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Immune checkpoint inhibitors (ICIs) reinvigorate anti-tumor immune responses by

disrupting co-inhibitory immune checkpoint molecules such as programmed cell

death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4). Although ICIs have

had unprecedented success and have become the standard of care for many

cancers, they are often accompanied by off-target inflammation that can occur in

any organ system. These immune related adverse events (irAEs) often require

steroid use and/or cessation of ICI therapy, which can both lead to cancer

progression. Although irAEs are common, the detailed molecular and immune

mechanisms underlying their development are still elusive. To further our

understanding of irAEs and develop effective treatment options, there is pressing

need for preclinical models recapitulating the clinical settings. In this review, we

describe current preclinical models and immune implications of ICI-induced skin

toxicities, colitis, neurological and endocrine toxicities, pneumonitis, arthritis, and

myocarditis along with their management.
KEYWORDS

immune related adverse events, immune checkpoint, preclinical model,
immunotherapy, treatment
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Introduction

Cancer patients are conventionally treated with chemotherapy,

radiotherapy, and surgery. These conventional treatment modalities

are often combined in order to achieve optimal therapeutic outcomes;

however, they are ineffective in some aggressive and metastatic

settings. Recently, immunotherapy has revolutionized the field of

medical oncology, which has led to significantly improved patient

survival compared to conventional cancer therapies. Among several

types of immunotherapies available (e.g., chimeric antigen receptor

(CAR) T cells, adoptive cell transfer, neoantigen vaccine, cytokine

therapy), immune checkpoint inhibitors (ICIs) have yielded

unprecedented success in multiple cancer types by reinvigorating

the immune system. Durable and complete responses can be

observed in patients with advanced malignancies, including non-

small cell lung cancer (NSCLC) (1), melanoma (2), colorectal cancer

(3), and esophageal squamous cell carcinoma (4). With these marked

clinical responses, ICI therapy has become the standard of care for

various cancers and is either administered as monotherapy or in

combination with other ICIs, chemotherapy, and/or molecularly

targeted agents (5–7). Unfortunately, only 20-40% of patients

benefit from ICI therapy and approximately 40% of patients

develop a myriad of ICI-related immune-related adverse events

(irAEs), most frequently involving the skin (8), gastrointestinal

tract (9), lung (10) and endocrine glands (11) but also potentially

manifest as neurologic (12), hepatic (13), rheumatological (14), renal

(15) and cardiac toxicities (16). Patients’ age, gender, genetic profile,

existing medical conditions (e.g. autoimmune diseases), and the agent

of immunotherapy [e.g. anti-programmed death receptor 1 (anti-PD-

1) and/or anti-cytotoxic T lymphocyte associated antigen 4 (anti-

CTLA-4)] are risk factors considered in the development of irAEs

(17, 18). These side effects frequently result in interruptions of

immunotherapy treatment and require immunosuppressants such

as corticosteroids, which interfere with anti-tumor responses. While

most symptomatic irAE patients are managed with glucocorticoids

for several weeks, some irAE patients are unresponsive to steroid

treatments and may progress to chronic disease, requiring life-long

immunosuppression and hormonal therapy (19). Here, we describe

the preclinical and clinical studies delineating mechanistic insights of

irAEs as well as the standard of care for their management.

Immune checkpoints in
regulating immunity

Immune tolerance is crucial for the maintenance of homeostasis

and health. This regulation is achieved through both central and

peripheral immune mechanisms. Central tolerance is a process in

which self-reactive T cells in the thymus are programmed to undergo

apoptosis through negative selection. Additionally, thymic T cells

with high binding affinity to peptide-bound major histocompatibility

complex (MHC) are redirected to become regulatory T cells (Tregs)

(20–23). Although these tolerance mechanisms effectively eliminate

most self-reactive T cells, some escape selection and are found in the
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peripheral tissues of healthy individuals. From an evolutionary stand

point, the imperfections of thymic selection can function to expand

the immune repertoire against novel pathogens and the mutated host

antigens (24). However, self-reactive T cells that evade central

tolerance in the thymus can pose significant risks to the

host. Therefore, within the peripheral tissues, unwanted peripheral

immune activation is inhibited by peripheral tolerance mechanisms.

CD4+CD25+Foxp3+ Tregs are critical players of peripheral tolerance,

as they maintain immune homeostasis by limiting T cell responses

(25). Additionally, inhibitory receptors expressed on T cells, such as

CTLA-4 and PD-1, maintain peripheral tolerances and curb excessive

inflammatory responses, thus avoiding damage of host tissues

(Figure 1A) (26–30).

T cell activation begins when antigen-presenting cells (APCs)

present peptides through MHC and bind to the T cell receptor

alongside CD4 and CD8 co-receptors (signal 1). Full activation

requires a positive co-stimulatory signal, which is achieved by

ligating CD28 on T cells to CD80 (B7-1) and CD86 (B7-2) on

APCs (signal 2). This interaction triggers T cell proliferation,

survival and effector function (31). To maintain immune

homeostasis and limit uncontrolled T cell responses, negative

costimulation can be elicited by immune checkpoint proteins,

such as CTLA-4, PD-1, B and T lymphocyte attenuator-4 (BTLA-

4), T cell immunoglobulin and mucin domain-containing protein 3

(TIM-3), V-domain Ig suppressor of T cell activation (VISTA),

Lymphocyte-activation gene 3 (LAG3), and Glucocorticoid-

induced TNF receptor-related protein (GITR) (32–34).

CTLA-4 is a member of the immunoglobulin superfamily and

was discovered by Brunet and his team in 1987. Subsequently, the

functional role of CTLA-4 as an immune checkpoint molecule was

demonstrated by Dr. James Allison’s team (35, 36). CTLA-4 is

constitutively expressed on Tregs or induced following T cell

activation via T cell receptor (TCR) and CD28 signaling (37).

CTLA-4 possesses a higher binding affinity for CD80 and CD86

and outcompetes CD28 for costimulatory binding (38). The

interaction between CTLA-4 and CD80 imposes negative

regulation during the early phase of T cell activation, leading to

reduced IL-2 production, impaired cell cycle progression, and

disrupted TCR signaling (39–41). In addition, CTLA-4 can

dampen immune responses by sequestering the CD80/86 ligands

from opposing cells via trans-endocytosis (38). CTLA-4 has also

been implicated in suppressive Treg function (42, 43). Apart from

CTLA-4, PD-1, a member of the B7/CD28 family of costimulatory

receptors, was discovered by Dr. Tasuku Honjo and his team in the

mid-1990s. PD-1 is predominantly expressed on activated T cells

and is an important immune checkpoint receptor. PD-1 transmits

inhibitory signals into T cells after ligation to its ligands PD-L1 and

PD-L2, which are found on myeloid cells (e.g., macrophages,

dendritic cells, monocytes), non-hematopoietic cells and non-

lymphoid tissues (44–49). Signaling through PD-1 limits T-cell

proliferation and effector functions while enhancing apoptosis (26,

30). Overall, CTLA-4 and PD-1 are pivotal in maintaining

peripheral tolerance and controlling the development of

inflammation and autoimmunity (50).
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Immune checkpoint blockade
in cancer

In 1996, Allison et al. postulated that poor immunogenicity of

several tumors may be driven by the inhibition of the CD28 and

CD80 axis via CTLA-4 (36). Indeed, in vivo administration of anti-

CTLA-4 antibody suppressed tumor growth and generated

immunological memory after secondary tumor rechallenge (36).

Additionally, Honjo et al. examined the roles of the PD-1/PD-L1

pathway in tumor immunity and found that myeloma growth in

mice was significantly inhibited by anti-PD-L1 treatment or PD-1

deficiency, indicating that PD-L1 expression may allow tumors to

escape from the host immune system and that the blockade of the

PD-1 and PD-L1 axis may represent an effective strategy for cancer

treatment (51). Mechanistic insights into the role of anti-CTLA-4

and anti-PD-1-induced anti-tumor immunity have emerged.

Preclinical studies demonstrated that anti-CTLA-4 treatment was

associated with the expansion of IFNg+ICOS+CD4+ T cells in

melanoma and other solid tumors (52–54). In a study of

melanoma, anti-CTLA-4 treatment specifically enhanced

intratumoral CD8+ T cells with increased activation status (CD44,

CD69 & Tbet expression) compared to those in the draining lymph
Frontiers in Immunology 03
node. The proportion of intra-tumoral NK cells was also increased

following anti-CTLA-4 treatment, compared to sham-treated

controls (55). Furthermore, using an immunocompetent

transgenic mouse model of head and neck squamous cell

carcinoma, Yu et al. demonstrated that anti-CTLA-4 treatment

decreased myeloid derived suppressive cells, M2 macrophages and

promoted T cell activation (56). On the other hand, PD-1 blockade

has been shown to decrease the number of exhausted CD8+

cytotoxic T cells in melanoma and chronic infection (57, 58). In a

study of osteosarcoma, anti-PD-1 treatment increased overall

survival and decreased intra-tumoral Ki67+Foxp3+CD4+ Treg

cells in osteosarcoma-bearing mice, compared with sham-treated

control (59). Additionally, increased survival of mice bearing

colorectal tumors following PD-1 treatment was associated with

preferential expansion of (Tbetlow) GSW11-specific CD8+ T cells,

which exhibited increased cytotoxicity against tumors, compared

with sham-treated controls (60).

