biomarkers (ADA, IL-17C, CCL25 and CD8a) increased
their expression after the first vaccine dose; and 8 others (uPA, IL-18R1, EN-

RAGE, CASP-8, MCP-2, TNFb, CD5 and CXCL10) decreased their expression.

Age, body mass index (BMI), smoking, alcohol consumption, and prevalent

diseases were associated with some of these biomarkers. Furthermore, higher

baseline levels of T-cell surface glycoprotein CD6 and hepatocyte growth factor

(HGF) were associated with lower mean antibody titers at follow-up, while levels

of monocyte chemotactic protein 2 (MCP-2) had a positive association with

antibody levels. Age and BMI were positively related to baseline levels of MCP-2

(b=0.02, 95%CI 0.00-0.04, p=0.036) and HGF (b=0.03, 95%CI 0.00-0.06,

p=0.039), respectively.
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Conclusion: Our findings indicate that primary BNT162b2 vaccination had a

positive effect on the levels of several biomarkers related to T cell function, and a

negative one on some others related to cancer or inflammatory processes. In

addition, a higher level of MCP-2 and lower levels of HGF and CD6 were found to

be associated with higher anti-Spike antibody titer following vaccination.
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1 Introduction

The coronavirus disease-2019 (COVID-19), an infectious

respiratory disease caused by the SARS-CoV-2 virus, continues to

place a global burden on morbidity and mortality. By spring 2024,

there have been more than 770 millions COVID-19 cases and more

than 7 millions deaths worldwide (1).

Several vaccines were developed throughout the year 2020 to

provide protection against COVID-19. For the first time, vaccines

based on mRNA were used in the general population. These vaccines,

i.e. RNA-1273 (Spikevax™, Moderna) and BNT162b2 (Comirnaty®,

Pfizer-BioNTech), contain mRNA encoding the Spike (S) protein of

SARS-CoV-2 and in clinical trials provided around 95% protection

against COVID-19 when two doses were administered (2, 3). They

induce a humoral response with high levels of anti-S antibodies that

decline after 3 or 6 months (4–6). Besides, the so-called cellular

immunity mediated by T cells seems to play a relevant role in disease

and vaccine-induced protection, what might be relevant in patients

who do not have an adequate humoral response (7–10). Indeed,

COVID-19 patients with poor antibody response like those receiving

anti-CD20 therapy or cancer patients still induce strong CD4+ and

CD8+ T cell responses (8, 9). CD4+T cells display several functions,

including regulating the activity of B cells. They also play a role in

activating CD8+ cytotoxic T cells, which are responsible for clearing

intracellular viral infection.

Despite the effective immune response to BNT162b2

vaccination (11, 12), variability in antibody titers following

vaccination has been observed by our group and other

laboratories (13–17). Furthermore, some individuals do not

develop a humoral response to natural SARS-CoV-2 infection

(18, 19), which not necessarily imply a lack of immunity, as T-

cells response could provide protection even in the absence of

antibodies. Likewise, BNT162b2 vaccination induces a robust

response of CD8+ and CD4+T cells that can vary among

individuals (10). However, little is known about the immune

mediators that are associated with a poorer response to the vaccine.

Understanding the factors that influence vaccine immune

response may have important implications for enhancing the

immunogenicity of SARS-CoV-2 vaccines. To achieve this goal, we

analyzed the effect of BNT16b2 vaccination and sociodemographic
02
and clinical variables on the levels of 92 inflammatory biomarkers in

healthcare workers and the association of these biomarkers with anti-

S antibodies.
2 Materials and methods

2.1 Study design and participants

An ambispective internal comparison cohort study was carried out.

The study was conducted at Hospital Universitario Clıńico San Cecilio

(HUCSC), in the city of Granada (southern Spain) with a workforce of

over 3000 employees. This research is part of a larger project whose

main objective was to analyse the neutralizing capacity of antibodies

after vaccination with different variants (13). The reference population

consisted of healthcare and social-healthcare staff aged less than 65

years vaccinated with BNT162b2 (Cominarty®), as this was the only

vaccine dispensed at the hospital for the first dose. After receiving the

approval from the Ethic Committee in January 2021, participants were

recruited in order of arrival to the vaccination event with no selection

criteria restriction, and followed up for a year. A total of 147

participants were finally enrolled and all of them signed the

informed consent to participate in the study. In a second part of this

project and coinciding with the third vaccine dose administration in

December 2021, participants were invited to continue the follow-up for

an additional year. Besides, a questionnaire was administered at this

timepoint, and permission was requested to analyse biomarkers in the

blood samples previously donated. A total of 108 individuals provided

their consent to participate in this second part.
2.2 Study samples and data collection

Serum samples were collected at the following times: just before/

after the administration of the first dose of the vaccine (t0) and the

second dose (t1). The time interval for sample collection was between

few minutes before vaccination until a few hours later, being logistics

the only reason for not being able to sample before. No record was

taken on which participants sampled before or after the vaccination.

