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using PNI-GARS as a predictor
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1School of Science, Chongqing University of Technology, Chongqing, China, 2Department of
Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
3Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan, China,
4Department of Radiology, Sichuan Provincial People’s Hospital, Chengdu, China
Purpose: The aim of this study was to develop and validate a predictionmodel for

classification of pulmonary nodules based on preoperative CT imaging.

Materials and methods: A data set of Centers 1 (training set: 2633; internal

testing set: 1129); Center 2 and Center 3 (external testing set: 218) of patients with

pulmonary nodule cases was retrospectively collected. Handcrafted features

were extracted from noncontrast chest CT scans by three senior radiologists. A

total of 22 clinically handcrafted parameters (age, gender, L-RADS, and PNI-

GARS et al.) were used to construct machine learning models (random forest,

gradient boosting, and explainable boosting) for the classification of preoperative

pulmonary nodules, and the parameters of the model were adjusted to achieve

optimal performance. To evaluate the prediction capacity of eachmodel. Both 5-

fold cross-validation and 10-fold cross-validation were used to test the

robustness of the models.

Results: The explainable boosting model had the best performance on our

constructed data. The model achieves an accuracy of 89.9%, a precision of

97.48%, a specificity of 89.5%, a sensitivity of 91.1%, and an AUC of 90.3%. In

human-machine comparison, the AUC of machine learning models (90.4%, 95%

CI: 85.5%–94.8%) was significantly improved compared to radiologists (60%, 95%

CI: 50%–71.4%).

Conclusions: The explainable boosting model exhibited superior performance

on our dataset, achieving high accuracy and precision in the diagnosis of

pulmonary nodules compared to experienced radiologists.
KEYWORDS

machine learning, pulmonary nodules, computed tomography, pulmonary node
imaging-grading reporting system, cancer imaging
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• CT imaging features can be used to predict the benign or

malignant nature of pulmonary nodules.

• Preoperative machine learning model predicts malignancy

of pulmonary nodules.

• PNI-GARS enhances lung nodule diagnosis by

standardizing CT grading and integrating with machine

learning for improved malignancy prediction.
Introduction

Lung cancer, the leading cause of cancer-related deaths

worldwide, is responsible for a significant proportion of total

cancer cases, with lung nodules often being the initial imaging

manifestation of early-stage lung cancer (1–3). According to

statistics released by the World Health Organization (WHO),

there were approximately 2.21 million confirmed cases of lung

cancer and 1.8 million deaths in 2020 (4). Lung cancer is one of the

most dangerous malignancies, characterized by a poor prognosis

and a low overall survival rate due to untimely detection and the

limitations of conventional treatment (5, 6). The detection rate of

pulmonary nodules has increased dramatically with the widespread

use of multi-detector spiral CT scans. However, the majority of

these nodules are benign; according to the 2011 National Lung

Screening Trial (NLST), a staggering 96.4% of CT-detected lung

nodules were not cancerous. Nevertheless, the presence of a lung

nodule can cause significant anxiety for patients, leading to a need

for accurate assessment to differentiate between malignant and

benign lesions (7). The transformation of a lung nodule into lung

cancer is a complex process influenced by various factors. Lung

cancer development can be influenced by the size, morphology, and

growth rate of the nodule. For instance, lung nodules with a

diameter greater than 15 mm, those located in the upper lobe,

and those exhibiting features such as spiculation, chest membrane

retraction, and bronchial truncation are considered high-risk and

more likely to be malignant. In the diagnosis of lung nodules, lung-

RADS (Lung Imaging Reporting and Data System), a screening

classification system for lung nodules, was proposed by the National

College of Radiology (ACR) (8). Although Lung-RADS provide

important guidance in the classification and management of

pulmonary nodules, its limitations cannot be ignored, especially

the lack of a comprehensive assessment of nodule imaging features

such as edges, morphology, burrs, etc. The development of a lung

cancer risk prediction model, therefore, presents a strategic

approach to mitigate the subjectivity and unreliability inherent in
eviations: AUC, Area under the curve; CT, Computed tomography; PNI-

S, Pulmonary node imaging-grading reporting system; L-RADS, Lung

ing-reporting and data system; NPV, Negative predictive value; PPV,

ive predictive value; CI, Confidence interval; IQR, Inter-quartile range;

olid nodule; PSN, Part-solid nodule; GGN, Ground glass nodule.
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radiologist diagnoses, particularly for those with limited experience

(9–12). With the rapid development of artificial intelligence

technology, machine learning has shown great potential in the

diagnosis and treatment of lung cancer (13, 14). As the leading

cause of cancer-related death worldwide, early diagnosis of lung

cancer is crucial to improving treatment success and patient

survival (15, 16). The machine learning model is able to identify

signs of lung cancer by analyzing CT image data (17, 18). These

models can automatically detect lung nodules and provide a

quantitative assessment of nodule properties and can predict the

histological type of lung cancer by analyzing the imaging

characteristics of lung nodules, such as shape, margin,

transparency, and uniformity (19–22).