Over the past decade, the introduction of CTLA-4, PD-1, and

PD-L1 blockade in clinic represents an unprecedented

breakthrough in cancer treatment. Ipilimumab (anti-CTLA-4)

was FDA-approved in 2011 for melanoma (61), and this was

rapidly followed by the development of monoclonal antibodies
FIGURE 1

(A) Immune checkpoints in maintaining peripheral tolerance. 1). T cells (CD4 or CD8) are activated by the presentation of antigens on major
histocompatibility complex (MHC)-I and II by antigen presenting cells to T cell receptors (TCRs). To regulate T cell activation and prevent their
hyper- responsiveness, inhibitory receptors such as PD-1 and CTLA-4 interact with their respective ligands such as PDL-1 and CD80/CD86 to
impose negative regulatory signals on T cells. T regulatory cells also control T cell responses through the consumption of IL-2, which is secreted by
T cells during their activation. This process will lead to 2). moderate T cell expansion and migration to the tissues, lessening 3). inflammation in
targeted tissues. (B) Immune checkpoint blockade (ICB) may break the peripheral tolerance. 1). Blocking inhibitory receptors (PD-1 or CTLA-4) using
aPD1 and aCTLA4 antibody induce a prolonged T cell activation and may hinder regulatory T cells from controlling T cell activation and responses.
This process can lead to 2). high clonal expansion and migration of T cells to targeted tissues, resulting in 3). high grade inflammation and cause
significant tissue damage. Systemic ICB administration may also drive the expansion of tissue resident cells or non-specific immune cells residing in
dormant states in the corresponding tissues, contributing to more inflammation and tissue damage. Created with BioRender.com.
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targeting PD-1 (pembrolizumab and nivolumab) and PD-L1

(atezolizumab and durvalumab), which were approved in 2014

and 2019 respectively (61, 62). These antibodies have emerged as

the most commonly prescribed anticancer therapies, whether

administered alone or in combination (63).

Ipilimumab was the first monoclonal antibody to induce

significant tumor regression of metastatic melanoma and

demonstrated a 3-year overall survival rate of 21%, including

complete remission in some patients (64, 65). Likewise, anti-PD-1

therapies (pembrolizumab and nivolumab) have also shown anti-

tumor efficacy in advanced NSCLC, melanoma, head and neck

cancer, metastatic cervical cancer (66), and renal cell carcinoma

with reports of rapid and durable tumor regression in some cancers

(67–69). For example, in a phase III clinical trial involving advanced

melanoma patients treated with nivolumab, 31% demonstrated

objective responses. Among responders, 45% experienced swift

tumor regression within eight weeks and 71% demonstrated

sustained anticancer responses with ongoing tumor regression for

a minimum of 16 weeks even after discontinuing the drug (69, 70).

Moreover, seminal clinical studies have demonstrated the efficacy of

anti-CTLA-4 and anti-PD-1 as combination therapy to treat

advanced stage melanoma patients (2, 71, 72). Of note, at the 5

year-mark, the overall survival of melanoma patients treated with

nivolumab plus ipilimumab was 52%, as compared to 44% in

nivolumab-treated, and 26% in the ipilimumab-treated groups

(2). With the aim of further extending the survival of cancer

patients, several studies have investigated the efficacy of immune

checkpoint blockade agents in conjunction with other anti-cancer

treatments. In a phase III randomized controlled trial involving the

administration of ipilimumab either alone or in conjunction with a

glycoprotein 100 (gp100) peptide vaccine derived from melanoma,

patients who received both ipilimumab and gp100 exhibited a

median objective survival (OS) of 10.0 months, compared to 6.4

months for those solely receiving gp100. Notably, patients treated

with ipilimumab alone had a median OS of 10.1 months, indicating

that adding the vaccine did not improve ipilimumab’s effectiveness

(73). Another extensive randomized phase III trial demonstrated

that combining ipilimumab with dacarbazine, an anti-cancer

chemotherapy drug that works as an alkylating agent, improved

the overall survival of melanoma patients who had not received

prior treatment. This combination showed median overall survival

rates of 11.2 months as opposed to 9.1 months observed with

dacarbazine treatment alone (74). In a randomized phase III clinical

trial, patients with early-stage triple negative breast cancer showed

and increased pathological complete response when treated with

pembrolizumab plus neoadjuvant chemotherapy, as compared to

patients treated with placebo plus neoadjuvant chemotherapy (75).
Immune checkpoint inhibitor
mediated adverse events

Although ICI therapies have revolutionized cancer treatment,

ICIs can unleash pathogenic immune responses, which can cause

both local and systemic inflammation (Figure 1B) resulting in

various irAEs. For example, ipilimumab treatment was reported
Frontiers in Immunology 04
to cause high grade rash (20% of patients), colitis (15%) and

thyroiditis (2-5%) (73, 74). Similar to ipilimumab treatment, PD-

1 blockade therapy can also cause a variety of irAEs including

dermatitis (17%), thyroiditis (10%), hepatitis (3%), pneumonitis

(3%), and colitis (2%) (76) (Table 1). The pathology of

immunotherapy-induced toxicity observed in patients is aligned

with observations from several preclinical studies. For instance,

mice deficient in CTLA-4 (CTLA-4-/-) or treated with CTLA-4

inhibitors developed inflammatory and autoimmune diseases

characterized by substantial lymphocyte infiltration and tissue

damage including diabetes, multiple sclerosis, rheumatoid

arthritis, myasthenia gravis, pancreatitis, thyroiditis, systemic

lupus erythematosus, and colitis (81). Similar to CTLA-4

blockade, knockout or blockade of PD-1 or polymorphisms in

PD-1/PD-L1 genes in mice leads to autoimmune-like conditions

such as cardiomyopathy (82), progressive arthritis, lupus-like

glomerulonephritis (83), diabetes (46), Graves’ disease (84), and

multiple sclerosis (85). Although PD-1 and CTLA-4 blockade can

cause a wide range of irAEs, their mechanisms of action may be

different. Anti-CTLA-4 primarily acts early in the immune response

by inhibiting the CD80/CD86-CTLA-4 checkpoint axis during T

cell activation in secondary lymphoid organs, such as lymph nodes,

thereby promoting the uncontrolled activation of T cells including

the autoreactive T cells (86). In contrast, anti-PD-1 acts later in the

immune response, mainly in peripheral tissues once effector and

autoreactive T cells have already reached the specific organ systems,

by disrupting the PD-1-PD-L1 axis and prolonging effector T/auto-

reactive T cell-mediated inflammation and tissue damage (87). This

difference in timing and location of action means that CTLA-4

blockade can result in widespread activation of T cells, whereas PD-

1 blockade can lead to a more localized and tissue-specific immune-

mediated damage. Additionally, CTLA-4 treatment was reported to

trigger rapid onset of irAEs based on the observation that CTLA-4

deficient mice develop multi-organ disease and die within 3-4 weeks

(33). PD-1, however, may take several months to develop

inflammatory and autoimmune diseases (88) and the resolution

of irAEs induced by PD-1 treatment also take longer than CTLA-4

blockade (89).Thus, it is critical to further investigate the cellular/

molecular mechanisms that cause these toxicities in order to

develop safe and efficient therapeutic strategies. Next, we review

some selected irAEs commonly observed in clinics and provide

insights into the current mechanistic understanding of

their development.
ICI-dermatologic toxicity

ICI-associated dermatologic toxicity (ICI-DT) is the most

common complication observed in up to 30-50% of ICI-patients

(90, 91). However, they are generally mild and typically do not

require discontinuation of ICI treatment (92). According to the

Common Terminology Criteria for Adverse Events (CTCAE), ICI-

DT presents as inflammatory dermatoses, blistering dermatoses,

and severe adverse skin reactions (93). The average time to onset is

approximately four weeks after the first treatment, although it can

vary from 2 to 150 weeks (94, 95). ICI-DT is more prevalent in
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patients on anti-CTLA-4 therapy (60%), than anti-PD-1 or anti-

PD-L1 (20%) (96), but combination therapy with anti-PD-1 and

anti-CTLA-4 agents has the highest incidence (59-72%) (94, 97).

ICI-DT represents a heterogeneous group of toxicities, and the

exact mechanisms are not yet fully understood. Substantial effort

has been made over recent years to develop a clinically relevant

murine model to study the immunological patterns underlying

these conditions. Current understandings of ICI-DT mechanisms

are derived from patient biopsies. For example, in a retrospective

analysis of melanoma patients, the immune infiltrates in skin tissues

consisted of CD3+ lymphocytes with a predominance of CD4+ T

cells compared to CD8+ T cells, whilst Foxp3 Treg cells were

invariably present (98). Goldinger et al. conducted a study

comparing melanoma patients undergoing anti-PD-1 therapy
Frontiers in Immunology 05
who experienced adverse cutaneous reactions to patients with

other drug-induced dermatologic conditions. The research

revealed that skin biopsies from anti-PD-1 treated patients

showed an accumulation of CD8+ T cells at the dermo-epidermal

junction, CD8+ T cell exocytosis within the epidermis, and

keratinocyte apoptosis, indicating that infiltrating CD8+ T cells

may have released cytotoxic factors, which inflicted damage to

keratinocytes. The study also found increased expression of genes

associated with skin inflammation and recruitment of immune cells

to the skin such as CCL27, NURR1, GLY, FASLG, and PRF1 in anti-

PD-1 patients compared to those with drug-induced rash.

Additionally, genes related to toxicity and cell migration such as

PI3, SPRR2B, GZMB, CXCL9, CXCL10, and CXCL11 were

upregulated in the skin biopsies of anti-PD-1 patients compared to
TABLE 1 Incidence, associated regimens, and standards of care for common irAEs.