Samples were also obtained 5 weeks after vaccination (t2), 3 months
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(t3), 8-9 months (t4) and 11 months (t5) after the first dose

administration, the latter coinciding approximately with the

administration of the third dose of the vaccine.

Sociodemographic (age, sex, educational level), lifestyle (smoking

habit, alcohol consumption, Mediterranean diet adherence), and

clinical information (chronic diseases) concerning the time of first

vaccine dose administration was collected retrospectively using a self-

administered questionnaire at t5 (Supplementary Data Sheet).

Anthropometric data (body mass index and waist-hip ratio) was

determined at the same visit by a dietician-nutritionist, and

participants were asked whether they had changed weight since the

first dose.
2.3 Determination of antibodies

Serum IgG antibodies were analyzed in the samples taken at the

time points t0, t1, t2, t3, t4 and t5 using COVID-19 VIRCLIA IgG

MONOTEST (VIRCELL, S.L., Spain) following manufacturer’s

instructions. The assay is a qualitative indirect chemiluminescent

immunoassay (CLIA) to test IgG antibodies in SARS-CoV-2 spike

(S) and nucleocapsid (N), with a manufacturer declared 98%

sensitivity and 99% specificity.
2.4 Determination of biomarkers

The analysis of 92 inflammatory biomarkers was performed on

samples taken at the time points t0, t1 and t2. The list with full names

and abbreviations of these markers is detailed in Supplementary

Table 1. The Proximity Extension Assay technology, manufactured

by Olink (Stockholm, Sweden) and performed at Cobiomic

Bioscience, (Córdoba, Spain), was used. Briefly, this multiplex

technique allows protein assays to be performed in a minimal

clinical sample volume, using two matching antibodies labelled

with unique DNA barcodes, for each target antigen. The protein in

the solution that binds to both antibodies with sufficient stability is

subsequently quantified by real-time PCR, providing higher

sensitivity than classical immunoassays. The results obtained

represent a relative value of protein expression compared to the

buffer used for the PCR reaction. For the biomarkers IL-1a, IL-2, IL-
4, IL-5, IL-13, IL-24, IL-33, IL-22RA1, beta-NGF and TSLP more

than 75% of the samples had a value below the limit of detection and

therefore were excluded from further analyses.
2.5 Statistical analysis

The Skewness-Kurtosis test was used to determinate the normal

distribution of biomarker levels. Since most of the biomarkers did

not exhibit parametric behaviour, the Friedman test was used to

compare the levels of the biomarkers among the three timepoints

after vaccination (t0, t1 and t2). Considering the large number of

biomarkers analysed, a p-value correction for multiple comparisons

was performed by means of the Benjamini-Hochberg method and

q-values were estimated. As this correction may increase the
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probability of false type II errors, we also explored the borderline

non-significant (q<0.1) results. In addition, a comparison between

pairs of groups, namely t1 versus t0, and t2 versus t0, was performed

using the Wilcoxon test. Then generalized estimating equations

(GEE) were performed to test the association between baseline

socio-demographic, lifestyle, anthropometric, and clinical variables

(independent variables), and the change of inflammatory biomarker

levels over time after vaccination (dependent variable). Of note, for

age, BMI and hip-waist ratio, the change in cytokine expression

refers to 1-unit increase.

To study the association between baseline biomarkers and

antibody levels, the dimensionality of the biomarkers was reduced

using a principal component analysis (PCA). It was not possible to

perform a single PCA due to the small sample size and a large

number of biomarkers. Therefore, it was decided to subdivide the

biomarkers into groups according to their biological function (https://

insight.olink.com/pathway-browser). The 4 biological pathways

mostly covered by the biomarkers in the study were: 1) immune

system (51 biomarkers); 2) signal transduction (42 biomarkers); 3)

disease (14 biomarkers); and 4) protein metabolism and expression

(12 biomarkers) (Supplementary Table 2). In addition, a fifth group

was created under the name “Others’’ which included the 9

biomarkers not present in any of the above pathways. Biomarker

repetition was allowed in the first 4 clusters. A PCA with no matrix

rotation was performed for each of these 5 groups and the Kaiser–

Meyer–Olkin (KMO) test, aimed to determine how suited the data

are for PCA, was performed. Then, GEE were performed using the

two principal components (PC1 and PC2) that contributed the

most in the 5 PCAs done as the independent variables, and

the repeated measures (t1, t2, t3, t4 and t5) of antibodies, as the

dependent variable. For t0, t1 and t2, the samples were collected at

practically the same time for all individuals, but for the rest of the

timepoints there was variability, and the group mean was assigned

to each participant (Supplementary Table 3). The analysis was

adjusted for sex and age, as these two variables are well known to

modify the immune system (20–22). In addition, the 5 individual

biomarkers that contributed most to the PCs with a significant

association with antibody levels were selected to evaluate their

individual association with antibodies by means of GEEs.

