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IDEIS: a tool to identify PTPRC/
CD45 isoforms from single-cell
transcriptomic data
Juraj Michalik, Veronika Niederlova and Ondrej Stepanek*

Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences,
Prague, Czechia
Single-cell RNA sequencing (scRNA-seq) methods are widely used in life

sciences, including immunology. Typical scRNA-seq analysis pipelines quantify

the abundance of particular transcripts without accounting for alternative

splicing. However, a well-established pan-leukocyte surface marker, CD45,

encoded by the PTPRC gene, presents alternatively spliced variants that define

different immune cell subsets. Information about some of the splicing patterns in

particular cells in the scRNA-seq data can be obtained using isotype-specific

DNA oligo-tagged anti-CD45 antibodies. However, this requires generation of an

additional sequencing DNA library. Here, we present IDEIS, an easy-to-use

software for CD45 isoform quantification that uses single-cell transcriptomic

data as the input. We showed that IDEIS accurately identifies canonical human

CD45 isoforms in datasets generated by 10× Genomics 5’ sequencing assays.

Moreover, we used IDEIS to determine the specificity of the Ptprc splicing pattern

in mouse leukocyte subsets.
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1 Introduction

Recently, robust single-cell RNA sequencing (scRNA-seq) methods have emerged to

study gene expression at the single-cell level, and have become a widely used tool in life

sciences (1). In immunology, scRNA-seq is widely used for the quantification and analysis of

known subsets and states of immune cells, as well as for the identification of new ones (2, 3).

The typical scRNA-seq analysis pipeline quantifies the abundance of transcripts of individual

genes but does not extract information concerning their alternative splicing, which could be

present in the data as well.

CD45 (encoded by the PTPRC gene) is a receptor tyrosine phosphatase that is a well-

established pan-leukocyte surface marker. Moreover, individual lymphocyte subsets have

different patterns of CD45 splicing (4, 5), which is commonly addressed by flow cytometry

phenotyping panels using splicing-sensitive antibodies (6). PTPRC is located on

chromosome 1 in both human and murine genomes. PTPRC contains over 30 exons,
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out of which exons 4, 5, and 6 (encoding parts of the protein called

A, B, and C, respectively) are alternatively spliced (7). This leads to

various protein isoforms named according to the exons included,

such as CD45RABC (all three alternative exons included) or

CD45RO (all three alternative exons excluded).

Human naïve T cells express CD45RA (CD45 isoform expressing

exon A), which is replaced by CD45RO upon activation and

differentiation into memory/effector T cells (8, 9). Terminally

differentiated T cells re-express CD45RA and are called effector-

memory CD45RA+ T cells (TEMRA) (10). Murine naïve, but not

activated, T cells express CD45RB (11). A variant of CD45, called

CD45R, or B220, is used as a marker of murine B cells (12, 13).

The expression of CD45 isoforms can be identified in scRNA-

seq experiments using a method called CITE-seq. It is based on

labeling cell surface proteins with specific antibodies conjugated

with DNA oligonucleotides, which can be subsequently sequenced

and matched with the corresponding cell transcriptomes (14).

However, this approach requires the generation and sequencing

of an additional DNA library, which is associated with a prolonged

experimental time and additional costs.

Here, we describe and validate a software for the efficient

detection of CD45 isoforms directly from transcriptomic scRNA-

seq data, called identification of isoforms (IDEIS). It is tailored for

the (re)analysis of scRNA-seq data generated using 10× Chromium

Single Cell 5’ kits without CITE-seq labeling of CD45 isoforms.
2 Methods

2.1 Technical aspects of IDEIS software

The IDEIS software uses a 10× Cell Ranger (15) BAM file as an

input. The conversion to FASTQ was performed using a 10×

Genomics bamtofastq 1.4.1. The option ‘--locus’ of this software is

used to extract only reads that overlap the PTPRC locus, with exact

limits of locus depending on the organism and the reference. The

software samtools 1.14 was used during the BAM pre-processing

step to identify the GTF file formatting (16, 17). The mapping and

quantification steps are performed using Salmon Alevin 1.9.0 (18).

The conversion of salmon alevin output to RDS and 10X-

compatible count matrix was performed using R script (19).

The IDEIS software was tested with 10× Cell Ranger versions

3.0.2 and 5.0.1.
2.2 Data availability and pre-processing

All the data used in this project were downloaded from publicly

accessible databases. In total, four different single-cell datasets were

analyzed (Supplementary Table 1). The first three datasets, from

papers of the Collora et al., Yu et al., and Mogilenko et al. were

obtained from Gene Expression Omnibus of National Center for

Biotechnology Information (GEO NCBI) (20) under respective

accession numbers GSE187515 (21), GSE212998 (22), and

GSE145562 (23). The last dataset, used in the paper of Lawlor

et al., was obtained from the European Nucleotide Archive (ENA)
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and is available under the accession number PRJEB40376 (24). The

Mogilenko et al. dataset contained murine data, whereas the rest of

the datasets included human samples.