System Incidence irAE Associated
Regimen

Standard Therapy Ref.

Cutaneous 30-60% Inflammatory dermatoses, bullous dermatoses, SCAR Anti-CTLA-4,
Combo ICIs

Topical or systemic corticosteroids (77–79)

Gastrointestinal 10-30% Colitis Anti-CTLA-4,
Combo ICIs

Corticosteroids, Infliximab,
Vedolizumab, Ustekinumab,

Tofacitinib, FMT

(77, 78)

Hepatic 11-29% Hepatitis Combo ICIs Corticosteroids (77, 78)

Neurological 1-12% Meningitis, Encephalitis Anti-CTLA-4,
Combo ICIs

Corticosteroids,
Rituximab, Tacrolimus

(77, 78)

Guillain-Barré syndrome Anti-CTLA-4,
Combo ICIs

Corticosteroids,
Plasmapheresis, IVIG

Myositis, Myasthenic syndromes Anti-PD-1/PD-L1,
Combo ICIs

Corticosteroids, Plasmapheresis,
IVIG, Tacrolimus, Rituximab

Endocrine 10% Hypophysitis Anti-CTLA-4,
Combo ICIs

Corticosteroids, Thyroid hormone
replacement, Sex

hormone replacement

(77, 78)

Thyroid dysfunction Anti-PD-1/PD-L1,
Combo ICIs

Thyroid hormone
supplementation, Beta-blocker,

Diabetes Anti-PD-1/PD-L1,
Combo ICIs

Insulin

Pulmonary 1-6% Pneumonitis Anti-PD-1,
Combo ICIs

Corticosteroids, IVIG, Infliximab,
Mycophenolate

mofetil, Cyclophosphamide

(77, 78)

Renal 1-5% Nephritis, Acute Kidney Injury Combo ICIs Corticosteroids (77, 78)

Rheumatological <5% Arthritis, Arthralgia Anti-PD-1,
Combo ICIs

Corticosteroids, DMARDs,
Infliximab, Tocilizumab

(77,
78, 80)

Hematological 3.6% Autoimmune hemolytic anemia, Immune
thrombocytopenia purpura, autoimmune

neutropenia, aplastic anemia

Anti-PD-1/PD-L1,
Combo ICIs

Corticosteroids, IVIG (77, 78)

Cardiovascular 1% Myocarditis, Pericarditis, Arrythmias, Impaired
ventricular function with HF, Vasculitis

Combo ICIs Corticosteroids, Infliximab,
antithymocyte globulin,
abatacept, alemtuzumab

(77, 78)

Ophthalmic 1% Ocular myasthenia, Eye inflammation Anti-PD-1/PD-L1,
Combo ICIs

Corticosteroids,
Plasmapheresis, IVIG

(77, 78)

Uveitis Anti-CTLA-4,
Combo ICIs

Topical or systemic corticosteroids
fro
SCAR, Severe cutaneous adverse reactions; Combo ICIs, Anti-PD-1 + Anti-CTLA-4; FMT, Fecal microbiota transplantation; HF, Heart Failure; DMARDs, Disease modifying anti-
rheumatic drugs.
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healthy skin (99). Another study conducted by Curry et al. revealed that

lichenoid dermatitis (LD) in patients treated with ICI exhibited

upregulation of 74 genes, including toll-like receptor (TLR)2 and

TLR4, when compared to benign lichenoid keratosis (BLK) control

samples which did not receive ICI therapy. The immunohistochemistry

staining demonstrated enhanced numbers of CD14+ and CD16+

monocytes in LD relative to BLK control. Within the LD, T-Bet+ (T

helper (Th)1) cells were more abundant than Gata-3+ (Th2) cells, and

there was a decrease in Foxp3+ Treg cells compared to BLK controls,

suggesting LD-irAE may have activated CD14/TLR innate immune

responses, compared with BLK control (100). Basal cytokine levels may

also correlate with dermatologic irAEs. In a study involving 52

melanoma patients experiencing various types of irAEs within 6

months of initiation of ICI therapy, it was found that the 8 patients

who developed a skin rash exhibited elevated levels of basal serum

angiopoietin-1 (Ang-1) and CD40L compared to those ICI-treated

individuals who did not experience a rash (101). The study also

revealed that when compared to patients undergoing ICI therapy

who did not develop a rash, patients who developed dermatitis

exhibited decreased levels of plasma CX3CL1, vascular endothelial

growth factor-alpha, and MHC class I polypeptide-related sequence A

between one to three months post-ICI (101). Another retrospective

study from Phillips et al. demonstrated that increased circulating

absolute eosinophils and serum IL-6, IL-10, and immunoglobulin E

were associated with increased severity of cutaneous toxicities (102).

Finally, in a case series of patients with anti-PD-1 or anti-PD-L1-

induced autoimmune bullous skin disorders, increased eosinophil

number was observed by histopathology, compared to baseline. The

study also reported the linear disposition of complement protein (C3)

and IgG at the basal membrane, indicating the adverse event may have

been mediated by the complement system and B cell-mediated

antibodies directly on the skin tissue through membrane attack

complex (103). Overall, a range of cell types of both the innate and

adaptive immune systems have been implicated in multiple

dermatological toxicities (Figure 2). A clinically relevant mouse

model will help to validate whether these cells are drivers in

pathogenesis and can be targeted safely and effectively for therapy.
ICI-colitis

Immunotherapy-induced diarrhea/colitis is one of the most

common irAEs leading to negative impact on cancer care and

outcomes. The incidence of ICI-diarrhea has been reported up to

54%, while the incidence of ICI-colitis ranges from 8-27%

depending on different ICI regimens (77, 104). Usually ICI

regimens containing CTLA-4 targeting agents as a monotherapy

or in combination with PD-1 or PD-L1 were associated with higher

incidence and severity (77). The most common presenting

symptoms are diarrhea (92-100%), abdominal pain (55-82%), and

hematochezia (55-64%) (105, 106). ICI-colitis presentation appears

to be heterogenous and often has features reminiscent of idiopathic

Inflammatory Bowel Disease (IBD) (107). Endoscopically,

inflammation is predominately seen in the left colon; however, a

range of distributions are observed (108). There is large variety in

the presentation of inflammation seen on endoscopy in ICI-colitis
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patients including ulcerations, erosion, erythema, loss of vascular

pattern, edema, friability, and normal appearance (108).

Additionally, a broad spectrum of histological findings is seen in

ICI-colitis ranging from neutrophilic infiltration, cryptitis and

abscesses in acute colitis, basal lymphocytic infiltration and crypt

distortion in chronic colitis, and intraepithelial lymphocytic

infiltrates and subepithelial collagen band in microscopic

colitis (108).

Cytokines have been shown to be an essential mediator in

intestinal inflammation. Th1 and Th17 responses have been highly

implicated in the pathogenesis of intestinal inflammation. Colonic

mRNA of both ICI-colitis and IBD patients have exhibited an

upregulation of the IFNg, IL-17 effector pathways and TNF

compared to healthy colons (105). Specifically, ICI-colitis is

enriched in mucosal Th1 effector cells that highly express IFNg
inducible genes such as STAT1, CD74, and GBP1/5 when compared

to healthy controls and colitis-naïve patients (109). Additionally,

IL-6, a cytokine essential to the differentiation of naïve T cells into

Th17 cells, is upregulated in the colonic tissues of colitis-irAE

patients compared to normal tissues (110). In fact, blockade of

IL-6 was found to not only ameliorate colitis-irAE but also enhance

the antitumor efficacy of anti-CTLA-4 therapy in mouse models

and patient cohorts (110). These data collectively demonstrate the

role of Th1 and Th17 cell effector cytokines in driving ICI-

colitis pathogenesis.

ICI-colitis is marked by enhanced infiltration of CD8+ T cells in the

lamina propria compared to normal colonic tissue and ICI patients

who did not develop colitis, implicating them as important pathogenic

drivers (109). Increased numbers of colonic CD8+ T cells have been

reported to be correlated to clinical severity and failure of first-line

steroid therapy (111). Recently, scRNAseq revealed that tissue-resident

memory (CD69+CD103+; TRM) cells are a contributing source of the

abundance of colonic T cells (109). Luoma et al. noted an expansion of

cycling (Ki67+) and cytotoxic T cells (CTLs) with a concomitant

decrease in Trm cells in ICI-colitis patients compared to colitis-naïve

and healthy controls. Upon TCRseq, these subsets of cells were shown

to have a significant proportion of overlapping TCR clonotypes in ICI-

colitis patients only, suggesting abundance of CTLs differentiated from

Trm populations (109). Similarly, compared to healthy colons and

colitis-naïve ICI patients, ICI-colitis patients have been reported to

have higher proportions of activated CD8+ (HLA-DR+CD38+), and to

a lesser extent CD4+, TRM cells with high expression of RNA transcripts

related to immune checkpoints such as CTLA4, PDCD1, TIGIT, TIM-

3, and LAG-3 in addition to activation genes such as IFNG, HLADR,

GZMB, and PRF1 (112). Further, single cell data demonstrated that

associated T cell clusters highly express ITGAE and ITGA4, genes

encoding subunits of aEB7 and a4B7 integrins, likely leading to

enhanced T cell retention in the colon (109). These data collectively

indicate a potential mechanism underlying ICI-colitis where Trm

populations can be excessively and quickly activated upon ICI

treatment, inducing an expansion of cytotoxic cells with IFNg related
transcriptional regimes (109, 112). IFNg has been reported to not only

induce apoptosis of colonic epithelial cells but also cause dysfunction of

the intestinal vascular barrier (113, 114).