Furthermore, to evaluate the association of baseline socio-

demographic, lifestyle, anthropometric, and clinical variables

(independent variables), and selected baseline inflammatory

biomarker levels (dependent variable), linear regression models

were estimated.

Statistical significance was stated as p-value or q-value<0.05.

Statistical analyses were performed using SPSS (version 28.0.1) and

Stata SE 17.0 (Stata Corp, College Station, Texas) statistical

softwares and graphs were constructed using GraphPad Prism 9.
3 Results

3.1 Description of the study cohort

The sample consisted of a total of 99 healthcare workers from

the HUCSC with available data of both anti-S antibodies and
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inflammatory biomarkers. The characteristics of this cohort are

provided in Table 1. Most part of the participants were female

(78.8%) and the mean age was 47.1 years (standard deviation, SD:

11.9). 22.2% of the cohort had some chronic diseases. With regard

to lifestyle, the majority were non-smoker (62.1%), and 49,4% did

not drink alcohol. The adherence to the Mediterranean diet was

high (mean=8.9, SD:1,7). Only 5 participants with available anti-S

IgG data reported a SARS-CoV-2 positive diagnostic test between 3

and 10 months previous to vaccination. Antibody titers were similar

to those with no previous infection (data not shown).
3.2 Effect of vaccination on
biomarker levels

Of the 82 biomarkers finally included in the analysis, the

expression of 41 was modified after the vaccination process showing

a p-value<0.05 (Figure 1; Supplementary Table 4). However, after

adjustment for multiple comparisons, only 11 biomarkers retained the

statistical significance: CD8a, UPA, IL-17C, IL-18R1, CD5, CXCL10,
EN-RAGE, CASP-8, CCL25, ADA and TNFb. In addition, the

biomarker MCP-2 had a q-value very close to 0.05 and was also

considered for further analyses (Figure 1; Supplementary Table 4).

The distribution of values for these 12 markers in each

timepoint sample as well as the differences between groups are

shown in Figure 2. A statistically significant increase was observed 3

weeks after the administration of the first dose of the vaccine (t1,

coinciding with the administration of the second dose) in the

biomarkers ADA, CCL25, CD8a and IL-17C. This significant
Frontiers in Immunology 04
increase was maintained 5 weeks later (t2) for CCL25, while a

decrease was observed for ADA. On the other hand, a statistically

significant decrease was observed 3 weeks after the administration

of the first dose in the biomarkers MCP-2, CASP-8, TNFb, uPA, IL-
18R1, EN-RAGE, CD5 and CXCL10. This significant decrease was

maintained over the following 5 weeks for MCP-2, CASP-8 and

EN-RAGE.
3.3 Effect of socio-demographic and
clinical variables on biomarkers affected by
the vaccination

Next, we assessed which baseline socio-demographic and

clinical variables may be associated with the mean levels over

time of the 12 biomarkers modified after the vaccination process.

Older age was significantly associated with a higher mean

concentration of CCL25. On the other hand, smoking habit,

consumption of high level of alcohol and the presence of any

illness were related to a lower mean concentration of CCL25,

CD8a and IL-17c, respectively (Table 2).

With regards to the biomarkers with decreased changes over

time after 3 weeks of vaccination, age was related with increased

mean of MCP-2 and CXCL10, and with a decreased mean of IL-

18Rl. Higher BMI and waist-hip ratio were associated with IL-18Rl

and CD5, respectively. High alcohol consumption was related with

a mean increase in MCP-2. Besides, CASP-8 and EN-RANGE had a

positive association with the smoking habit and the level of

education (Table 3).
3.4 Association of baseline biomarker
levels with post-vaccination
antibody levels

A PCA was performed for all 5 functional biomarker groups

and KMO values above 0.6 were obtained in all cases

(Supplementary Tables 5–9). An association of mean antibody

levels over follow-up was observed with PC2-Others and PC1-

Signal Transduction (Table 4).