For each dataset, we used only the relevant samples as specified

in Supplementary Table 2. For the Mogilenko et al. dataset, the

BAM files and count matrices directly provided by the authors were

downloaded from GEO NCBI and used for IDEIS and downstream

analyses. For other datasets, we downloaded the FASTQ files for

gene expression and CITE-seq and mapped them using 10× Cell

Ranger software (15) to generate BAM files and count matrices for

each sample separately. For the Collora et al. dataset, we used Cell

Ranger 3.0.2 for mapping to human reference provided by 10×

(version 3.0.2), while for the Yu et al. and Lawlor et al. datasets, we

mapped the reads with 10× Cell Ranger 5.0.1 on human reference

created from files corresponding to build GRCh38 downloaded

from Ensembl version 102 (25). For Collora et al., Yu et al., and

Lawlor et al. datasets, the list of mapped antibodies is provided in

Supplementary Table 1.

The analyses with IDEIS were performed on BAM files either

provided directly by the authors (the Mogilenko et al. dataset) or

generated by us from their FASTQ files (the Collora et al., Yu et al.,

and Lawlor et al. datasets). The BAM for the Collora et al. and Yu

et al. datasets were also pre-filtered to reads from cells that passed

the initial quality control. Since the Lawlor et al. dataset provided

FASTQ files that contain reads R2 of two different lengths, the BAM

files generated by Cell Ranger were split by length using samtools

and option –e ‘length(seq)<=100’ or ‘length(seq)>100’ and analyzed

by IDEIS for each length separately. Final counts were generated by

the addition of counts from both groups.
2.3 Comparison of IDEIS and CD45er

We analyzed the BAM files for both the Corolla et al. and Yu

et al. datasets using CD45er according to official instructions

(https://github.com/getzlab/10x-cd45-isoform-quantification) (26).

CD45er outputs probabilities for each read aligning to CD45 to

belong to one of the isoforms, RAX, RABX, RBX, RBCX, RABCX,

or RX. The total probability of CD45RA was calculated as the sum of

probabilities of reads belonging to isoforms RAX, RABX, and

RABCX. The probability of CD45RO corresponds to the value

marked in the column RX. We then generated the final counts

used in further downstream analysis as an aggregation of these

probabilities using cellular barcodes.
2.4 Data analysis

All data were analyzed using R 4.2.1 (19) with Seurat 4.1.1 (15).

All parameters were chosen to generate the best visualization and

clustering, which would allow the definition of cellular subtypes and

remove eventual contaminations. Initially, basic analysis was

performed for each sample. To retain only cells with good

sequencing depth, the minimum number of features was set to

1,000 for the Lawlor et al. dataset and 200 for other datasets. For the

Collora et al., Yu et al., and Lawlor et al. datasets, CITE-seq counts
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were imported as a separate assay and then normalized using the

CLR method (27). IDEIS and, if calculated, CD45er results were

imported and processed in a similar manner. For each sample, reads

mapping to T-cell receptor (TCR)-related genes, as well as

ribosomal and mitochondrial genes, were discarded. Each dataset

was also subjected to normalization, variable feature detection

(1,000 features), scaling, dimensional reduction using PCA (20

principal components were kept), and UMAP and clustering

(resolution variable for different datasets; please refer to the code

for more details). Clusters of dead cells, contamination of undesired

cell types, and any cells with more than 10% reads mapped to

mitochondrial genes were removed. Subsequently, samples from the

same dataset were integrated using STACAS 2.0.1 (1,000 features

for anchors) (28), re-scaled, subjected to dimensional reduction (20

principal components for PCA), and re-clustered (resolution

variable for different datasets). In the case of the Mogilenko et al.

dataset, the second filtering was performed after integration,

followed by another round of post-processing. The datasets were

manually annotated using standard markers. The gene expressions

visualized on UMAP projections were generated using Seurat-

provided functions, with the minimum cut-off for feature

expression in all cases being 0. For the Lawlor et al. dataset, the

additional maximum cut-off for CITE-seq and IDEIS-computed

log2-normalized counts of 2 were used.

To compare the performance of CITE-seq or CD45er and

IDEIS at single-cell level, we regrouped cells by the number of

CD45RA or CD45RO transcripts (numerical interval groups being

open on the right) detected by IDEIS and CITE-seq (in which case

the counts were scaled to log10 + pseudo-count of 1 to avoid non-

finite values) or CD45er, calculated the number of cells per group

and then plotted as log10 + pseudo-count of 1 using a tile plot. The

correlation coefficients and p-values were calculated using the

original, ungrouped data (log-scaled in the case of CITE-seq).

To compare the results yielded by CITE-seq and IDEIS or

CD45er and IDEIS at the level of clusters, we calculated the averages

of log2-normalized PTPRC/CD45 isoform counts (IDEIS, CITE-

seq) or probabilities (CD45er) per each cluster. We then used these

values to compute the Pearson’s correlation coefficient and linear

regression between the two approaches.
2.5 Subsampling human control
CD4+ T cell dataset analysis with IDEIS

To simulate the effect of reduced sequencing depth on IDEIS

analysis, we employed subsampling of BAM files used as entries for

isoform analysis. We subsampled the BAM of each sample from the

Collora et al. dataset on percentages ranging from 5 to 100 in

increments of 5 with the subsampling option ‘--subsample’ of

samtools view tool along with ‘--subsample-seed’ set to 42. The

subset BAM files were then used for analysis by IDEIS, as usual, and

the resulting count matrices were imported to Seurat objects as

separate assays.