Treg cells are critical in suppressing colonic inflammation

through the production of anti-inflammatory cytokines such as
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IL-10 and TGFb (115). ICI-colitis patients appear to have an

increase in both number and proportion of mucosal Treg cells

compared to healthy controls with accompanying enrichments in

Foxp3 and IL-10 (105, 109, 116). Further, ICI-colitis patients have

enrichment in Treg cells with Th1-like cell characteristics,

expressing IL12RB2, CXCR3, and STAT1 (109). Treg cells have

been shown to upregulate Th1 transcriptional programs in the

presence of IFNg, thus enhancing their suppression of IFNg-
producing effector cells (109). However, despite apparent

enhancement in regulatory function, the anti-inflammatory

actions of these cells appear to be insufficient to quell the large

effector response.

In conjunction with an abundance of effector T cell responses,

myeloid cells in ICI-colitis also display an inflammatory gene

signature enriched in TNF-a- and IFNg-inducible elements such

as CXCL16, CXCL9 and CXCL10, which encode chemokines that

attract CXCR6+ and CXCR3+ T cells, respectively (109). The
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abundant colonic IFNg appears to induce transcriptional changes

that enhance the recruitment of effector T cells and perpetuate

colonic inflammation (109).

To date, there have been few studies on models of ICI-colitis. In

a study by Zhou et al., multiple methods were used to model ICI-

induced colitis. Melanoma (B16-OVA) burdened CD11c-Cre+

Stat3f/f (Stat3D/D) mice, which are prone to autoinflammatory

colitis, experienced a decrease in body weight and enhanced

histological evidence of colitis following anti-CTLA-4

administration when compared to isotype control and Stat3+/+

groups (117). Compared to isotype control and Stat3+/+ mice,

colon tissue of Stat3D/D mice was characterized by increased

infiltration of neutrophils, monocytes, cytotoxic and IFNg+ CD8+

and CD4+ T cells along with enhanced pro-inflammatory factors

such as IFNg, IL-1a/b, TNF-a, IL-6 and IL-17A, similar to findings

in patients (105, 109, 110, 117). Anti-IL-6 combined with

antibiotics increased the efficacy of anti-CTLA-4 and reduced
FIGURE 2

Cellular and molecular players involved in ICI-induced irAEs. Schematic representation of immune cell populations and effector molecules which are
frequently enhanced in each specified iRAE. Common cell populations implicated in ICI-induced iRAEs are CD8+ T cells, TH1, and TH17 cells.
Additionally, B cells, NK cells, and myeloid cell populations have also been implicated in specific iRAEs. Prominent effector molecules that are
increased in ICI-induced iRAEs are IFNg, TNFa, IL-6 and IL-17. Auto-antibodies and complement molecules can also play a role in specific iRAEs.
Created with BioRender.com.
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colitis severity in Stat3D/D mice. Compared to control groups,

Stat3D/D mice treated with IL-6 blockade and antibiotic displayed

a significant influx of intra-tumoral cDC1s and CD8+ T cells and

reduction of colonic inflammatory cytokines, neutrophils and CD4+

T cells following anti-CTLA-4 administration. Enhanced colonic

IL-6 was also seen in models of mice challenged with acute infection

with Citrobacter rodentium or Dextran Sulfate Sodium (DSS)

followed by anti-CTLA-4 administration (117), suggesting that

IL-6 may serve as a cytokine signature in ICI-induced

colitis (Figure 2).

Furthermore, the gut microbiota has been reported to be an

important component in the development of irAEs, such as ICI-

colitis (118). The human microbiome consists of the genomic

content of all the microorganisms residing in various locations

within the body such as the skin, gastrointestinal tract, urogenital

tract, and respiratory tract (119). The composition of the gut

microbiome is known to be an important regulator of intestinal

homeostasis and immune responses (120). Accordingly, the

microbiota have also been implicated in influencing cancer

development, outcomes, and therapy (120). GI-related adverse

events are closely associated with the balance of the intestinal

microbiome (120). The microbiome of ICI-colitis patients is

associated with a decrease in diversity and an overall change of

the composition of the microbiome (121). Patients with metastatic

melanoma who were treated with ipilimumab and subsequently

developed colitis had enrichments in the Firmicutes phylum at

baseline while patients who did not develop ICI-colitis displayed

enrichments in the Bacteroidetes phylum (122). Similarly, advanced

lung cancer patients who developed diarrhea following anti-PD-1

therapy showed baseline enrichments in the Firmicutes phylum

(123). Furthermore, the Bacteroidaceae, Rikenellaceae, and

Barnesiellaceae families have been associated with resistance to

the development of ICI-colitis (124). These data collectively

highlight a role for the microbiome as a potential biomarker for

the development of ICI-colitis; however, further research is needed

to fully understand the underpinning mechanisms.
ICI-induced neurologic dysfunction

ICI-induced neurologic dysfunction (ICI-ND) is relatively rare,

compared to other irAEs and is observed in 1-6% of patients treated

with ICIs. Although their incidence is low, neurologic toxicities are

potentially fatal (accounting for up to 15% of ICI-related fatalities)

and are also associated with significant morbidity and decreased

health-related quality of life (125, 126). ICI-ND frequently co-occur

and are associated with non-neurological adverse effects as well. The

incidence rate of ICI-ND with anti-CTLA4 or anti-PD1

monotherapies were reported as 3.8% and 6.1%, respectively

(127). However, the combination of ipilimumab and nivolumab

has a higher incidence rate compared to either monotherapy,

affecting approximately 12% to 14% of patients (127, 128). ICI-

ND encompasses a range of neurological syndromes including

myasthenia gravis, myositis, aseptic meningitis, encephalitis,

Guillain-Barré-like syndrome, various peripheral neuropathy

phenotypes, and demyelinating disorders including transverse
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myelitis (77, 128). The median time to onset of nervous system

toxicities is generally 4 weeks, but it can range from 1 to 68 weeks

(77). The symptoms vary depending on the specific syndrome. For

instance, patients with myasthenia gravis may have symptoms such

as muscle weakness, including facial and neck muscles, whilst

aseptic meningitis might present with symptoms like headache,

neck stiffness, nausea, vomiting, and fever, and encephalitis

symptoms can include confusion, altered mental status, and

seizures (77). Early detection of ICI-ND is crucial because these

types of toxicities often lead to high rates of death and managing

these conditions typically involves discontinuation of ICI treatment

and administration of immunomodulatory therapies (129). The

diagnosis of ICI-ND is determined based on neurological

assessment. Ancillary testing such as electrodiagnostic studies,

serum tests, spinal fluid tests, and neuroimaging have varying

degrees of sensitivity and specificity, and results should be viewed

through the lens of the clinical context (130).

The immunologic mechanisms associated with the

pathogenicity of ICI-induced neurologic dysfunction remain

poorly understood. The pathophysiologic underpinnings of the

non-ICI associated analogues of these disorders are also

heterogeneous (for example, the immunologic dysfunction that

leads to multiple sclerosis differs from that which causes Guillain-

Barré, both with regards to relative contributions from humoral and

cellular immune responses and target antigens). It may be possible

therefore that the mechanism of ICI-ND also varies based on the

clinical syndrome and individual characteristics. Paraneoplastic

neurological syndromes have been reported to be worsened or

triggered by ICIs (131, 132). The demonstration of neural

antibodies in pretreatment blood samples, is suggesting that

patients with preexisting antibodies have an increased risk of

developing ICI-ND (132–134). In a case report of a patient with

metastatic NSCLC who developed transverse myelitis after two

cycles of pembrolizumab, analysis of cerebral spinal fluid (CSF)

revealed significantly elevated IgG, enhanced soluble CXCL13, a B

cell chemoattractant, and an abnormal distribution of CD38+

plasma cells. Anti-neuronal autoantibodies were also detected, but

the target antigen was not identified. These findings collectively

suggest that ICI-induced transverse myelitis may have been

mediated by humoral immune responses (135). In a cohort study

involving ICI-treated cancer patients with ICI-ND and those

without irAEs, neuromuscular autoantibodies were detected in

63% of the ICI-NT patients, compared to only 7% in the non-

irAE patients (136). Additionally, brain-reactive antibodies

targeting surface antigens (anti-GABABR, anti-NMDAR, and

anti-myelin) and intracellular antigens (anti-GFAP, anti-Zic4,

anti-septin complex) were found in 45% (13 patients) of the ICI-

ND group, compared to only 20% (9 patients) in the control group,

indicating that the presence of neuromuscular and brain-reactive

autoantibodies may contribute to the development of ICI-ND

(136). Molecular mimicry may also occur and introduce potential

variability in ICI-ND depending on the cancer type being treated.

For example, in the case of melanoma it is known that there are

gangliosides expressed by both Schwann cells, which myelinate the

peripheral nerves, and melanoma cells (137). This may relate to the

higher incidence of ICI-ND as a group in patients with melanoma
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as well (138). A clinically relevant murine model for ICI-ND is

currently lacking. In a recent study by Janaki et al., tumor-free mice

treated with anti-PD1 showed an increase in Iba-1+ myeloid cells in

the cortices and hippocampi compared to sham-treated mice.