The biomarkers that contributed most to these PCs (Figure 3;

Supplementary Tables 5, 6) were: CD5, CD6, SIRT2, MCP-2 and

FGF-21 (PC2 Others); HGF, CXCL1, CXCL11, MCP-1 and MCP-4

(PC1 Signal Transduction). In the analysis of their individual

associations with antibody levels, 2 of the biomarkers (CD6 and

HGF) showed a significant negative association, and the

biomarker MCP-2 obtained a positive association very close to

significance (Table 5).

In order to interpret the results more easily, we created a graph

for each of these 3 biomarkers categorized by tertiles (Figure 4).

The highest antibody levels were similar for all individuals (at

t2), regardless of their HGF, CD6 or MCP-2 levels. But the drop in

antibodies at t4 was more pronounced for those individuals with

higher levels (3rd tertile) of CD6 and HGF, and those individuals

with lower levels (1st tertile) of MCP-2. This drop continued for

CD6 at t5.
TABLE 1 Study population characteristics.

Sex (% female) 78.8

Age (years) mean (SD) 47.1 (11.9)

Body mass index (kg/m2) mean (SD) 25.3 (4.3)

Waist-hip ratio (cm) mean (SD) 0.8 (0.1)

Chronic disease (% yes) 22.2

Education level (%)

Primary studies 20.7

Secondary studies 57.5

Higher 21.8

Smoking habit (%)

Non-smoker 62.1

Former smoker 26.4

Smoker 11.5

Alcohol consumption (%)

Nothing 49.4

Little 43.7

Much 6.9

MedD adherence score mean (SD) 8.9 (1.7)
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FIGURE 1

Changes in biomarker levels 5 weeks after vaccine administration. Volcano plots showing changes in biomarker levels comparing baseline versus 5
weeks after vaccination. Each circle represents one biomarker. The difference in expression is represented on the x-axis. The y-axis shows the log10
of the p value of the Friedman test, comparing baseline, 2-week and 5-week timepoints. A p value<0.05 is indicated by a red dot.
FIGURE 2

Comparison of selected biomarker levels at different timepoints after vaccination. The box shows the median, and 25th and 75th percentiles. Outliers
have not been plotted in the graph. *p<0.05, **p<0.01, ***p<0.001 for Wilcoxon test, with reference t0. NPX, Normalized Protein eXpression.
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3.5 Effect of socio-demographic and
clinical variables on baseline biomarkers
related to the antibody responses
after vaccination

Next, we assessed which socio-demographic and clinical

variables may be associated with the levels of those biomarkers

related to the antibody response, i.e. CD6, HGF and MCP-2. BMI

was positively associated with HGF (b=0.03, 95% CI 0.00, 0.06,

p=0.039) and age with MCP-2 (b=0.02, 95% CI 0.00, 0.04,

p=0.036, respectively).
4 Discussion

The results show that our study cohort, which was followed up

for approximately 1 year, presented changes in 12 inflammatory

biomarkers measured after the BNT162b2 vaccination process; 4 of

them showed increased expression (ADA, CD8a, IL-17C and

CCL25), and 8 others (uPA, IL-18R1, EN-RAGE, CASP-8, MCP-

2, TNFb, CD5 and CXCL10) decreased.

All biomarkers whose expression increased after vaccination are

related to T-lymphocyte function. Thus, ADA (adenosine
Frontiers in Immunology 06
deaminase) is essential for lymphocyte production and its

deficiency is a cause of severe combined immunodeficiency (23).

Consistent with our findings, upregulation of ADA has been

detected after BNT16b2 vaccination (24, 25), as well as after

SARS-CoV-2 infection (24). CD8 is a cell surface receptor on

cytotoxic T cells, necessary for the recognition of other cells, and

CD8+ T cells induced by vaccination may contribute to humoral

and long-term immunity (26–29). IL-17C is a member of the IL-17

family that is selectively induced in the epithelium and stimulates

Th17 lymphocyte activity (30). Finally, CCL25 is specifically

expressed in the thymus and intestinal epithelium, and is

involved in T-lymphocyte development (31, 32). Considering its

localization in the mucosa, CCL25 may play an important role in

attracting T cell and IgA antibody secreting cells to the mucosa (33,

34), and it has been proposed as a viable candidate for mucosal

adjuvant in vaccines to boost systemic and mucosal immunity (35).

Altogether, these observations highlight the relevance of the T-

lymphocyte-mediated cellular response in BNT162b2 vaccine-

induced immunity. Of note, unhealthy lifestyles and the presence

of a prevalent disease were negatively associated with the expression

of some of these biomarkers, suggesting that these conditions may

also have a negative impact in the cellular immune response

induced by the vaccination.
TABLE 2 Association of socio-demographic and clinical variables with biomarkers with increased levels after 3 weeks of vaccination.