The aim of this study is to incorporate a broader range of

clinical and radiological features into the model, addressing the

limitations of existing diagnostic systems such as the Lung-RADS

classification criteria. Additionally, the developed machine learning

model is comparatively analyzed with the existing Lung-RADS and

PNI-GARS diagnostic systems. This comprehensive evaluation

provides us with a more granular understanding of nodule

characteristics and their association with malignancy. By utilizing

SHAP values to explain the influence of each feature variable on the

model’s output, it aids in understanding the decision-making

process of the model and enhances its interpretability. Overall,

this study, through the integration of multicenter data, a large

sample size, advanced machine learning techniques, and

comprehensive statistical analysis, has developed an efficient,

accurate, and interpretable prediction model for lung nodule

characterization, serving as a powerful auxiliary tool for

clinical diagnosis.
Materials and methods

Dataset

The institutional review boards of the three participating

institutions approved the retrospective multicohort study and

waived the requirement for written informed consent. The patient

data used in this study were obtained from three centers. The

training set data consisted of patients from Center 1, collected

between December 2017 and November 2021. Data for the external

validation set were obtained from 218 patient CT examinations

between December 2021 and March 2022 at Center 2 and Center 3.

The inclusion and exclusion criteria were the same across all three

centers. All patient data were obtained in daily practice. The

inclusion criteria for the study considered the following: (1)

patients aged 18 years or older; (2) size of the nodule(s) ≤ 30mm;

(3) final pathological results that were definitive. The exclusion

criteria for the study were as follows: (1) missing data; (2) poor

image quality; (3) the size of the nodules that could not be measured

accurately. The patient data selection flowchart is shown in

Figure 1. Based on patient inclusion and exclusion criteria, 4,792

malignant and 1,631 benign pulmonary nodules from 5,404 patients

at Center 1 were selected as the training set data. One hundred

seventy-three malignant and 45 benign pulmonary nodules from
frontiersin.org
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218 patients at Centers 2 and 3 were selected as the validation set

data. To create a relatively balanced dataset for modeling, we

randomly selected malignant pulmonary nodules and all benign

pulmonary nodules from Center 1 at a ratio of 1.3:1 (2,131

malignant and 1,631 benign pulmonary nodules). For external

validation, all pulmonary nodules from Centers 2 and 3

were included.
Clinical features and non-contrast chest
CT scans characteristics

Non-contrast chest CT scans were acquired by SOMATOM

Definition Flash (Siemens Healthineers, Erlangen, Germany),
Frontiers in Immunology 03
SOMATOM Force (Siemens Healthineers, Erlangen, Germany),

and Discovery CT750 HD (GE Healthcare, Milwaukee, WI, USA)

CT scanners (Table 1). All patients were asked to hold their hands

over their heads, lie on their backs, breathe deeply, and hold their

breath. The scan range was from the tip of the lung to the level of

the costophrenic angle. All images were independently and blindly

read by two experienced radiologists with 8 and 10 years of

experience, respectively. To assess the reliability of the readings,

we calculated the agreement rate among the radiologists, which is

detailed in Supplementary Table S1. Pathological results for each

patient were collected from surgical pathology biopsies. CT features

were given by each radiologist. When discrepancies occurred, the

final assessment was determined by a third radiologist with 12 years

of experience, who integrated the differing opinions to provide a
FIGURE 1

Flowchart of patient selection and data processing. Center 1, The First Affiliated Hospital of Chongqing Medical University; Center 2, Second Hospital
of Shanxi Medical University; Center 3, Sichuan Provincial People’s Hospital.
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conclusive evaluation. After a detailed evaluation, nine clinical

characteristics and thirteen radiological characteristics on the CT

images were used for model development. The specific features were

as follows: (1) Age; (2) Sex; (3) N-nodules (Number of nodules); (4)