The required sequencing depth was estimated by determining

the average length of reads mapping to the genome per cell, which

was computed as the number of all reads from experiment mapping
Frontiers in Immunology 03
to the genome exactly once, divided by the number of cells used in

the finalized datasets. Only the reads from these cells were

considered. These values were computed separately for each

subsampling percentage. We then quantified the amplitude of the

effect of subsampling on the quality of IDEIS analysis using two

different estimators: i) fraction of cells expressing the given

isoform–fraction of cells where the count for the given isoform

was above 0; and ii) average log2-normalized read count of the

entire dataset for each isoform. To determine the maximum

theoretical value for both the cases, we fitted the following two-

parameter rational function:

Y =  
a� X
b + X

where a is the maximum value of estimator X, and b is the

parameter for which Y = 0.5 × a. This function was previously used

in a similar case to model the number of somatic single-base

mutations as a function of sequencing coverage (29). This model

was fitted using the function nls from the base R package stats.
2.6 Subsampling PBMC T cell dataset
analysis with IDEIS

Due to large size of the data, subsampling of the Lawlor et al.

dataset was performed only on the Pool 1 sample (sample number

SAMEA7463734, see Supplementary Table 2). Subsampling was

performed separately on the BAM files split by length, as specified

previously. The rest of the subsampling process and quantification

of its effect were performed as in the case of the Collora

et al. dataset.
2.7 Benchmarking IDEIS vs CD45er

Benchmarking was performed on the datasets of Collora et al.

and Yu et al. Before benchmarking, we subsampled the BAM files by

10× subset-bam to contain only alignments for cells present in

whitelists, which were generated from the initial Seurat objects. The

execution time was estimated with Unix “time” command and

counted as the sum of user and system time (time spent in use mode

outside the kernel and in the kernel within the process,

respectively). Both software programs were run 40 times, and the

results were averaged. Because salmon alevin does not support

parallel indexing, indexing was not benchmarked in case of IDEIS.

We ran the benchmarking on a cluster with 96 CPUs (Intel(R) Xeon

(R) CPU E7-8890 v4, 2.20GHz per CPU) and 1TB RAM.
2.8 Code availability

The software is available at https://github.com/Lab-of-

Adaptive-Immunity/IDEIS. The code used to process the

downloaded datasets, prepare figures as well as running

benchmarking is available at: https://github.com/Lab-of-Adaptive-

Immunity/IDEIS_data_analysis.
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3 Results

3.1 IDEIS is a software for detection of
CD45 isoforms from transcriptomic data

To enhance the annotation of lymphocyte subsets in single-cell

data, we created IDEIS, a software program aimed at identifying

alternatively spliced variants of the PTPRC/CD45 gene. The

principle of IDEIS software is the creation of a transcriptome

reference, to which a read will map only if it contains a specific

exon or if it spans a junction of the two neighboring exons. For

example, a read mapping to exon 4 identifies CD45RA isoform;

similarly, a junction between exons 3 and 7 specific to CD45RO can

be identified by a read that overlaps it (Figure 1A).

The reference to which reads are mapped is constructed from

adjacent exons or exon–exon junctions; for example, exon 4 can be

followed by exon 5, but also by exon 6 or 7 (Figure 1B; see also

Technical Note in the Supplementary Material). All possible links and

ordering between exons of interest and possible flanks are

exhaustively enumerated by transcript building rules contained

within a file with special formatting, which are then used to
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with all possible combinations of flanking sequences. The length of

these flanks was determined from the length of the reads that were

used in the experiment, which was analyzed by IDEIS (Figure 1C).

The complete reference is therefore made from sequences, each of

which contains an exon or a junction of interest, here exons 4, 5, and

6, and the junction between exons 3 and 7, surrounded by a specific

set of flanking sequences, which are constructed using information

provided by transcript building rules. Flanks shorter than reads

ensure that each read that completely maps to a specific reference

sequence least partially covers the exon or junction of interest

(Figure 1C). However, the exhaustiveness of this list ensures that

each possible combination of exons is considered.