However, there were no differences observed in neutrophils

(CD11b+ Ly6G+), monocytes (CD11b+ Ly6Chigh) , and

macrophages (CD11b+ F4/80+) within the central nervous system

(CNS), compared with sham-treated controls. Notably, microglia

(CD11blowCD45low), known to play a role in CNS autoimmunity,

exhibited morphological changes (i.e., shorter filaments and fewer

dendrites) and increased levels of MHC-II and colony-stimulating

factor 1 receptor (CSF-1R) compared to sham-treated controls,

which indicates potential activation of the microglia. Additionally,

the study observed an increase in CD3+, CD4+, CD4+CD69+, and

CD4+CD154+ T cells in the brain of mice treated with anti-PD-1.

Similarly, microglia activation was also noted in B16 melanoma and

MC38 colorectal tumor-bearing mice, with increased MHC-II and

CSF-1R levels after PD-1 treatment. The study further

demonstrated that anti-PD-1 antibodies directly activated

microglia independently of T cells, B cells, and NK cells. The

authors also identified spleen tyrosine kinase (Syk) as a potential

target in activated microglia, following anti-PD1 treatment.

Depletion of microglia, but not T cells, improved neurocognitive

function after anti-PD1 treatment, and targeting Syk reduced

MHC-II expression on microglia and enhanced neurocognitive

activity without affecting the anti-tumor efficacy of anti-PD1

treatment (139). Overall, growing evidence from clinical and pre-

clinical studies suggests that CD38+ plasma cells, neuromuscular

autoantibodies, and microglia may contribute to the development of

neurologic dysfunction following ICI therapy.
ICI-induced endocrine dysfunction

Thyroid dysfunction is one of the most frequent endocrine

irAEs, reported in up to 30% of patients treated with ICI (140). It is

most frequent with the combination of anti-PD-L1 and anti-

CTLA4, followed by anti-PD-1 monotherapy (140–142). Gender

(predominantly female), younger age groups, elevated baseline

thyroid stimulating hormone (TSH) and elevated thyroid

peroxidase and/or thyroglobulin antibodies have been identified

as risk factors for the development of ICI-induced thyroid

dysfunction (143, 144). ICI-induced thyroid toxicity most

frequently presents as painless thyroiditis, but Graves’ disease has

also been rarely described (77, 140). Painless, destructive thyroiditis

usually develops within the first few weeks of ICI therapy (140, 143,

144). Typically, it initially presents with thyrotoxicosis, occurring at

a median of 5 weeks from start of immunotherapy (ranging from 4

days to 20 weeks), followed by hypothyroidism about 6 weeks later

(142, 143). In most patients, hypothyroidism tends to be

permanent. The thyrotoxic phase is usually asymptomatic,

although mild symptoms including fatigue, tremors or

palpitations can be present. Beta-blockers such as propranolol can

be used for transient control of hyperadrenergic symptoms.

Symptoms from ICI-related hypothyroidism are often mild and

non-specific, including fatigue and weight gain (142). Occasionally,
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related thyroiditis (141, 144). The majority of patients developing

immune-related thyroiditis will require long-term therapy with

levothyroxine. Of note, some studies suggest that the dose of

levothyroxine required in ICI-related hypothyroidism is lower

than the usual replacement dose for postsurgical hypothyroidism

(142). Rarely, ICIs can lead to Graves’ hyperthyroidism, which is

characterized by persistent thyrotoxicosis, positive thyroid receptor

antibodies and diffusely increased thyroid uptake on an I123 scan

(140, 145, 146). Similar to non-ICI induced Graves’ disease,

treatment with antithyroid drugs is indicated. In patients with

pre-existing hypothyroidism, thyroid hormone replacement

requirements can increase on ICI therapy, by up to 50% (140,

143). Given the relatively high incidence of ICI-induced thyroid

dysfunction, which is often asymptomatic, monitoring of thyroid

function tests, including TSH and free thyroxine (FT4), is routinely

recommended by the American Society of Clinical Oncology

(ASCO) at baseline and every 4-6 weeks in all patients on ICIs

(77). High TSH with a low FT4 suggests primary hypothyroidism,

while low TSH with a high FT4 is consistent with thyrotoxicosis. In

the presence of a low TSH and FT4, central hypothyroidism due to

ICI-induced hypophysitis needs to be considered. Concomitant

central adrenal insufficiency should also be ruled out by

measuring morning adrenocorticotropic hormone (ACTH) and

cortisol levels prior to initiation of thyroid replacement therapy.

The immunological mechanisms of ICI-thyroiditis remain

unclear and animal studies are currently lacking, with only few

studies available to date. Lechner et al. examined immune cell

infiltration in ICI-thyroiditis (dual anti-PD-1 & anti-CTLA-4) mice

which were either tumor free or burdened with B16 melanoma or

MC38 colorectal cancer. Elevated levels of T cell derived IL17A were

observed in the thyroid tissues following ICI administration.

Interestingly, when compared with isotype controls, the ICI-

treated tumor burden mice showed an enhanced Th17 and Tc17

cell cytokine signature while tumor-free ICI-thyroiditis mice had a

notable rise in gdT17 cells. Treatment using anti-IL17A blocking

antibodies reduced thyroid toxicity development and maintained

the anti-tumor efficacy of ICIs (96). Similarly, ICI treatment in

autoimmune-prone NOD mice demonstrated the accumulation of

CD4+, CD8+ T cells and macrophages in thyroid tissues of ICI

treated mice via immunohistochemical staining. Additional flow

cytometry data revealed enhanced T cell infiltration, specifically of

RORg+ T cells, rare B220+ B cells, CD11b+ myeloid cells and

NKP46+ NK cells, in thyroid tissues of ICI-treated mice

compared with isotype controls. Subsequent investigation

revealed increased IL17A+ T cells in secondary lymphoid tissues

of combined anti-PD-1 and anti-CTLA-4 treated mice compared

with isotype control, suggesting that cytokine production from

RORg+ Th17 and Tc17 was associated with thyroiditis (147). In

another recent study using NOD-H2h4 mice, thyroiditis was more

prevalent with anti-CTLA-4 treatment, but more severe symptoms

were seen following anti-PD-1 administration and was correlated

with immune cell infiltration in thyroidal tissues. An increase of

CD103+ CD4+ T cells was observed in mice treated with ICIs

compared with sham-treated controls. Within the ICI treated

group, CD103+ CD4+ T cells were higher in thyroid tissues than
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in spleen. Further cytokine profiling demonstrated that anti-PD-1

induced a 5-fold increase in blood IL-4, compared to baseline, and

IL-6 levels were correlated with severe thyroid histopathology. On

the other hand, anti-CTLA-4 treatment elevated the serum level of

GM-CSF andMIP1b, compared to baseline. This suggests that IL17,

IL6 and GMCSF cytokines may be pathogenic in ICI-thyroiditis

(Figure 2) (148).

Apart from thyroiditis, ICIs can also cause autoimmune

hypophysitis (inflammation of pituitary gland) (149, 150) and

diabetes mellitus (DM) (151). In a case series involving three ICI-

hypophysitis patients, there was a 1.7 and 2.5-fold increase in anti-

GNAL and anti-ITM2B autoantibodies, respectively, compared to

pre-treatment samples. Interestingly, the authors noted a significant

rise in anti-GNAL autoantibodies in both pre- and post-treatment

plasma samples compared to individuals without hypophysitis in

the validation cohort. This suggests that pre-existing autoantibodies

against GNAL, both before and after treatment, may be linked to an

increased risk of ICI-induced hypophysitis development (152).

However, additional studies are needed to elucidate the role of

the immune system in ICI-hypophysitis.

Several cases of ICI-DM have also been reported (153, 154), but

the comprehensive characterization of immune responses to ICI-

DM in animals and patients are currently lacking. In a retrospective

analysis of 76 patients with ICI-DM, pancreatic autoantibodies were

detected in patients with varying percentages: anti-glutamic acid

decarboxylase 65 (anti-GAD65) in 58% of patients, anti-

insulinoma-associated protein-2 (anti-IA2) in 12%, anti-insulin in

19%, and anti-ZnT8 in 10%. No significant association was found

between ICI-DM and overall survival nor progression-free survival

(151). In another study, pancreatic tissue from one patient

demonstrated an accumulation of CD45+ inflammatory cells in

exocrine tissues around the islets and CD4+ and CD8+ T cells in a

peri-islet distribution. Increased IFN-g and TNF-a expression

within the peri-islet inflammatory infiltrates and the stroma of

the patients were also observed. A mouse model using prediabetic

ICI-treated NOD mice revealed that cytolytic IFN-g+ CD8+ T cells

infiltrated the islets cells following anti-PDL-1 treatment and the

changes in b cells were primarily driven by IFN-g and TNF-a. The
authors also noted that IFN-g increased PD-L1 expression and

activated apoptosis pathway in human b cells. Treatment using

anti–IFN-g and anti–TNF-a prevented ICI-DM in anti-PD-L1

treated NOD mice (155).

Taken together, ICIs induce various forms of endocrine

dysfunction, which are driven by several players such as Th17

CD4+ T cells, autoantibodies and IFN-g+ CD8+ T cells (Figure 2).

Targeting these cells and cytokines in specific types of ICI-induced

endocrine dysfunction may be new therapeutic strategies to treat

these toxicities.
ICI-pneumonitis

ICI-induced pneumonitis (ICI-pneumonitis) is an uncommon

but life-threatening adverse event seen in patients receiving single-

agent or combination ICI therapy (156, 157). The incidence of ICI-

pneumonitis is approximately 5% for anti-PD-1/PD-L1
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CTLA-4 (158). The median time to onset of ICI-pneumonitis is

34 weeks after ICI initiation (77). ICI-pneumonitis is typically

characterized by radiological patterns of interstitial pneumonitis,

organizing pneumonia, or diffuse alveolar damage (159, 160).