Nature of the nodule (SN/PSN/GGN); (5) Total diameter (in mm);

(6) L-RADS (1/2/3/4A/4B/4X); (7) PNI-GARS (0/I/II/IIIa/IIIb/IIIc/

IV); (8) Spiculation (yes/no); (9) Lobulation (yes/no); (10) Vascular

sign (yes/no); (11) Pleural indentation (yes/no); (12) Vacuole sign

(yes/no); (13) Cavitations (yes/no); (14) M-features (number of

malignant features); (15) Margin smooth (yes/no); (16) Pulmonary

cord (yes/no); (17) Margin blurring (yes/no); (18) Calcification

(yes/no); (19) Fat (yes/no); (20) Satellite feature (yes/no); (21)

Nodular patchy shadow (yes/no); (22) N-features (number of

benign features).
Factor correlation coefficient calculation

In the actual study, we needed to remove variables with

correlation coefficients > 0.8 to prevent the occurrence of data

leakage, where certain variables could directly affect the prediction

results. Correlation coefficients > 0.8 indicate the presence of
Frontiers in Immunology 04
multicollinearity (23) in the data. In this paper, the correlation

coefficient test was performed using Pearson’s coefficient (24). As

shown by the statistics (Figure 2), all the clinical and radiological

features we used had correlation coefficients not greater than 0.8,

which shows that these data were suitable for machine learning

model development.
Machine learning model development

To build up amachine learning classificationmodel for pathology

prediction, we divided the pulmonary nodule data from Center 1 into

a training set and an internal test set in a ratio of 7:3, and the data

from centers 2 and 3 were all used in the external test set. Machine

learning models used in this study included GradientBoosting,

RandomForest, and ExplainableBoosting. Gradient boosting is an

ensemble learning technique that iteratively trains decision trees to

minimize a loss function. The advantage of the gradient boosting

algorithm lies in its high-precision prediction capabilities and

adaptability to various types of data. It also demonstrates

superiority in situations with imbalanced data by exhibiting good

robustness and generalization ability. Furthermore, the gradient
FIGURE 2

Pearson’s correlation coefficient matrix.
TABLE 1 The protocol parameters and reconstruction parameters for the intra-CT protocol trial.

Pitch
Tube voltage

(kVp)
Tube current

(mA.s)
Slice thickness

(mm)
Reconstruction slice

thickness(mm)
Rotation speed

(s/r)
matrix

0.984 100 30/50 5 1.0 0.5/0.6 512*512

1 120 30/50 5 1.0 0.5/0.6 512*512
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boosting algorithm can assess feature importance and effectively

handle large-scale datasets. Random Forest is an ensemble learning

method that improves prediction accuracy and stability by

constructing multiple decision trees and combining their results.

Each tree in the Random Forest is trained on a randomly selected

subset of samples, which reduces the variance of the model and

enhances its generalization ability. The Explainable Boosting

Machine (EBM) is a tree-based, iteratively gradient-boosted

generalized additive model with automatic interaction detection

capabilities. The design goal of EBM is to maintain comparable

accuracy with state-of-the-art machine learning methods (such as

Random Forest and Boosted Trees) while preserving a high degree

of interpretability.
Feature preprocessing

Feature preprocessing is a crucial step in machine learning, as it

directly impacts the performance and predictive capability of the

model, making the model’s predictions easier to understand and

interpret. In order to enable all features to be applied for machine

learning model building, we used the LabelEncoder from the scikit-

learn library to perform numerical encoding on non-numerical

attributes. The non-numerical characteristics were as follows: (1)
Frontiers in Immunology 05
Nature of the nodule; (2) L-RADS; (3) PNI-GARS. The remaining

features were represented by the number 1 to indicate the presence

of the imaging feature, and by the number 0 to indicate the absence

of the imaging feature.
Experimental settings

In our study, experiments were executed using Python 3.8.3,

with the experimental framework outlined in Figure 3. We

undertook a grid search approach to hyperparameter

optimization for three machine learning algorithms to achieve the

best model fi t for pulmonary nodule diagnosis . The

GradientBoosting model yielded optimal results with a learning

rate of 0.1, 140 estimators (n_estimators), a maximum tree depth of

4 (max_depth), and a minimum sample requirement for node splits

of 4 (min_samples_split). For the RandomForest model, the grid

search identified the most effective parameters as a maximum tree

depth of 5 (max_depth), a minimum sample count at leaf nodes of 4

(min_sample s_ l ea f ) , a min imum sample sp l i t o f 4

(min_samples_split), 30 trees in the forest (n_estimators), and

utilizing 4 jobs for parallel processing (n_jobs). Interestingly, the

default parameters were found to be the most effective for the

ExplainableBoosting model, indicating that the model’s designers
FIGURE 3

The overall pipeline of this study. (A) The process of data processing. (B) The process of Model prediction and testing.
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had already established a robust starting point for a wide range of