Variables ADA
Mean difference
(95%CI)

CCL25
Mean difference
(95%CI)

CD8a
Mean difference
(95%CI)

IL-17c
Mean difference
(95%CI)

Age (years) 0.00 (-0.01, 0.01)
p=0.968

0.02 (0.01, 0.04)
p=0.002

-0.01 (-0.02, 0.00)
p=0.106

0.00 (-0.01, 0.02)
p=0.702

Sex 0.05 (-0.21, 0.30)
p=0.726

0.14 (-0.27, 0.55)
p=0.505

0.24 (-0.20, 0.69)
p=0.285

-0.18 (-0.66, 0.31)
p=0.473

BMI (kg/m2) 0.00 (-0.03, 0.03)
p=0.953

-0.00 (-0.04, 0.03)
p=0.790

-0.01 (-0.05, 0.03)
p=0.707

0.01 (-0.03, 0.05)
p=0.572

Waist-hip ratio (cm) 0.64 (-1.09, 2.37)
p=0.469

-0.61 (-2.88, 1.67)
p=0.601

-0.02 (-2.98, 2.94)
p=0.989

1.33 (-1.25, 3.91)
p=0.311

Adherence to MD 0.00 (-0.05, 0.06) p=0.816 0.05 (-0.01, 0.11)
p=0.135

-0.05 (-0.11, 0.02)
p=0.196

-0.00 (-0.06, 0.05)
p=0.875

Presence of illness 0.07 (-0.13, 0.27)
p=0.518

-0.08 (-0.42, 0.26)
p=0.642

-0.12 (-0.51, 0.27)
p=0.550

-0.41 (-0.72, -0.10)
p=0.009

Alcohol consumption1

Low

High

0.04 (-0.15, 0.22)
p=0.676
0.25 (-0.02, 0.52)
p=0.070

-0.04 (-0.33, 0.24)
p=0.773
-0.34 (-0.89, 0.21)
p=0.231

-0.13 (-0.42, 0.15)
p=0.356
-0.66 (-1.34, 0.02)
p=0.056

0.01 (-0.26, 0.27)
p=0.959
-0.25 (-0.74, 0.24)
p=0.310

Smoking status1

Former smoker

Smoker

-0.00 (-0.23, 0.22)
p=0.979
-0.11 (0.36, 0.14)
p=0.374

0.01 (-0.31, 0.33)
p=0.963
-0.50 (-0.82, -0.18)
p=0.002

-0.01 (-0.38, 0.37)
p=0.972
-0.14 (-0.52, 0.25)
p=0.484

0.02 (-0.31, 0.36)
p=0.892
-0.12 (-0.47, 0.24)
p=0.522

Level education2

Secondary

Higher

-0.05 (-0.26, 0.16)
p=0.649
-0.14 (-0.40, 0.11)
p=0.271

-0.01 (-0.59, 0.25)
p=0.966
-0.17 (-0.59, 0.25)
p=0.434

-0.24 (-0.61, 0.14)
p=0.214
-0.01 (-0.45, 0.43)
p=0.968

0.17 (-0.14, 0.48)
p=0.292
0.29 (-0.13, 0.71)
p=0.177
Cells provide the mean difference over time (plus de 95%CI -confidence interval) in cytokine levels per unit-increase (continue variables) or per category change (categoric variables). p-value
correspond to the generalized estimating equation models. BMI, body mass index; MD, mediterranean diet; 1Never as reference category; 2None or primary as reference category.
Statistically significant (<0.05) p-values are marked in bold.
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TABLE 3 Association of socio-demographic and clinical variables with decreased biomarkers levels after vaccination.

IL18R1
Mean difference

(95%CI)

EN-RANGE
Mean difference

(95%CI)

CD5
Mean difference

(95%CI)

CXCL10
b (95%CI)