The software uses 10× Cell Ranger (15) BAM file as input, from

which the reads mapping to PTPRC locus are extracted and

transformed to FASTQ files using 10× bamtofastq script with

‘--locus’ option. These reads were then mapped to the reference,

and the desired PTPRC/CD45 isoforms were quantified using

salmon alevin software (18). Finally, the results are transformed

into a format that can be easily imported to a Seurat object

containing the analyzed dataset as a separate assay.
FIGURE 1

Isoforms of PTPRC/CD45 and their detection by IDEIS software. (A) The principle of identification of PTPRC/CD45 isoforms using IDEIS software.
PTPRC/CD45 can be transcribed and spliced into a number of variants including CD45RA and CD45RO isoforms. Some reads generated by
sequencing at least partially map to exon A, while others might cover junction between exons 3 and 7 (left and middle). These reads then can be
used to identify cells that express CD45RA and CD45RO isoforms for downstream analysis (right). (B) The framework of IDEIS software. Light gray
rectangle—object/result, yellow rhombus—process. The first step is finding reads that map to CD45 locus from BAM file produced by 10× Cell
Ranger and then dump them into FASTQ files using 10×-bamtofastq software. The length of R2 read is extracted if not provided as parameter, and
along with a list of exons and a set of rules providing the information on exons or junctions of interest and the exons around them—transcript
building rules—is used to build a reference in such a manner that the reads aligned against it match specific isoforms. The reads from FASTQ files
are then mapped against reference using salmon alevin software. The process is finalized by conversion of count matrix generated by salmon alevin
into RDS file containing Seurat object. (C) The creation of reference used for detection of PTPRC/CD45 isoforms. The length of reads of R2 is used
to generate flanking sequences (orange) to exon of interest, here exon 4 (green) with certain offset. The flanking sequences are built from the
sequences of exons following the transcript building rules, which indicate what exons precede or follow exon 4 and in which order/combination.
Any read mapping to complete sequence (dark green bar) of transcriptome will also map at least partially to exon 4.
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3.2 The performance of IDEIS for human
CD4+ T cells

The location of key exons of PTPRC/CD45 isoforms is near the

5’ end of the gene; therefore, approaches generating libraries

enriched for the 5’ end of the transcript are well suited for CD45

isoform detection. First, we tested the performance of IDEIS

software on a dataset published in a study by Collora et al.

containing data on CD4+ T cells from healthy and HIV-infected

patients (Accession Number GSE187515) (21). The gene expression

library in this experiment was generated using the Chromium Next

GEM Single Cell 5’ Library & Gel Bead Kit v1.1. We only analyzed

samples from healthy subjects (Supplementary Table 2). The

expression levels of SELL, CCR7, CCL5, and IL7R characterized

distinct CD4+ T-cell populations ranging from naïve to memory to

effector cells (Figures 2A, B). However, data on CD45RA and

CD45RO isoforms are required for further annotation of some

cellular subtypes, such as TEMRA cells. CITE-seq using anti-

CD45RA and anti-CD45RO antibodies can be used as the gold

standard in isoform identification in scRNA-seq data. Therefore, we

benchmarked the performance of the IDEIS software with CITE-

seq. Both methods identified enrichment of specific isoforms in the

same clusters (Figures 2C–F). At the single-cell level, CITE-seq was

slightly more sensitive than IDEIS, with a significant correlation

between the two methods (Figures 2E, G).

The analysis of the data generated by IDEIS showed that the

expression of CD45RA and CD45RO was inversely correlated

(Figure 2H). Furthermore, these data allowed for the

identification of some cell subtypes. Notably, cluster 6 showed

increased levels of CD45RA while expressing effector genes,

suggesting that this cluster contained TEMRA cells (Figure 2A). In

general, IDEAS is a viable alternative to CITE-seq for the

identification and annotation of CD45RA/CD45RO expressing

clusters, although it is less robust at the single-cell level.
3.3 The performance of IDEIS for human
CD8+ T cells

To further validate the performance of IDEIS software at the sell

cluster level, we analyzed another dataset (Accession Number

GSE212998) (22), which includes CD8+ T cells. Gene expression

data were generated from CD8+ T cells of CMV-seropositive

patients profiled using the Chromium Next GEM Single Cell 5’

Kit v2. Distinct clusters of naïve, memory, and effector cells showed

expression of their typical markers (Figures 3A, B). The PTPRC/

CD45 isoform expression by CITE-seq and IDEIS showed that naïve

and some memory/effector T cells expressed CD45RA, whereas

central memory and some effector memory T cells and MAIT cells

expressed CD45RO (Figures 3A, C). Based on these data, we

annotated clusters 1, 3, 9, 11, and 12 (Figure 3A) as TEMRA cells.

Both CITE-seq and IDEIS identified CD45RA and CD45RO

isoforms in identical clusters (Figures 3C–F). At the single-cell level,

the results obtained by CITE-seq showed better performance than

by IDEIS, but with a significant correlation between the results

(Figure 3G). As in the case of CD4+ T cells, the expression of
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CD45RA and CD45RO in the clusters was strongly anti-correlated

(Figure 3H). These results demonstrated that IDEIS is suitable for

the analysis of human CD8+ T cells.
3.4 IDEIS does not require a high
sequencing depth

Because software performance depends on read mapping to

particular parts of the PTPRC/CD45 transcript, its performance

might be strongly influenced by the overall sequencing depth. To

address this aspect, we subsampled the BAM files from the Collora

et al. dataset to percentages ranging from 5 to 100. To quantify the

effects of subsampling on IDEIS performance, we computed the

average number of mapped reads per cell as the number of reads

mapped at least once divided by the number of cells in the finalized

datasets. Furthermore, we computed two different estimators: i) the

fraction of cells positive for a given isoform (Figure 4A) and ii) the

average log2-normalized read count for a given isoform (Figure 4B).