applications. Through this meticulous grid search-based

optimization, we enhanced the predictive accuracy and

generalizability of our models.
Statistical analysis

The area under the receiver operating characteristic curve

(AUC), accuracy, precision, sensitivity, specificity, positive

predictive value (PPV) and Negative predictive value (NPV) were

used to assess the diagnostic performance of the model in each

cohort. Categorical variables in the patient data were represented

using numerical (%) values, while continuous variables were

described using means and standard deviations (SD).
Results

Baseline characteristics

In this study, a total of 6423 patients(Median lung nodule

diameter,10.9 [IQR,7.78-29.93] mm; mean age,56.09[SD,11.13];

Man,39.4%) with CT imaging data of pulmonary nodules from

three centers were analyzed according to inclusion and exclusion

criteria. The training set included 2660 patients(Median lung

nodule diameter,10.4 [IQR,7.2-29.76] mm; mean age,55.73

[SD,10.93]; Man,40.3%).The internal test set contained 1129

patients(Median lung nodule diameter,10.4 [IQR,7.2-29.76] mm;

mean age,55.73[SD,10.93]; Man,40.3%).The external test set

contained 218 patients (Median lung nodule diameter,15.7

[IQR,11.4-30] mm; mean age,58.12[SD,12.17]; Man,53.1%). More

detailed clinical and radiological features in different cohort are

shown in Table 2.
Machine learning model performance

During the training process, different machine learning models

showed different performance on clinical-radiological features. In

the external-testing set, Explainable Boosting showed the best fitting

results with an AUC of 0.904 (95% CI: 0.855–0.948), accuracy of

0.899, sensitivity of 0.911, specificity of 0.895, PPV of 0.974, and

NPV of 0.694. While in the internal-testing set, these values were

0.858 (95% CI: 0.839–0.877), 0.867, 0.767, 0.948, 0.833, and 0.923,

respectively. Furthermore, Explainable Boosting compared

favorably to the Random Forest model and the Gradient Boosting

model, with sensitivity improvements of 0.089 and 0.023,

respectively. Specificity was 0.034 higher compared to the

Gradient Boosting model. The prediction performance of the

model across three cohorts is shown in Figures 4A–C and Table 3

. By calculating the confusion matrix, the values of True Positive

(TP), False Positive (FP), True Negative (TN), and False Negative

(FN) (25) can be obtained. The five metrics used to evaluate our

model are as follows:
Frontiers in Immunology 06
1. Accuracy=(TP + TN)/(TP + TN + FP + FN).

2. Sensitivity=TP/(TP + FN).

3. Specificity=TN/(TN + FP).

4. PPV=TP/(TP + FP).

5. NPV=TN/(FN + TN).
Classification effectiveness assessment

In the second phase of experiments, we demonstrated the

performance of machine learning in classifying three types of

pulmonary nodule properties: SN (solid nodule), PSN (partially

solid nodule), and GGN (ground glass nodule). The average

probability of misclassifying SN, PSN, and GGN-type pulmonary

nodules as malignant or benign by the three models was 2.9%, 4.0%,

and 6.8%, respectively. The average probability of misclassifying

benign as malignant was 10.6%, 5.2%, and 16.0%, respectively. Of

the three types of nodules, the model had the best performance in

diagnosing the SN type of nodule, and the GGN type had the worst

performance. In clinical practice, the probability of malignancy is,

in descending order, PSN > GGN > SN. However, the probability of

misclassifying malignant as benign is on average 6.0% lower in our

model than the probability of misclassifying benign as malignant.