Clinical signs and symptoms include dyspnea, hypersensitivity,

cough, hypoxemia, chest pain, and fever (77, 158).

The mechanisms behind ICI-pneumonitis remain unclear, and

need further research to identify potential therapeutic targets. A

study by Kim et al. showed that patients experiencing ICI-

pneumonitis displayed increased numbers and frequencies of

CD45RA-CCR7-CD8+ effector memory T cells and Th1/Th17

(CXCR3-T-bet+CCR6+RORgt+) cells in bronchoalveolar lavage

(BAL) fluid, compared to the control group with bacterial

pneumonia without ICI treatment. Evaluation of T cell

functionality revealed enhancement in the number of IFNg- and

IL-17-producing CD4+ T cells in the ICI group, compared with the

control group, suggesting a unique contribution of these cells to the

development and progression of ICI-pneumonitis (161). In another

study, NSCLC patients with ICI-pneumonitis showed an increased

percentage of BAL central memory T cells and inflammatory TNF-

ahi, IFN-ghi CD8+ T cells and decreased number of PD-1hi/CTLA-

4hi CD4+ Treg, compared to non-pneumonitis ICI-treated control.

BAL myeloid immune populations displayed enhanced expression

of IL-1b and decreased expression of counterregulatory interleukin-

1 receptor antagonist in patients with ICI-pneumonitis.

Additionally, low levels of IL-1b, IL-8, and macrophage

inflammatory protein-3a (MIP-3a), and an increase in IL-12p40,

IFN-g-induced protein 10 (IP-10 or CXCL-10), CCL17, and T cell

chemoattractant protein TARC were observed in the cell-free BAL

supernatant of ICI-pneumonitis patients, compared to the non-ICI-

treated group, suggesting that these immune dysregulations in ICI-

pneumonitis patients may be potential predictive markers and

therapeutic targets (162). In another recent investigation

involving individuals with NSCLC who experienced ICI-

pneumonitis, there was a rise in IgM antibody levels against

ACHRG, the cholinergic receptor nicotinic gamma subunit, from

the beginning of treatment to the onset of toxicity in these patients.

Moreover, the levels of anti-ACHRG antibodies were notably

elevated in ICI-pneumonitis patients compared to those receiving

ICI treatment without pneumonitis. This suggests that pre-existing

autoantibodies against ACHRG may influence the occurrence of

pneumonitis (163).

There is no clinically relevant ICI-pneumonitis mouse model

that mimics this irAE as seen in the clinical setting. Recently, Gao

et al. attempted to establish ICI-induced pneumonitis and arthritis

in a humanized BALB/c-hPD1/hCTLA-4 transgenic mouse model.

Mice were injected intraperitoneally with PBS or collagen-specific

antibodies (CAIA) and lipopolysaccharides (LPS), followed by

administration of either vehicle or ICIs (ipilimumab and

nivolumab). Significant alveolar damage and severe inflammation

were found in the lung tissues of CAIA/LPS/ICI-treated mice and

was associated with substantial lymphocytic infiltrate, mainly

consisting of TNF-a+ CD4+ and CD8+ T cells when compared

with controls. Anti-TNF-a treatment significantly mitigated the

severity of ICI-related pneumonitis, suggesting that TNF-a+ T cells
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may be crucial for the pathogenesis of ICI-related pneumonitis and

therapeutic targets for its intervention (Figure 2) (164). Although

the study was able to capture pathological features seen in patients

with ICI-pneumonitis, there was no confirmation that this model

would encounter similar features or mechanisms in the cancer

setting. This warrants further investigation to establish a combined

tumor and pneumonitis mouse model to study their interaction and

develop therapeutic strategies to treat pneumonitis without

compromising the anti-tumor efficacy of ICIs.
ICI-inflammatory arthritis

ICI-Induced inflammatory arthritis (ICI-IA) is one of the most

frequent, non-fatal rheumatic toxicities encountered in cancer

patients receiving ICI therapy. ICI-IA occurs more frequently

with PD-1/PD-L1 blockade than with CTLA-4 monotherapy

(104). However, combining both ICIs poses a higher risk of ICI-

IA development (165). According to Cunningham-Bussel et al., the

incidence of inflammatory arthritis after ICI therapy is between 2

and 7% (80) and the median time to onset is 38 weeks after the first

infusion of ICI (166). ICI- IA is characterized by polyarthralgia,

joint stiffness, and swelling caused by synovitis which may

eventually lead to joint destruction and bone erosion (77, 167–

169). ICI-IA has been observed in patients with melanoma, lung,

endometrial, and vaginal cancers (170, 171).

ICI-IA has a complicated and poorly understood etiology.

Although the exact mechanisms underpinning disease

development and progression remain elusive, ICI therapy is

thought to trigger the activation of autoreactive B and T cells,

leading to the production of autoantibodies and pro-inflammatory

cytokines such as TNF-a, IL-6, and IL-17 (172). The role of

autoantibodies in the development and pathogenesis of ICI-IA is

conflicting. Some studies report that anti-rheumatoid factor and

anti-cyclic citrullinated peptide autoantibodies were not detected in

all ICI-IA patients (165, 173). However, these findings were

challenged by a study from Cappelli et al., which showed that

11.4% of ICI-IA patients have detectable anti-RA33 auto-

antibodies, compared with arthritis-naïve ICI patients who all

tested negative for these antibodies (174), suggesting that

autoantibodies may play a role in ICI-IA pathogenesis. In

addition, Kim et al. recently demonstrated an enrichment of Tc1

T cells in both peripheral blood and synovial fluid of ICI-RA

patients (173). Single-cell TCR sequencing (scTCRseq) showed

that CX3CR1hi CD8+ T cells in peripheral blood and synovial

fluid were the mostly clonally expanded T cells and displayed

shared TCR repertoires. Further receptor-ligand interaction

analysis revealed that CXCL9/10/11/16 expressing myeloid cells

may have mediated the migration of CX3CR1hi CD8+ T cells to the

inflamed joints (173). Furthermore, arthritis after combined CTLA-

4 and PD-1 inhibitor therapy preferentially characterized by

enhanced Th17 and transient Th1/Th17 cell signatures. These

data provide insights into the mechanisms, predictive biomarkers,

and therapeutic targets for arthritis-irAE. In a case series of three

melanoma patients who were treated with ICI and subsequently

developed ICI-IA, their conditions were safely managed with
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tocilizumab (anti-IL6) (169). The mechanisms of IL-6 blockade in

the resolution of the disease was unclear. However, the authors

pointed to a previous study suggesting that IL-6 promotes the

induction of Th17 cells and therefore, the blockade of IL-6 may

restore the balance of the Th17-Treg axis without affecting Th1-

CD8+ T cells, that are required for effective tumor anti-tumor

immunity (Figure 2) (175). This underscores the need for future

research to explore the role of IL-6 inhibition in managing ICI-

induced inflammatory arthritis. To date, there is no published

murine study of arthritis-irAE, which is necessary to uncover the

factors involved in arthritis-irAE development and pathogenesis,

and guide mechanism-based strategies to treat the disease.
ICI-myocarditis

Several cardiac adverse events have been described after the use

of ICIs including myocarditis, pericarditis/pericardial effusion,

arrhythmias, heart failure, and atherosclerotic events. Most of the

data regarding the association of cardiac events with ICIs comes

from pharmacovigilance databases with myocarditis and

pericarditis/pericardial effusion having the strongest association

(reporting odds ratio 11.21 [95% CI 9.36-13.43] and 3.80 [3.08-

4.62] respectively) (176, 177). The other cardiac adverse events

(heart failure and arrhythmias) are often reported along with

myocarditis. A phase III trial of 709 patients with lung cancer

comparing durvalumab to placebo (PACIFIC trial) reported 5.5%

cardiac adverse events in patients receiving durvalumab compared

to 2.5% in the placebo arm (178). Although ICI-myocarditis (ICI-

MC) is rare with an incidence of 1%, it has the highest fatality rate

(39.7%) of any irAE (179). Nearly one half of ICI-MC cases are

CTCAE grades 4 or 5 (180). The median time to onset is 34 days

after the first ICI with 81% developing within 3 months of treatment

(180). The risk of ICI-myocarditis development is significantly

higher with combinatorial ipilimumab and nivolumab, in female

patients and those over 75 years old (181).

There is a wide range of signs and symptoms associated with

ICI-MC, making it difficult to develop uniform diagnostic criteria

(78, 182). Additionally, presenting symptoms are often similar to

other acute cardiac diseases, such as heart failure, fatigue, chest

pain, dyspnea, and lower extremity edema (182, 183). Patients with

fulminant disease may present with cardiogenic shock, complete

heart block, arrythmias, or even cardiac arrest (183). Diagnoses are

made through a combination of symptom assessment, imaging,

invasive diagnostics, and laboratory testing of troponin, creatine

kinase, and natriuretic peptides (78). Histologically, myocyte

necrosis and lymphocytic infiltrates are observed in the

myocardium (180). ICI-MC immune infiltration is characterized

by high CD8+ T cell invasion complemented with CD4+ T cell and

CD68+ monocyte/macrophages (Figure 2) (184). Additionally,

biopsies are often PD-L1 positive with increasing positivity within

higher grading (184).

Transgenic mice with alterations in gene loci involved in immune

checkpoints are commonly used to study immune-related myocarditis.