-0.00 (-0.02, -0.00)
p=0.047

-0.00 (-0.02, 0.02)
p=0.951

-0.00 (-0.01, 0.00)
p=0.653

0.01 (0.00, 0.02)
p=0.023

-0.15 (-0.40, 0.09)
p=0.219

-0.02 (-0.58, 0.55)
p=0.957

-0.14 (-0.35, 0.06)
p=0.163

0.11 (-0.36, 0.58)
p=0.649

0.03 (0.01, 0.06)
p=0.010

0.0 (-0.05, 0.05)
p=0.915

-0.01 (-0.02, 0.01)
p=0.489

0.02 (-0.01, 0.06)
p=0.127

1.42 (-0.14, 2.97)
p=0.074

-0.18 (-3.51, 3.15)
p=0.914

1.10 (0.04, 2.15)
p=0.042

1.07 (-0.94, 3.07)
p=0.299

0.01 (-0.03, 0.05)
p=0.799

0.04 (-0.05, 0.13)
p=0.345

-0.01 (-0.04, 0.02)
p=0.416

0.01 (-0.05, 0.08)
p=0.702

-0.10 (0.32, 0.11)
p=0.356

0.18 (-0.31, 0.67)
p=0.471

-0.06 (-0.24, 0.11)
p=0.479

-0.01 (-0.28, 0.26)
p=0.940

0.04 (-0.14, 0.22)
p=0.668

0.17 (-0.11, 0.45)
p=0.236

-0.28 (-0.69, 0.13)
p=0.178

0.09 (-0.44, 0.63)
p=0.736

0.02 (-0.10, 0.16)
p=0.622

-0.05 (0.30, 0.20)
p=0.706

0.27 (-0.01, 0.57)
p=0.066

0.05 (-0.30, 0.40)
p=0.789

0.10 (-0.09, 0.29)
p=0.315

-0.11 (-0.36, 0.13)
p=0.353

-0.121 (-0.68, 0.44)
p=0.673

0.53 (0.04, 1.02)
p=0.036

0.01 (-0.13, 0.15)
p=0.882

0.11 (-0.18, 0.39)
p=0.466

0.11 (-0.20, 0.41)
p=0.491

-0.18 (-0.55, 0.18)
p=0.322

-0.02 (-0.24, 0.20)
p=0.840

-0.08 (-0.34, 0.19)
p=0.571

0.70 (0.22, 1.17)
p=0.004

0.53 (-0.04, 1.10)
p=0.070

-0.08 (-0.24, 0.07)
p=0.290

-0.14 (-0.33, 0.06)
p=0.166

-0.04 (-0.45, 0.36)
p=0.819

-0.03 (-0.51, 0.45)
p=0.899

ry change (categoric variables). p-value correspond to the generalized estimating equation models. BMI, body mass index;
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Variables MCP-2
Mean difference

(95%CI)

TNFb
Mean difference

(95%CI)

CASP-8
Mean difference

(95%CI)

UpA
Mean difference

(95%CI)

Age 0.02 (0.00, 0.03)
p=0.019

-0.00 (-0.01, 0.01)
p=0.497

0.00 (-0.01, 0.02)
p=0.495

0.00 (-0.00, 0.01)
p=0.174

Sex 0.15 (-0.37, 0.68)
p=0.566

-0.20 (-0.49, 0.09)
p=0.174

-0.04 (-0.42, 0.32)
p=0.810

-0.05 (-0.22, 0.13)
p=0.615

BMI 0.02 (-0.02, 0.05)
p=0.287

0.01 (-0.01, 0.03)
p=0.367

0.01 (-0.02, 0.05)
p=0.484

0.00 (-0.01, 0.02)
p=0.767

Waist-hip ratio 1.05 (-2.35, 4.46)
p=0.543

0.99 (-0.76, 2.75)
p=0.269

1.01 (-1.14, 3.18)
p=0.356

0.09 (-0.78, 0.96)
p=0.836

Adherence to MD -0.03 (-0.13, 0.07)
p=0.561

-0.03 (-0.08, 0.01)
p=0.185

-0.01 (-0.08, 0.06)
p=0.818

0.01 (-0.01, 0.04)
p=0.272

Illness -0.20 (-0.69, 0.28)
p=0.413

-0.14 (-0.35, 0.08)
p=0.216

-0.01 (-0.30, 0.28)
p=0.943

-0.02 (-0.16, 0.11)
p=0.694

Alcohol1

Low

High

-0.02 (-0.32, 0.27)
p=0.871

0.57 (0.22, 0.93)
p=0.002

0.11 (-0.10, 0.31)
p=0.305

-0.14 (-0.42, 0.14)
p=0.319

-0.15 (-0.42, 0.11)
p=0.253

-0.04 (-0.45, 0.37)
p=0.843

0.03 (-0.08, 0.14)
p=0.599

-0.09 (-0.27, 0.09)
p=0.310

Smoking status1

Former smoker

Smoker

-0.09 (-0.47, 0.29)
p=0.652

0.10 (-0.26, 0.45)
p=0.592

-0.17 (-0.40, 0.07)
p=0.161

0.21 (-0.02, 0.43)
p=0.074

-0.23 (-0.59, 0.12)
p=0.193

0.54 (0.11, 0.97)
p=0.014

0.02 (-0.12, 0.17)
p=0.761

0.13 (-0.01, 0.26)
p=0.075

Level education2

Secondary

Higher

-0.08 (-0.41, 0.25)
p=0.631

0.31 (-0.12, 0.73)
p=0.159

0.16 (-0.10, 0.42)
p=0.234

0.24 (-0.01, 0.49)
p=0.061

0.53 (0.19, 0.88)
p=0.003

0.36 (-0.03, 0.74)
p=0.067

0.04 (-0.11, 0.18)
p=0.623

-0.03 (-0.21, 0.15)
p=0.728

Cells provide the mean difference over time (plus de 95%CI -confidence interval) in cytokine levels per unit-increase (continue variables) or per categ
MD, mediterranean diet; 1Never as reference category; 2None or primary as reference category.
Statistically significant (<0.05) p-values are marked in bold.
o