Specific classification details are shown in Figures 4D–F. Therefore,

we calculated diagnostic precision and recall scores separately for

male and female patients in the dataset to compare the diagnostic

performance of the model across genders. The details of the relevant

scores are shown in Supplementary Figure S2A, B. The diagnostic

performance of male patients is slightly better than that of female

patients on the external validation set. However, there were fewer

benign cases in the external validation set, which resulted in a lower

recall score. The diagnosis of benign nodules by radiologists is

higher than our model. Thus, the use of machine learning can assist

in improving the diagnostic accuracy of pulmonary nodule

pathology by radiologists. In addition, we found that the

diagnostic performance of the model continued to improve with

age by exploring the diagnostic performance at different ages. It

indicates that our model has a significant impact on the diagnosis of

malignant lung nodules in the elderly population. The age-specific

diagnostic information is shown in Supplementary Figure S2C.
Model validation

In this study, we used 5-fold cross-validation and 10-fold cross-

validation to test the stability of the machine learning model,

respectively. The cross-validation process is shown in

Supplementary Figure S1A. Cross-validation helps to mitigate

potential bias and overfitting problems that can arise from using

a single training-testing split. In addition, the cross-validated

classification results of different models are shown in

Supplementary Figures S1B, C.

In the 5-fold and 10-fold cross-validation used for the different

cohorts of patient data, the three machine learning models
frontiersin.org
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TABLE 2 Clinical and non-contrast chest CT scans characteristics of patients in three cohorts.

Characteristics Class Total cohort
(n=6423)

Training cohort
(n=2633)

Internal
validation cohort
(n=1129)

External
validation cohort
(n=218)

Age, mean (SD), years - 56.09 ± 11.13 55.73 ± 10.93 55.49 ± 11.08 58.12 ± 12.17

Gender, n (%)
Man 2532(39.4%) 1064(40.3%) 503(44.4%) 117(53.1%)

Woman 3891(60.5%) 1569(59.5%) 626(55.3%) 101(45.9%)

Pathological properties, n (%)
Benign 1631(25.4%) 1124(42.6%) 507(44.9%) 45(20.4%)

Malignant 4792(74.5%) 1509(57.2%) 622(55.0%) 173(78.6%)

N-nodules*.n (%)
(1/2/3/4/5)

1 4554(70.8%) 1807(68.5%) 759(67.1%) 218(100%)

2 1426(22.1%) 622(23.6%) 272(24.0%) 0(0%)

3 330(5.1%) 148(5.6%) 71(6.2%) 0(0%)

4 88(1.3%) 49(1.8%) 21(1.8%) 0(0%)

5 25(0.3%) 7(0.2%) 6(0.5%) 0(0%)

Nature of the nodule. n (%)
(GGN/PSN/SN)※

GGN 2658(41.3%) 993(37.6%) 461(40.7%) 40(18.1%)

PSN 1516(23.5%) 513(19.4%) 214(18.9%) 48(21.8%)

SN 2249(35.0%) 1127(42.7%) 454(40.1%) 130(59.0%)

Total diameter,
median (IQR),mm

- 10.9(7.78-29.93) 10.4(7.2-29.76) 10.4(7.13-29.93) 15.7(11.4-30)

L-RADS. n (%)
(1/2/3/4A/4B/4X)

1 214(3.3%) 149(5.6%) 65(5.7%) 2(0.9%)

2 2933(45.6%) 1170(44.3%) 525(46.3%) 43(19.4%)

3 569(8.8%) 256(9.7%) 104(9.1%) 2(0.9%)

4A 375(5.8%) 207(7.8%) 90(7.9%) 12(5.4%)

4B 122(1.8%) 56(2.1%) 34(3.0%) 15(6.7%)

4X 2210(34.3%) 795(30.1%) 311(27.4%) 144(65.1%)

PNI-GARS. n (%)
(0/II/IIIa/IIIb/IIIc/IV)

0 214(3.3%) 149(5.6%) 65(5.7%) 2(0.9%)

I 388(6.0%) 230(8.7%) 119(9.8%) 0(0%)

II 354(5.5%) 258(9.7%) 96(8.4%) 4(1.8%)

IIIa 1248(19.4%) 547(20.7%) 216(19.0%) 25(11.3%)

IIIb 830(12.9%) 309(11.7%) 135(11.9%) 34(15.1%)

IIIc 1657(25.7%) 559(21.2%) 258(22.7%) 36(16.2%)

IV 1732(26.9%) 581(22.0%) 247(21.8%) 117(52.9%)

Spiculation, n (%)
(No/Yes)

-
4938/1485

(76.8%/23.1%)
2116/517

(80.3%/19.6%)
899/230

(97.6%/20.3%)
95/123

(43.5%/56.4%)

Lobulation, n (%)
(No/Yes)

-
4008/2415

(62.3%/37.5%)
1793/840

(68.0%/31.8%)
784/345

(69.4%/30.5%)
77/141

(35.3%/64.6%)