As expected, the number of cells positive for a given isoform, as well

as the average log2-normalized count of a given isoform, increased

with the sequencing depth (Figure 4A). We fitted the data with a

two-parameter rational function to determine the theoretical

maximum and depth with half-maximal performance

(Figures 4A, B). The half-maximal performance for the

determination of the fraction of positive cells achieved at 4,971

reads/cell for CD45RA and 9565 reads/cell for CD45RO was lower

than the actual sequencing depth of the Collora et al. dataset, which

was 17,798 reads/cell on average. The half-maximal performance

for average log2-normalized expression was higher (12,350 for

CD45RA and 28,940 for CD45RO). Overall, IDEIS showed good

performance for data with a standard sequencing depth of 15,000-

25,000 reads per cell.
3.5 IDEIS can be used to identify CD45 in
murine T cells

While PTPRC/CD45 isoforms have been mainly investigated in

human cells, the PTPRC/CD45 splicing pattern differs among T cell

subsets in mice as well. Thus, it can be used as an additional

parameter for characterizing particular cells in scRNA-seq

experiments (9). We analyzed a dataset of murine CD45+ cells

from multiple organs (Accession Number GSE155006) (23) using

IDEIS. The libraries used to obtain these datasets were generated

using the Chromium Single Cell 5’ Reagent Kit (the version of the

kit not indicated). We clustered and annotated the cells using

established markers (Figures 5A, B). Since the expression of the

Cd45RB isoform in murine T cells roughly corresponds to CD45RA

in humans (11), we included Cd45RB and Cd45RC isoforms in the

analysis (Figure 5C). The overall expression of the isoforms

identified by IDEIS in mice was lower than that in human

samples (Figure 5D). Cd45RA is mostly expressed in B cells.

Cd45RB is expressed by naïve and central memory T cells and

NK cells. Cd45RC showed very low expression in all subsets. The

Cd45RO isoform is expressed mainly in effector and memory/
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FIGURE 2

Analysis of PTPRC/CD45 isoforms of CD4+ T cells. Healthy human control samples from the Collora et al. dataset (GSE187515) were analyzed.
(A) UMAP dimensional reduction and clustering of the finalized dataset, with expert annotations based on the gene expression. The x and y axes
show the first and second dimensions of UMAP projection, respectively. (B) Visualization of log2-normalized expression of selected genes on UMAP
projection of the dataset. (C) Log2-normalized counts obtained by CITE-seq for CD45RA (red) or CD45RO (blue) isoform on UMAP projection of the
dataset. (D) Log2-normalized counts detected by IDEIS software for CD45RA (dark red) or CD45RO (purple) isoform on UMAP projection of the
dataset. (E) Violin plots of normalized expression for CD45RA (left column) and CD45RO (right column) per cluster as determined by IDEIS (top row)
and CITE-seq (bottom row). (F) Linear regression and correlation of average log2-normalized CITE-seq read counts (x axis) or counts of reads
detected by IDEIS software (y axis) corresponding to CD45RA (dark red) and CD45RO (purple) isoforms for each cluster of the dataset. Each dot
represents a value for cluster with numbering as shown on (A). The line shows linear regression curve. r, Pearson’s correlation coefficient, p.val,
p-value of slope. (G) Tile plot of isoform counts detected by CITE-seq (x axis) and IDEIS (y axis, the values shown correspond to log10 with pseudo-
count of 1) for CD45RA (left) and CD45RO (right). The counts per tile are shown in log10 scale with pseudo-count of 1. r, Pearson’s correlation
coefficient, p.val, p-value of correlation test between cell-wise isoform counts. (H) Linear regression and correlation of average log2-normalized
counts of reads detected by IDEIS software corresponding to CD45RA (x axis) and CD45RO isoform (y axis). Each dot represents a value for cluster
of the dataset with numbering as shown on (A). The line shows linear regression curve. r, Pearson’s correlation coefficient, p.val, p-value of slope.
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FIGURE 3

Analysis of PTPRC/CD45 isoforms of CD8+ T cells. CMV-seropositive human samples from the Yu et al. dataset (GSE212998) were analyzed. (A) UMAP
projection and clustering of the finalized dataset, with expert annotations based on the gene expression. The x and y axes show the first and second
dimension of UMAP projection, respectively. (B) Visualization of log2-normalized expression of selected genes on UMAP projection of the dataset.
(C) Log2-normalized counts obtained by CITE-seq for CD45RA (red) or CD45RO (blue) isoform on UMAP projection of the dataset. (D) Log2-normalized
counts detected by IDEIS software for CD45RA (dark red) or CD45RO (purple) isoform on UMAP projection of the dataset. (E) Violin plots of normalized
expression for CD45RA (left column) and CD45RO (right column) per cluster as determined by IDEIS (top row) and CITE-seq (bottom row). (F) Linear
regression and correlation of average log2-normalized CITE-seq read counts (x axis) or reads detected by IDEIS software (y axis) corresponding to
CD45RA (dark red) and CD45RO (purple) isoforms for each cluster separately of the dataset. Each dot represents a value for cluster with numbering as
shown on (A). The line represents linear regression curve. r, Pearson’s correlation coefficient, p.val, p-value of slope. (G) Tile plot of isoform counts
detected by CITE-seq (x axis) and IDEIS (y axis, the values shown correspond to log10 with pseudo-count of 1) for CD45RA (left) and CD45RO (right).
The counts per tile are shown in log10 scale with pseudo-count of 1. r, Pearson’s correlation coefficient, p. val, p-value of correlation test between
cell-wise isoform counts. (H) Linear regression and correlation of average log2-normalized counts of reads detected by IDEIS software corresponding to
CD45RA (x axis) and CD45RO isoform (y axis). Each dot represents a value for cluster of the dataset with numbering as shown on (A). The line shows
linear regression curve. r, Pearson’s correlation coefficient, p.val, p-value of slope.
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effector T cells, dendritic cells, and monocytes. Interestingly, naïve