Pdcd1 knock-out in BALB/c mice results in autoimmune-related

dilated cardiomyopathy that is absent of myocardial immune
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infiltration (185). However, the same genotype in MRL mice results in

myocarditis reminiscent of ICI-MC with high lymphocytic infiltration

predominated by CD8+ T cells and smaller proportions of

macrophages and CD4+ T cells (185). Another study by Wei et al.,

utilized a transgenic model, which involved haploinsufficiency of Ctla4

with total knock-out of Pdcd1 (Ctla4+/-Pdcd1-/-), mimicking the

pathology and clinical course of ICI-myocarditis patients (186).

The authors found that half of the mice with this genetic

background died within three months of age due to myocyte

necrosis, electrocardiographic instability, and lymphocytic infiltration

in the epicardium and endocardium (186). Interestingly, there was

higher mortality in females, underscoring the female risk factor seen in

human cases (186). Cardiac biopsies of the Ctla4+/-Pdcd1-/- mice were

characterized by an abundance of CD8+ T cells with a more negligible

mixing of CD4+ T cells, F4/80+ macrophages, high PD-L1 expression,

and low Foxp3+ Treg cells, similar to human biopsies (186). This

mouse model recapitulated the clinical course, electrocardiographic

instability and the pathohistological findings with specific lymphocytic

myocardial infiltration seen in patients. Importantly, these mice did not

succumb to cytokine storm or systemic autoimmunity, as seen in Ctla4

or Pdcd1 null mice, and had limited inflammation in extraneous tissues

(186). Further, the abundance of cardiac immune cells in Ctla4+/-

Pdcd1-/- mice express Cd8a and display high clonality, activation, and

cytotoxicity when compared to healthy mouse cardiac tissue (187). The

cardiac-specific lymphoproliferation highlights the usefulness of this

model in studying a break in peripheral tolerance leading to organ-

specific autoimmunity in the context of immunotherapy (186).

Other models involve the induction of myocarditis by

administering ICIs directly. Won et al. induced multiorgan

toxicity in A/J mice with anti-PD-1. Myocarditic mice

recapitulated much of the pathology seen in humans such as

immune cell infiltration rich in activated CD8+, electrical

abnormalities, and elevated serum troponin (188). Although this

model was successfully employed in A/J mice, neither C57BL/6 nor

BALB/c mice developed myocarditis under this treatment scheme

(188). An animal study with cynomolgus monkeys observed

myocardial CD8+ and CD4+ T cell infiltration with positive

immunohistochemical staining of PD-1 and PD-L1, like that

observed in humans, following administration of ipilimumab and

nivolumab (189). In another study, myocarditis could be induced in

male and female C57BL/6J mice that were either healthy or

burdened with colorectal cancer (MC38), melanoma (B16F10),

and breast cancer (EO7710) upon anti-PD-1 and anti-CTLA-4

combination therapy. However, this was accompanied by

multiorgan toxicity including liver, kidneys, skeletal muscle, and

lung (190). Myocarditic mice in this model mimic patterns of

pathology in patients including sex-based differences. There are

multiple models employed for the study of both autoimmune and

immunotherapy-induced myocarditis. Preclinical models of ICI-

MC echo patient studies in pathology and profi le of

cardiac inflammation.

Despite multiple models of myocarditis in the ICI setting, the

mechanism underlying ICI-MC pathogenesis remains unclear.

CD8+ T cells have been highly implicated as pathogenic drivers in

ICI-MC development. Depletion of CD8+ cells, but not CD4+ T

cells, was sufficient to attenuate ICI-MC in Ctla4+/-Pdcd1-/- mice
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(187). When compared to ICI patients who did not develop

myocarditis, the peripheral blood of ICI-MC patients had an

expansion of CD45RA re-expressing CD8+ T cells (Temra), which

are highly activated, cytotoxic, and express heart-tropic chemokines

such as CCL4 and CCL5 (191).

Cardiac myosin has been reported to be an autoantigen

involved in myocarditis pathogenesis (188). Multiple studies have

reported the presence of a-myosin specific T cells in cardiac tissue of

ICI-MC groups using various models (187, 188). A study by Won

et al. reported an increase in activated cardiac myosin-specific

autoimmune T cells compared to controls and myocarditis-naïve

PD-1 treated mice (188). Further, these cells were reported to be

present in naïve mice and express PD-1, providing an avenue by

which autoreactive effector cells are quickly and profoundly

activated following ICI administration (188). Similarly, Axelrod

et al. found that ICI-MC related CD8 cells from Ctla4+/-Pdcd1-/-

mice are rich in TCRs recognizing a-myosin epitopes (187). They

further show that a-myosin is a potent stimulus for clonal

expansion of autoreactive T cells from both ICI-MC patient and

healthy donor PBMCs (187).
Management of immune related
adverse events

Management of immune related adverse events is similar to that

of autoimmune diseases and is tailored according to the affected

organ system and the severity of the toxicity (Table 1). For many

years, steroids, which reduce inflammatory responses, have been

fundamental in the treatment of irAEs. Based on the guidelines

from ASCO and the European Society of Medical Oncology,

patients with grade 1 toxicities can continue ICI therapy with

close clinical monitoring. If the irAE progresses, ICI therapy is

temporarily discontinued. In those with grade II, patients will have

their ICI therapy temporarily halted and are administered

prednisone (0.5 mg/kg per day), which is taken gradually until

signs and symptoms are reduced to or below grade 1. For patients

with grade III and IV irAEs, permanent cessation of ICIs is

required, accompanied by high-dose systemic steroids (1-2 mg/kg

per day) until clinical improvement is confirmed. In severe and life-

threatening conditions, hospitalization is required, and patients will

continue to receive systemic steroids, particularly with intravenous

methylprednisolone (1-2 mg/kg per day), over at least 4-6 weeks.

ICI therapy can only be resumed once the symptoms have regressed

to grade 1 or lower (77, 92).

While steroids have traditionally served as the primary

treatment for immune-related toxicities, a subset of individuals

has shown a poor response to these drugs (192). This sometimes

necessitates a shift to alternative immunomodulatory medications,

which are associated with a diverse spectrum of adverse effects

(193). The occurrence of steroid resistance varies across different

types of irAEs, estimated at approximately 53% for colitis, 20% for

pneumonitis, and 12% for hepatitis (194). Further, in a retrospective

analysis of ICI-treated melanoma, lung cancer, renal cell carcinoma,

and squamous cell carcinoma patients, 22.6% (37 out of 164)

developed resistance or refractoriness to steroids (139), prompting
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prescription of steroid-sparing agents. Several monoclonal antibodies

targeting pro-inflammatory cytokines, immune cells (e.g., B cell and

NK cells), and non-steroidal immunomodulatory agents have been

approved for irAE patients. For instance, rituximab (anti-CD20),

infliximab (anti-TNF-a), and tocilizumab (anti-IL-6R) are

prescribed for patients with cutaneous, intestinal, pulmonary, and

arthritic toxicities. In more severe cases of myocarditis, treatments

such as abatacept (i.e., blocking CD80/86) or alemtuzumab (anti-

CD52) can be administered (77, 92). There are two ongoing

randomized controlled trials with abatacept in the treatment of ICI

myocarditis (ATRIUM (NCT05335928) and Achyls (NCT05195645)

(195). In cases of immune-related hepatitis, nephritis, pancreatitis, and

uveitis, immunosuppressants containing mycophenolate have been

used as a management strategy (196), while steroid refractory

pneumonitis patients can be treated with mycophenolate and

cyclophosphamide (197). Additionally, individuals with neurologic

and hematologic irAEs may undergo treatment with intravenous

immunoglobulin or plasma exchange (198) as these methods can

help eliminate harmful autoantibodies from the bloodstream and have

shown effectiveness in severe cases such as myasthenia gravis (199).

Overall, irAEs are primarily treated with corticosteroids and targeted

therapies directed toward pro-inflammatory cytokines and immune

cells. Although these drugs can be effective to treat irAEs, targeting

these inflammatory factors may have negative impacts on other

critical aspects of immune regulation, potentially increasing the risk

for infections or cancer progression.
Steroid related complications: impacts
on immune system and risk
of infections

Treatment of irAEs using steroids and immunomodulatory

agents can present new hurdles and complications. For example,

evidence from preclinical studies have demonstrated that the

activation of glucocorticoid receptors can enhance cancer

progression and metastasis in breast and colon cancer (200–202).

Steroids are generally known for their immunosuppressive effects

by impairing T lymphocyte activation, reducing the expansion of

Th1 cells, whilst promoting Th2 cells, Tregs and M2 macrophages

(203). Therefore, steroid administration may reduce the efficacy of

ICIs by impairing the immune system’s capability to respond to

threats. The use of steroids has been shown to reduce both

progression-free and overall survival of NSCLC patients treated

with anti-PD-1/anti-PD-L1 (204, 205). In animal models, a study

led by Maxwell et al. reported that corticosteroid treatment resulted

in profound reduction in CD4+ and CD8+ T cells and a decrease in

anti-tumor efficacy of anti-PD-1 in mice bearing subcutaneous

MC38 colon adenocarcinoma, compared to sham-treated controls

(206). Additionally, dexamethasone has been reported to impair the

activation and cytotoxic function of tumor-infiltrating lymphocytes

(207). Furthermore, Fuca et al. elegantly showed that the early use of

steroids in ICI-treated metastatic NSCLC led to a significant

reduction of blood lymphocytes, an increased neutrophil to

lymphocyte ratio, and an enhanced eosinophil count after six
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weeks compared to baseline, which was correlated with worse

clinical outcomes. Their data suggests that steroids may have

depleted cytotoxic T lymphocytes and led to the accumulation of

myeloid derived suppressor cells (MDSCs) (208, 209). In addition,

steroids and immunomodulatory agents can exacerbate pre-existing

medical conditions such as diabetes and hypertension (210) and are

associated with an increased risk of Listeria, fungal, and parasitic

infections as well as reactivating certain viruses such as the herpes

simplex (211–213). Although steroids remain the cornerstone of

irAE management, chronic steroid use can impair anti-tumor

efficacy, exacerbate pre-existing medical conditions, and increase

patients’ susceptibility to certain infections. These findings are of

high clinical value and future studies may investigate the effects of

steroids in modulating blood and intra-tumoral immune cells and

their impact on immunotherapy outcomes.
Restarting ICI after irAE resolution:
who to resume and rate of recurrence

Determining the eligibility of patients to resume ICI treatment

involves considering several factors including the patient’s prior

response to ICI, treatment duration, severity of irAEs, time taken

for toxicity resolution, and their performance status (77).