Vascular sign, n (%)
(No/Yes)

-
1196/5227

(18.6%/81.3%)
701/1932

(25.6%/73.3%)
307/822

(27.1%/72.8%)
97/121

(44.4%/55.5%)

Pleural indentation, n (%)
(No/Yes)

-
4303/2120

(65.9%/32.9%)
1833/800

(69.5%/30.3%)
803/326

(71.1%/28.8%)
104/114

(47.7%/52.2%)

Vacuole sign, n (%)
(No/Yes)

-
4333/2090

(67.4%/32.5%)
1907/726

(72.3%/27.5%)
837/292

(74.1%/25.8%)
129/89

(59.1%/40.8%)

Cavitations, n (%)
(No/Yes)

-
6322/101

(98.3%/1.5%)
2597/36

(98.5%/1.3%)
1109/20

(98.2%/1.7%)
182/35

(83.4%/16.5%)

(Continued)
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performed stable AUC values in the training set and in the internal

test set. but the accuracy values fluctuate more on the external

validation set data, which may be due to the non-uniformity of the

benign and malignant samples in the external validation set. and

with uneven dichotomous samples, the AUC and precision metrics

are more representative of the overall prediction.
Model feature interpretability

The SHAP values (26) elucidate the influence of each feature

variable on the prediction model output (Figure 5). The importance

of features is depicted with a decreasing gradient from top to

bottom. In the context of this study, “positive samples” refer to

malignant lung nodules, while “negative samples” denote benign

nodules. A red color signifies a greater impact on the classification

of malignant nodules (positive samples), whereas a blue color

indicates a greater impact on the classification of benign nodules
Frontiers in Immunology 08
(negative samples). The x-axis represents the SHAP value, where

positive values suggest a contribution towards a positive

classification (malignant), and negative values imply a negative

impact on this classification, potentially leaning towards a negative

classification (benign). The interaction of features with negative

values in the prediction is contingent upon the interplay with other

variables. Wider bars on the plot indicate higher density and more

recurrent values. As depicted in Figures 5A–C, distinct machine

learning models prioritize features differently. We identified the top

five features for prediction in each model (Supplementary Table

S2). PNI-GARS was identified by three machine learning models as

the primary indicator of benign and malignant pulmonary nodules.

Upon comparing the diagnostic efficacy of the PNI-GARS and the

L-RADS systems for malignant lung nodules using identical patient

data, the L-RADS system was observed to be less effective in

diagnosing malignant lung nodules across various stages.

Conversely, the PNI-GARS system demonstrated incremental

improvements in diagnostic accuracy for malignant lung nodules
TABLE 2 Continued

Characteristics Class Total cohort
(n=6423)

Training cohort
(n=2633)

Internal
validation cohort
(n=1129)

External
validation cohort
(n=218)

M-FeaturesᎭ. n (%)
(0/1/2/3/4/5/6)

0 562(8.7%) 385(14.6%) 165(14.6%) 5(2.2%)

1 1697(26.4%) 766(29.0%) 357(31.6%) 41(18.8%)

2 1922(29.9%) 735(27.8%) 292(25.8%) 39(17.8%)

3 1296(20.1%) 441(16.7%) 199(17.6%) 48(22.0%)

4 722(11.2%) 238(9.0%) 83(7.3%) 46(21.1%)

5 223(3.4%) 68(2.5%) 33(2.9%) 31(14.2%)

6 1(0.01%) 0(0%) 0(0%) 8(3.6%)

Margin smooth, n (%)
(No/Yes)

-
6258/165

(97.6%/2.5%)
2526/107

(95.8%/4.0%)
1079/50

(95.5%/4.4%)
218/0

(100%/0%)

Pulmonary cord, n (%)
(No/Yes)

-
6131/292

(95.4%/4.5%)
2420/213

(91.8%/8.1%)
1059/70

(93.7%/6.2%)
214/4

(98.1%/1.8%)

Margin blurring, n (%)
(No/Yes)

-
6175/248

(96.1%/3.8%)
2469/164

(93.7%/6.2%)
1047/82

(92.7%/7.2%)
218/0
(100%)

Calcification, n (%)
(No/Yes)

-
6125/298

(95.3%/4.8%)
2426/207

(92.0%/8.0%)
1042/86

(92.3%/7.6%)
213/5

(97.7%/2.2%)

Fat, n (%)
(No/Yes)