CD4+ T cells, but not naïve CD8+ T cells, express intermediate levels

of Cd45RB and Cd45RO. These results demonstrated for the first

time that PTPRC/CD45 isoforms can be useful for the identification

of leukocyte subsets in murine scRNA-seq data. This is not limited

to T cell subsets as other immune cell subsets, such as NK cells

or monocytes, and also shows characteristic PTPRC/CD45

splicing patterns.
3.6 IDEIS is fast and efficient

In the next step, we compared the performance of IDEIS to that

of a similar software called CD45er which was described previously

(26). We analyzed the Collora et al. and Yu et al. datasets by IDEIS

and CD45er and obtained comparable results (Figures 6A–D), as

documented by a very strong correlation between isoform

expression both at the single-cell level (Figures 6E, F) and at the

cluster level (Figures 6G, H).

To compare the speed of CD45er and IDEIS, we benchmarked

the datasets of Collora et al. and Yu et al. To obtain accurate results,

we ran each software program 40 times and averaged the obtained

execution times. IDEIS was tested in two different configurations: a)

using whitelists generated from the initial datasets, which is faster,

and b) forcing the estimated number of cells in data with any

isoform to 3,000, which is used for further processing by salmon

alevin; this method is slower because of exportation of matrix

compatible with 10× format. To put both programs on an even

starting ground, we used only reads from cells that passed the initial

quality control checks. Because salmon alevin does not support

multiple index generations in parallel, IDEIS was run on already

prepared index files that were not included in the benchmarking

time. However, the execution time of this step was negligible. In

summary, IDEIS was 6×–29× faster than CD45er with the forcing-

cells option and 11×–49× faster with the whitelist option than

CD45er (Figure 6I).
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3.7 3’ RNA sequencing method provides
limited information on the CD45 splicing

The previous analyses were run using input scRNA-seq data

generated by Chromium Single Cell 5’ Reagent Kits. Such

approaches are mainly used when TCR or BCR repertoire

profiling is also analyzed, as most 3’ single-cell sequencing assays

do not capture CDR3 sequences that lie closer to the 5’ end of

receptor transcripts (30). To investigate whether 3’ sequencing data

could serve as the input for IDEIS, we analyzed the scRNA-seq

dataset of human PBMCs generated by Chromium Single Cell 3’

Library & Gel Bead Kit v2 for library (Accession Number

PRJEB40376) (24) (Figures 7A, B). The comparison with CITE-

seq showed that only limited information about the expression of

CD45RA or CD45RO isoforms was obtained from the

transcriptomic data by IDEIS (Figure 7C). On the level of

individual clusters, CD45RA expression by IDEIS did not

significantly correlate with the results of CITE-seq, while for the

CD45RO isoform, there was a correlation between the two methods

(Figure 7D). At the single-cell level, the results showed a very small,

albeit significant, correlation in both cases, but the overall number

of isoform reads per cell identified by IDEIS was very

low (Figure 7E).

We investigated the effect of subsampling on the Lawlor et al.

dataset. Due to size of the data, the analysis was limited to Pool 1

(Figure 7F, sample number SAMEA7463734; see Supplementary

Table 2). The results showed that even with extensive sequencing,

the maximum number of cells positive for either CD45RA or

CD45RO remained below 10%. To reach the half-maximal

performance of identification of CD45RA and CD45RO positive

cells, the average sequencing depth would need to be 3.8 × 105 and

1.1 × 105 reads per cell, respectively (Figures 7G, H). Overall, this

analysis showed that while we observed a limited correlation

between CITE-seq and IDEIS in the case of the CD45RO isoform,

the low overall number of isoform read counts per cell identified by

IDEIS means that this tool has only limited use when employed to

analyze 3’ sequencing data.
FIGURE 4

Effect of read subsampling of reads on performance of IDEIS. The Collora et al. dataset (GSE187515) was analyzed. (A) The fraction of cells having a
positive read count of indicated isoforms identified by IDEIS in function of estimated average number of mapped reads per cell, for CD45RA (red)
and CD45RO (purple) isoforms. The dots show values calculated from subsampled dataset, full colored line shows the fit by two-parameter rational
function, and black dashed line shows its asymptote representing maximum theoretically possible value. Black dotted lines show the point where
50% of maximum predicted value has been reached. (B) The evolution of average log2-normalized read count identified by IDEIS in function of
estimated average number of mapped reads per cell, for CD45RA (red) and CD45RO (purple) isoforms. The meaning of graphical elements is the
same as in (A).
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4 Discussion