Individuals who initially responded well to ICI may not require

restarting ICI therapy as the response with ICI may be durable,

while patients who do not exhibit an initial response could

potentially benefit from restarting ICI. However, patients who

restart ICI therapy may encounter a recurrence of the condition or

develop other irAEs. For example, 28% of patients experienced a

recurrence of the same irAE in a cohort study of 24,079 irAE cases.

Specifically, colitis (OR= 1.7, 95% CI: 24.8-33.1), pneumonitis

(OR= 2.3, 95% CI: 1.2-4.3), and hepatitis (OR= 3.4, 95% CI: 1.3-

8.74) were associated with high recurrence rates compared to

other irAEs, suggesting these irAEs may require special

consideration in determining the possibility of ICI rechallenge

(214). In a retrospective multicenter study of 167 patients who

resumed anti-CTLA-4 (32 patients) and anti-PD-1/anti-PDL1

(135 patients) following immune-mediated diarrhea and colitis

(IMDC), one-third of patients experienced IMDC recurrence,

which was less frequent in those treated with anti-PD-1/PDL1

than anti-CTLA-4 (215). In patients with lung cancer, Santini

et al. showed that 482 patients with initial pneumonitis

experienced a 50% recurrence rate upon rechallenge with anti-

PD-L1 therapy, and two deaths were reported (216). Finally, in a

multicenter retrospective study of 80 ICI-treated patients with

metastatic renal carcinoma who experienced ICI discontinuation

due to toxicity, twelve of the 36 patients eligible for ICI

resumption developed new irAEs while six recurred (217).

Overall, patients who develop severe toxicities (grade III and

IV), particularly myocarditis, pneumonitis, nephritis, hepatitis,

and neurological complications, are generally recommended to

cease ICI treatment permanently. ICI therapy resumption after

toxicity is a critical decision, which necessitates balancing

therapeutic benefits and potential risk of recurrence.
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Future directions

ICI therapy has revolutionized the management of cancer over

the past decade and is expected to continue advancing. However,

more than 60% of patients using combined immunotherapy (anti-

PD-1 and anti-CTLA-4) experience various forms of toxicities. One

of the biggest challenges in reducing irAEs is shifting the selectivity

of ICIs towards the tumor microenvironment (TME). Recent

developments in immunotherapy have focused on engineering

antibodies tailored to specific conditions of the TME. One of such

is the recombinant antibody pro-drug (Probody Therapeutics),

which reacts to the high protease activity characteristic of the

TME. The drug consists of an active monoclonal IgG against

cancer cells, a masking peptide, and a substrate linker. After

exposure to the proteases, the substrate linker is cleaved, allowing

the masking peptide to separate and expose the IgG to bind with the

tumor cells (218). While many ICI combinations have proved

successful in preclinical models, Probody Therapeutics with

combined anti-PD-1 and anti-CTLA-4 is currently in a phase III

clinical trial (CheckMate 067) in advanced melanoma patients. So

far, results have been promising in their potential to lower toxicity

and improve clinical outcomes (219).

Another way to decrease irAEs when using anti-CTLA-4

immunotherapy is to use pH-sensitive antibodies. The CTLA-4

molecule normally recycles between the cell surface and the

endosome by binding to beige-like anchor protein (LRBA). This

enables it to come back to the cell surface instead of being degraded

by the lysosome. When using common anti-CTLA-4 mAbs such as

ipilimumab, they bind to CTLA-4 and remain attached when

endocytosed, which prevents CTLA-4 from binding to the LRBA.

Thus, this increases the degradation of CTLA-4 and the risk of

autoimmunity. HL12 and HL32 are pH-sensitive anti-CTLA-4

monoclonal antibodies that release CTLA-4 under low pH

conditions. In preclinical models, HL12 and HL32 preserved

CTLA-4 in the cell surface, depleted Tregs more effectively, had

better bioavailability, and rejected large tumors (220). Currently, it

is in a phase II clinical trial as a new generation of anti-CTLA-4 at

gotistobart (BNT316/ONC-392). Previous phase I/II results in

metastatic solid tumors and NSCLCs showed low incidence of

irAEs in the patients (221).

Following the same trend, the bispecific antibody ATOR-1015 is

also a new generation of bispecific anti-CTLA-4 (IgG1), designed to

target the high co-expression of CTLA-4 and OX40 on tumor-

infiltrating Tregs. In an in-vitro study on transfected CHO cells that

expressed both CTLA-4 and OX40, ATOR-1015 binding efficacy

was tested. NK and Tregs were co-cultured with these CHO cells,

and after adding ATOR-1015, results showed levels of tumor cell

lysis comparable to combinational immunotherapy. At the same

time, in the in-vivo preclinical model (human OX40 transgenic

mice), ATOR-1015 treatment was shown to decrease intra-tumoral

Tregs, increase CD8+ T cell activation, and prolong survival.

Additionally, when injected in combination with anti-PD-1, the

treatment response was enhanced in bladder and colon cancer.

Unfortunately, while phase I of its clinical trial was well tolerated,

infusion-related side effects were found when increasing the dose to

750 mg and was discontinued in 2021 due to impaired efficiency.
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Apart from developing a new generation of immunotherapy, the

gut microbiome has also emerged as a potential biomarker of irAEs.

Recent evidence from preclinical and clinical studies has indicated

that microbiome diversity is altered in ICI-treated subjects compared

to control groups, and that was associated with the occurrence of

irAEs. For example, the enrichment of certain microbial taxa such as

Anaerotruncus, Bacteroides, Parasutterella, Helicobacter, and

Rikenellaceae were observed in mice with intestinal toxicity (222).

Anti-PD-1-treated NSCLC patients with non-severe irAEs were

enriched in microbial taxa such as Lactobacillaceae and Raoultella,

while Agathobacter were more abundant in the gut of patients with

severe irAEs (223). Overall, microbiome diversity influences the

clinical responses and development of immune related adverse

events with distinct microbial taxa being associated with either

favorable or unfavorable responses. Further underscoring the link

between the microbiome and immunotherapy outcomes, fecal

microbiome transplantation (FMT) is being explored as a

treatment modality in various irAEs. For example, a case series by

Wang et al. reported profound improvement in patients with

refractory ICI-colitis following FMT from healthy donors (224).

These findings highlight the potential of the microbiome as both a

biomarker and therapeutic target for managing irAEs.

Based on published reports, the mechanisms of ICI-induced

toxicities across different organ systems exhibit both shared and

heterogeneous characteristics. For example, ICI-induced

pneumonitis, inflammatory arthritis, and colitis are predominantly

driven by both CD4+ and CD8+ T cells and T-cell derived

proinflammatory cytokines such as IFN-g, TNF-a, IL-6, and IL-17

(105, 109, 111, 161, 162, 169). Conversely, other ICI-induced toxicities,

such as ICI-myocarditis, -dermatitis, and -thyroid dysfunction,

involve a more diverse array of immune cells, including T cells, B

cells (autoantibodies), and myeloid cells (macrophages, monocytes)

(102, 103, 152, 155, 184, 190). For instance, biopsy samples from

patients with dermatitis show a high presence of CD4+, CD8+ T cells,

Th1 cells, autoantibodies, complement proteins and immunoglobulin

(Ig)G and IgE (102, 103). Whereas, ICI-neurologic disfunction was

recently found to be driven by microglia, CNS resident macrophages

(139). Overall, some irAEs share common immunological

mechanisms, while others involve a heterogeneous mix of

interacting immune cells which trigger inflammatory responses

following ICI therapy. These insights suggest that future research

should focus on examining these diverse immune cell subsets found to

be dominant in each irAE inmore detail, leveraging current preclinical

and clinical evidence to expedite the development of effective

therapeutic strategies.
Conclusion

The wider use of immunotherapy for cancer patients also comes

with increasing prevalence of immune-related adverse events and

an increasing need for therapies that minimize toxicity and

maintain anti-tumor efficacy. To date, the only reasonably

effective therapies for immunotherapy-induced toxicity are steroid

and other broad immunosuppressants, which may attenuate anti-

tumor immune responses. Comprehensive studies of in-depth
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mechanisms of irAE development using animal studies are

currently lacking and thus, the exact mechanisms and biomarkers

of irAE occurrence remain largely unknown, warranting more

investigation in order to facilitate organ-specific therapies for

irAEs without impairing systemic anti-tumor efficacy. Recently,

substantial efforts have been made to develop a new generation of

antibodies targeting immune checkpoint receptors with the aim to

reduce toxicity compared to conventional ICIs, but significant work

remains to treat cancers effectively with ICI therapies without

exposing patients to toxicities.
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