-
6318/105

(98.3%/1.6%)
2563/70

(97.2%/3.8%)
1094/35

(96.8%/3.1%)
218/0

(100%/0%)

Satellite feature, n (%)
(No/Yes)

-
6327/96

(98.5%/1.5%)
2571/62

(97.5%/2.3%)
1097/32

(97.1%/2.8%)
212/6

(97.2%/6%)

Nodular patchy shadow, n (%)
(No/Yes)

-
6128/4.5

(95.4%/4.5%)
2438/195

(92.5%/7.4%)
1049/80

(92.9%/7.0%)
210/8

(96.3%/3.6%)

N-Featuresჭ, n (%)
(0/1/2/3/4)

0 5457(84.9%) 1995(75.7%) 842(74.5%) 197(90.3%)

1 534(8.3%) 330(12.5%) 168(14.8%) 19(8.7%)

2 338(5.2%) 241(9.1%) 72(8.1%) 2(0.9%)

3 87(1.3%) 62(2.3%) 25(2.2%) 0(0%)

4 7(0.1%) 5(0.1%) 2(0.1%) 0(0%)
*Total number of pulmonary nodules, ※GGN, Ground glass nodule; PSN, Part-solid nodule; SN, Solid nodule; ᎭM-Features, Number of malignant features; ჭN-Features, Number of
benign features.
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with each progressive grading level. The detailed diagnostic

performance, which included data from all cohorts—the training

set, the validation set, and the external validation set—is illustrated

in Figures 5D, E. The PNI-GARS system thus offers superior

diagnostic efficacy for lung nodule assessment compared to the L-

RADS system. The specific PNI-GARS grading criteria are outlined

in Table 4 and depicted in Figure 6.
Frontiers in Immunology 09
Diagnostic performance of the radiologist
and machine learning model

A comparison of diagnoses between radiologists and machine

learning models is presented in Table 5. In the external validation set,

the radiologist with 8 years of clinical experience, Radiologist A,

achieved a performance with an AUC of 0.60 (95% CI: 0.500–0.714),
FIGURE 4

ROC curve for classification in the dataset. (A) training-sets. (B) internal-testing-sets. (C) external-testing-sets; AUC, area under curve. Confusion
matrix. (D) Classification performance of different models on SN. (E) PSN. (F) GGN-type nodules (From left to right; Gradient Boosting; Random
forest; Explainable Boosting.
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FIGURE 5

Feature contributions of different machine learning models. (A) Gradient Boosting. (B) Randomforest. (C) Explainable Boosting. Diagnostic accuracy
of the pulmonary nodule classification system for malignant nodules at different stages. (D) L-RADS system. (E) .PNI-GARS system.
TABLE 3 The performance comparison of different models.

Model Cohort AUC(95%CI) Accuracy Sensitivity Specificity PPV NPV

Gradient Boosting Training 0.932
[0.922-0.942]

0.903
[0.847-0.935]

0.879
[0.835-0.899]

0.984
[0.968-0.991]

0.916
[0.882-0.933]

0.977
[0.941-0.980]

Internal
testing

0.858
[0.837-0.878]

0.865
[0.844-0.892]

0.790
[0.751-0.833]

0.926
[0.888-0.935]

0.844
[0.801-0.891]

0.897
[0.823-0.915]

External
testing

0.875
[0.821-0.925]

0.866
[0.831-0.901]

0.888
[0.784-0.902]

0.861
[0.844-0.886]

0.967
[0.903-0.985]

0.625
[0.554-0.701]

RandomForest Training 0.880
[0.868-0.893]

0.894
[0.867-0.911]

0.790
[0.788-0.835]

0.971
[0.951-0.991]

0.861
[0.812-0.889]

0.953
[0.901-0.986]

Internal
testing

0.860
[0.838-0.879]

0.870
[0.842-0.903]

0.753
[0.701-0.855]

0.966
[0.953-0.979]

0.827
[0.787-0.865]

0.947
[0.899-0.967]

External
testing

0.893
[0.806-0.925]

0.899
[0.855-0.932]

0.822
[0.786-0.856]

0.919
[0.875-0.935]

0.952
[0.899-0.978]

0.725
[0.621-0.832]

ExplainableBoosting Training 0.892
[0.880-0.904]

0.903
[0.875-0.935]

0.815
[0.789-0.866]

0.968
[0.922-0.989]

0.875
[0.833-0.896]

0.951
[0.901-0.987]