IDEIS is an accurate tool for determining the splicing pattern of

CD45RA vs CD45RO in CD4+ and CD8+ T cells using scRNA-seq

data generated by the 5’ sequencing protocol. It can be used to
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determine and annotate particular T cell subsets without the need to

use CITE-seq protocols with anti-CD45RA and anti-CD45RO

antibodies, which reduces the length of the protocol and additional

costs. Moreover, it could be used for the reanalysis of scRNA-seq

experiments that have already been performed without the CITE-seq
FIGURE 5

Analysis of CD45 isoforms in murine leukocytes. The Mogilenko et al. dataset (GSE155006) was analyzed. (A) UMAP projection and clustering of the
finalized dataset, with expert annotations based on the gene expression. The x and y axes show the first and second dimensions of UMAP
dimensional reduction, respectively. (B) Visualization of log2-normalized expression of selected genes on UMAP projection of the dataset. (C) Log2-
normalized counts of reads detected by IDEIS software corresponding to Cd45RA (dark red), Cd45RB (green), Cd45RC (black) and Cd45RO (purple)
isoforms on UMAP projection of analyzed dataset. (D) Violin plots of normalized expression for Cd45RA (left), Cd45RB (middle) and Cd45RO (right)
per cluster as determined by IDEIS.
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FIGURE 6

Benchmark between CD45er and IDES. (A) UMAP projections with log2-normalized counts of reads detected by IDEIS and log2-normalized sum of
probabilities of reads matching CD45RA isoforms per cell. The comparison is shown for the Collora et al. dataset. (B) UMAP projections with log2-
normalized counts of reads detected by IDEIS and log2-normalized sum of probabilities of reads matching CD45RO isoforms per cell. The
comparison is shown for the Collora et al. dataset. (C) UMAP projections with log2-normalized counts of reads detected by CD45er and log2-
normalized sum of probabilities of reads matching CD45RA isoforms per cell. The comparison is shown for the Yu et al. dataset. (D) UMAP
projections with log2-normalized counts of reads detected by CD45er and log2-normalized sum of probabilities of reads matching CD45RO
isoforms per cell. The comparison is shown for the Yu et al. dataset. (E) Tile plot of isoform counts detected by CD45er (x axis) and IDEIS (y axis) for
CD45RA (left) and CD45RO (right). The counts per tile are shown in log10 scale with pseudo-count of 1. The plots are calculated for the Collora et al.
dataset. r, Pearson’s correlation coefficient, p. val, p-value of correlation test between cell-wise isoform counts. (F) Tile plot of isoform counts
detected by CD45er (x axis) and IDEIS (y axis, the values shown correspond to log10 with pseudo-count of 1) for CD45RA (left) and CD45RO (right).
The counts per tile are shown in log10 scale with pseudo-count of 1. The plots are calculated for the Yu et al. dataset. r, Pearson’s correlation
coefficient, p. val, p-value of correlation test between cell-wise isoform counts. (G) Linear regression and correlation of average log2-normalized
sum of probabilities of read matching given isoform returned by CD54er per cell (x axis) and average log2-normalized counts of reads corresponding
to given isoform by IDEIS (y axis), for the Collora et al. dataset. Each dot represents a value for cluster with numbering as shown on Figure 2A. The
line represents linear regression curve. r, Pearson’s correlation coefficient, p. val, p-value for linear regression slope. (H) Linear regression and
correlation of average log2-normalized sum of probabilities of read matching given isoform returned by CD54er per cell (x axis) and average log2-
normalized counts of reads corresponding to given isoform by IDEIS (y axis), for the Yu et al. dataset. Each dot represents a value for cluster with
numbering as shown on Figure 3A. The line represents linear regression curve. r, Pearson’s correlation coefficient, p. val, p-value for linear regression
slope. (I) The comparison of execution times for CD45er and IDEIS on eight different samples from analyzed the Collora et al. and Yu et al. datasets.
For each sample n = 40 runs were made. The dots represent the time execution of each separate run, the bar shows their average for given subset.
In case of IDEIS the benchmark was done with forced number of cells on 3,000 (orange) or whitelist of cells (dark orange). Bottom numbers, dataset
Accession Numbers, x axis labels, sample Accession Numbers.
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FIGURE 7