https://doi.org/10.3389/fimmu.2024.1447317
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Leno-Duran et al. 10.3389/fimmu.2024.1447317
Some biomarkers whose expression was inhibited after

vaccination are related to cancer. Thus, uPA is an urokinase

involved in the processes of cancer invasion and metastasis that

participates in the degradation of the extracellular matrix and

maintains the cohesion of normal cells in tissues (36). Moreover,

it modulates inflammation through release pro-inflammatory

cytokines. The levels of uPA and its receptor uPAR in the lung

have been related to severe outcomes of COVID-19 like the acute

respiratory distress syndrome (37–39), lung injury and risk of

mortality (40, 41). In addition, CASP-8 plays a key role in

regulating cell apoptosis. In consonance with our results showing

decreased expression of these biomarkers after vaccination, it has

been proposed that one of the mechanisms by which the COVID-19

mRNA vaccine induces lung protection is through the inhibition of

apoptosis of epithelial and endothelial cells (42). Another anti-

apoptotic effect suggested is mediated PPAR agonists and the

upregulation of anti-apoptotic factors such as MCL-1 (43). Other
Frontiers in Immunology 08
biomarkers inhibited in the weeks following administration of

BNT162b2 are related to inflammatory processes, e.g. EN-RAGE,

IL-18R1 and CXCL10 (44, 45). Of note, high levels of these

biomarkers have been associated with risk of SARS-CoV-2

infection or COVID-19 severity (24, 39, 46–54), what suggests, in

line with our results, that these biomarkers hamper the

development of either natural or artificial immunity against

COVID-19. And in agreement with our results, some studies have

shown that CXCL10 levels decrease after COVID-19 vaccination

(24, 51, 53, 54). As expected, the expression of some of these pro-

inflammatory and pro-cancer markers were positively associated

with unhealthy lifestyles or conditions (smoking habit, alcohol

consumption or higher BMI).

With respect to biomarkers and their association with the post-

vaccination humoral response, higher baseline levels of MCP-2,

and, HGF and CD6 were associated with higher and lower mean

antibody titers respectively at follow-up. MCP-2, also known as

CCL8, is a chemokine produced by a wide variety of cells in

response to other cytokines such as IL-1, IFN-gamma, etc. This

chemokine, at high concentrations, behaves as a potent activator of

eosinophils and basophils (55) and its main function is to attract

monocytes, lymphocytes, and other types of inflammatory cells to

the site of inflammation or injury. Other functions include cell

proliferation and angiogenesis, as well as modulation of the

inflammatory response by interacting with macrophages and

dendritic cells. Thus, individuals with higher levels of MCP-2

may induce a greater influx of monocytes and lymphocytes to the

site of vaccination, ultimately inducing a more durable antibody

response. Indeed, a chemokine signature including higher plasma

level of MCP-2 has previously been shown in COVID-19 patients

compared to healthy controls (52, 56–58). In addition, our analysis

showed that MCP-2 was positively associated with age. This would

suggest that age may be associated with a stronger antibody

response mediated by MCP-2. However, some of our unpublished

data and others have shown precisely the opposite, that age is

inversely associated with the antibody response after vaccination

(59, 60). This controversy may be explained by other factors related
FIGURE 3

Loading plot of the principal component analysis of selected biomarker groups. Eigen vector values for the principal component (PC) 1 and PC2 are
shown in the graph.
TABLE 4 Association of PC1 and PC2 of different functional biomarker
groups with the mean antibody levels at follow-up.

Beta 95% CI p-value

PC1 Disease -87.4 -263.6; 88.6 0.330

PC2 Disease -57.1 -282.6; 168.4 0.620

PC1Protein Metabolism -108.6 -286.0; 68.9 0.230

PC2 Protein Metabolism 50.3 -191.3; 91.9 0.683

PC1 Others -150.3 -314.7;14.0 0.073

PC2 Others 297.7 30.2; 565.3 0.029

PC1 Immune system -84.2 -182.3; 13.9 0.092

PC2 Immune system 24.4 -130.7; 179.4 0.758

PC1
Signal Transduction

-95.7 -184.8; -6.5 0.035

PC2 Signal Transduction 27.9 -146.7; 202.4 0.754
CI, confidence interval. Statistically significant (<0.05) p-values are marked in bold.
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to age, like thymic involution or comorbidities that may contribute

more strongly to a poor antibody response than MCP-2 production.