Analysis of CD45 isoforms of a human dataset generated from 3’ gene expression library. The Lawlor et al. dataset (PRJEB40376) was analyzed.
(A) UMAP projection, clustering and expert annotations of the finalized dataset. The x and y axes show the first and second dimension of UMAP
projection, respectively. (B) Visualization of log2-normalized expression of selected genes on UMAP projection of the dataset. (C) Log2-normalized
counts of CITE-seq reads (top row) or reads detected by IDEIS software (bottom row) corresponding to CD45RA (left column) or CD45RO (right
column) isoform on UMAP projection of analyzed dataset. To better visualize the expression, the maximum expression value was cut off at 2.
(D) Linear regression and correlation of average log2-normalized CITE-seq read counts (x axis) or reads detected by IDEIS software (y axis)
corresponding to CD45RA (dark red) and CD45RO (purple) isoforms for each cluster separately of the dataset. Each dot represents a value for
cluster with numbering as shown on (A). The line represents linear regression curve. r, Pearson’s correlation coefficient, p. val, p-value for linear
regression slope. (E) Tile plot of isoform counts detected by CITE-seq (x axis) and IDEIS (y axis, the values shown correspond to log10 with pseudo-
count of 1) for CD45RA (left) and CD45RO (right). The counts per tile are shown in log10 scale with pseudo-count of 1. r, Pearson’s correlation
coefficient, p. val, p-value of correlation test between cell-wise isoform counts. (F) UMAP projection and clustering dataset from first pool of
samples only. (G) The fraction of cells having a positive read count of indicated isoforms identified by IDEIS in function of estimated average number
of mapped reads per cell, for CD45RA (dark red) and CD45RO (purple) isoforms, for Pool 1 of the Lawlor et al. dataset only. The dots show values
calculated from subsampled dataset, full colored line shows the fit by two-parameter rational function, and black dashed line shows its asymptote
representing maximum theoretically possible value. Black dotted lines show the point where 50% of maximum predicted value has been reached.
(H) The evolution of average log2-normalized read count identified by IDEIS in function of estimated average number of mapped reads per cell, for
CD45RA (red) and CD45RO (purple) isoforms, for Pool 1 of the Lawlor et al. dataset only. The meaning of graphical elements is the same as in (G).
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labeling. The recommended depth of sequencing for full IDEIS

performance is estimated to be 15,000 reads per cell, which is

typical in the field. The use of IDEIS for data generated by 3’

sequencing protocols is limited because of the rarity of reads

mapping to the alternatively spliced exons in PTPRC/CD45, which

are located towards the 5’ end of the transcript. However, if there is

no alternative, IDEIS can still be used to retrieve information about

PTPRC/CD45 splicing, particularly concerning the CD45RO isoform.

Although not commonly used for detecting particular subsets,

different types of immune cells have different PTPRC/CD45 splicing

patterns in mice (11). We used IDEIS to explore the PTPRC/CD45

splicing patterns in murine leukocytes at the single-cell level. We

identified that particular lymphocyte subsets can be identified by

their PTPRC/CD45 splicing patterns, such as B cells, by their

expression of CD45RA, naïve and central memory T cells, NK

cells by their expression of CD45RB, and effector memory T cells by

their expression of CD45RO. The lack of CD45 CITE-seq data in

murine immune datasets makes IDEIS a useful tool for

subset annotation.

Haradhvala et al. previously developed CD45er, a script for the

analysis of PTPRC/CD45 splicing in scRNA-seq data to evaluate

engineered T cells in B-cell lymphoma therapy (26). A comparison

of this tool and IDEIS showed that, while both programs have

similar results to human data, IDEIS has a substantial advantage for

third-party users. First, IDEIS uses a faster algorithm than CD45er

does. Second, IDEIS is much easier to use with murine data than

CD45er. Third, the results generated by IDEIS are easier to use, as

they are exported as MTX objects that can be loaded in R for

downstream analysis. If the user opts to use the Seurat object as an

input, the results of the analysis are added directly to it as a new

assay, making further analyses even easier.

One of the main drawbacks of this method is the limited

applicability of data generated from 3’ gene expression libraries.

The analysis of such data shows that there is, at the cluster level, a

limited correlation between the results obtained by CITE-seq and

IDEIS in the case of the CD45RO isoform. However, the correlation

at the single-cell level between the results of the two methods was

very small, albeit statistically significant. Moreover, the overall

isoform read count obtained by IDEIS is very low, meaning that

even a small noise might potentially perturb the analysis, thereby

limiting the usefulness of IDEIS for the study of such data.

However, this is an inherent property of 3’ RNA library

preparation (30), leading to the fact that information about

PTPRC/CD45 splicing is barely present in the final data. However,

5’-RNA sequencing is often used for T-cell scRNA-seq experiments

due to its compatibility with parallel VDJ repertoire sequencing.

Another caveat of IDEIS is its inability to use biological information

that can be present in the first read with a cellular barcode and

unique molecular identifier, as well as its dependency on read

lengths; however, these points have no significant impact on the

global performance of the software; in particular, the read length

dependency is mitigated by salmon alevin’s split of weight for multi-

mapping reads.

We did not analyze the role of the length of the sequencing

reads because of the scarcity of required data. We assume that
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longer reads should improve the quality of the results returned by

IDEIS; however, this assumption requires further confirmation. We

show here that even relatively short reads (26 and 98 bp for R1 and

R2, respectively, used in the Collora et al. dataset) are sufficient for

analysis. Therefore, IDEIS should perform well in most

sequencing setups.

Overall, IDEIS is a tool for the fast analysis of PTPRC/CD45

isoform splicing, facilitating the interpretation of scRNA-seq data of

human and mouse lymphocytes. Its ease of use makes it suitable for

use even by scientists with limited experience in single-cell

data analysis.
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