HGF, also known as hepatocyte growth factor, is a signaling

protein that plays an important role in tissue development

regeneration and immune response. In addition, HGF has been

found to promote cell survival, tissue protection and regeneration,

but restricts fibrosis and inflammation (61). By inhibiting

inflammation, HGF may have the opposite effect to MCP-2, not

allowing the correct arrival of leukocytes at the site of vaccine

administration, which would explain why individuals with higher

levels of HGF would eventually experience a drop in antibody levels.

Finally, CD6 is a type I transmembrane glycoprotein, expressed

almost entirely by lymphocytes. Its functions are still a matter of

study, but some of them include co-stimulation of T cells, thereby

enhancing a more effective immune response, or cell adhesion,

facilitating interaction between immune cells (62). Given this

biological function, it does not seem logical that individuals with

the highest CD6 levels would have a worse antibody response at

follow-up. However, it should be noted that the physiological effect

described above occurs with the membrane marker but in our study,

we measured the soluble (serum) biomarker. Further studies are
Frontiers in Immunology 09
needed to confirm the role of CD6 in the antibody response

after vaccination.

This study investigated a large number of biological biomarkers

in BNT162b2-vaccinated healthcare workers. The immune

response induced by mRNA vaccination has been studied by

several researchers (4, 63–65). Cellular and humoral immune

memory responses, including T cell activity, have been detected

in vaccinated individual (4). Kramer et al., identified a specific

population of CD4+ CD8+ ICOS+ CD38+ CXCR5- in response to

BNT162b2 vaccine (63). Arunachalam et al., showed a signature of

innate antiviral immunity with a higher level of plasma INFg and
CD14+CD16+ inflammatory monocytes (65). Moreover, another

study have identified a platelet humoral response with change in

proinflammatory cytokines (IL-1b, IFNg, TNF-a between others)

and anti-inflammatory cytokines (IL-10) (64).

Our study has some limitations. Firstly, the study sample is

relatively small. In addition, this study was conducted in a single

health center and all participants were health professionals, which

may limit the representativeness of the population. Finally, there

was some variability in the sample timing collection. For t0 and t1,

samples were collected the same day but before or after the

vaccination, while samples corresponding to t4 and t5 samples

were obtained at different days after vaccination. This could

potentially lead to a bias towards the null in the analysis. Yet, we

did observe some interesting significant results which make our

study relevant despite this limitation.

Among the strengths of our study, it is found the follow-up of

participants, with six antibody measurements over a one-year

period, which allowed us to characterize the post-vaccination

immune response properly. Moreover, the large number of

biomarkers studied allowed us to examine the expression of

molecules that are not usually included in this type of study, and

which provide very novel information.

5 Conclusions

In summary, the present study revealed that after primary

BNT162b2 vaccination the biomarkers ADA, IL-17C, CCL25 and

CD8a, which are related to T-cell function, were found to have

increased expression. In contrast, the biomarkers uPA, IL-18R1,
FIGURE 4

Changes in antibody levels after vaccine administration, stratifying individuals according to their levels of certain biomarkers. Values represent mean
and standard deviation. On the x-axis represents the days after vaccination and on the y-axis the mean antibody concentration on a logarithmic
scale in base 10.
TABLE 5 Association between baseline individual biomarkers and post-
vaccination antibody levels at follow up.

Beta 95% CI p-value

CD5 -496 -1202.0; 210.0 0.169

CD6 -603.2 -1045.6; -160.8 0.008

CXCL1 -199.1 -740.2; 341.9 0.471

CXCL11 -52.9 -462.9; 357.0 0.800

FGF-21 6.6 -244.9; 258.1 0.959

HGF -745.8 -1508.4; 16.8 0.055

MCP-1 -139.6 -680.3; 401.1 0.613

MCP-2 382.7 -39.9; 805.3 0.076

MCP-4 -313.9 -789.1; 161.4 0.196

SIRT2 -284.9 -685.6; 115.8 0.163
CI, confidence interval. Statistically significant (<0.05) or borderline (<0.1) p-values are
marked in bold.
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EN-RAGE, CASP-8, MCP-2, TNFb, CD5 and CXCL10, whose

functions are related to cancer or inflammatory processes, had

their expression inhibited. In addition, higher levels of MCP-2 were

associated with higher mean anti-S antibody titers after vaccination,

whereas HGF and CD6 levels showed a negative association with

mean antibody titers.
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