Internal
testing

0.858
[0.839-0.877]

0.867
[0.841-0.891]

0.767
[0.715-0.864]

0.948
[0.901-0.963]

0.833
[0.791-0.881]

0.923
[0.878-0.943]

External
testing

0.904
[0.855-0.948]

0.899
[0.888-0.925]

0.911
[0.894-0.935]

0.895
[0.881-0.922]

0.974
[0.945-0.989]

0.694
[0.644-0.721]
F
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PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval.
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accuracy of 0.707, sensitivity of 0.200, specificity of 0.993, positive

predictive value (PPV) of 0.684, and negative predictive value (NPV)

of 0.986. Another radiologist with 10 years of clinical experience,

Radiologist B, demonstrated performance metrics: AUC of 0.720

(95% CI: 0.611–0.792), accuracy of 0.751, sensitivity of 0.552,

specificity of 0.982, PPV of 0.754, and NPV of 0.991. Upon

analyzing the performance metrics of the radiologists and the

machine learning models, it is evident that the machine learning

models demonstrate superior diagnostic performance in the

classification of pulmonary nodules. Specifically, the Gradient

Boosting model achieved an AUC of 0.875 (95% CI: 0.821–0.925),

accuracy of 0.866, sensitivity of 0.888, specificity of 0.861, PPV of

0.967, and NPV of 0.625. The Random Forest model showed slightly

higher diagnostic accuracy with an AUC of 0.893 (95% CI: 0.806–

0.925), accuracy of 0.899, sensitivity of 0.822, specificity of 0.919, PPV

of 0.952, and NPV of 0.725. The Explainable Boosting model led the

comparison with the highest AUC of 0.904 (95% CI: 0.855–0.948),

accuracy of 0.899, sensitivity of 0.911, specificity of 0.895, PPV of

0.974, and NPV of 0.694. The Explainable Boosting model shows

high sensitivity and NPV. On the other hand, the specificity and PPV

values from the radiologists’ diagnoses indicate a high likelihood of

correctly identifying patients with benign nodules. Radiologist A

achieved a specificity of 0.993 and a PPV of 0.684, while Radiologist B

obtained a specificity of 0.982 and a PPV of 0.754. However, when it

comes to sensitivity, the data suggest that the machine learning
Frontiers in Immunology 11
models are more effective in identifying actual cases of malignancy.

Radiologist A had a sensitivity of 0.200, and Radiologist B had a

sensitivity of 0.552, which, while improved over A, still fell short of

the machine learning models’ sensibilities. This highlights the

importance of machine learning models in enhancing the detection

of malignant nodules. For the remaining malignant data after

balancing the data set, we combine this data with benign data to

form a new data set, and predict this new data set by using

ExplainableBoosting model to evaluate the performance of the

model. The relevant prediction results are shown in Supplementary

Tables S3, S4. ExplainableBoosting still showed good classification

performance in the remaining data, with an AUC value of 0.876(95%

CI: 0.857-0.895).The AUC curve is shown in Supplementary Figure

S3. For malignant nodules, the accuracy and recall rates were 0.97 and

0.92, respectively, and for benign nodules, the accuracy and recall

rates were 0.94 and 0.79, respectively. This means that the model can

identify malignant nodules accurately and comprehensively.

However, when it comes to predicting benign nodules, while

accuracy is high, recall rates are relatively low.
Discussion

In our study, we found that the machine learning model we

developed were highly accurate for pulmonary nodule diagnosis.
TABLE 4 PNI-GARS.

Category Grade Characteristics
Probability

of malignancy

Definitely benign 0 No lung nodules/Pure-calcified nodules
Fatty nodules, spherical atelectasis, interlobar fissure nodules, etc.

–

Benign I Micronodules: Any density ≤ 5 mm.
Solid nodules >5 mm,&stable≥2 years on follow-up.

Sub-solid nodules>5 mm,&stable≥5 years(with decrease but no increase
in density or disappearance) on follow-up.

–

Probably Benign II Acinus nodule:5-8mm&margins partially smooth Very low

Probably Malignant III Any nodule size: 8-30 mm (≤30 mm).
Partial solid nodules: gemstone sign & Solid component ≤ 5 mm.

Endobronchial nodules.

–

IIIa Small-size nodules: 8-10 mm.
Nodule size ≤ 8 mm, Grade II nodules with malignant features such as

gemstones, vacuoles, tumor vessels, lobulation, etc.

Medium

IIIb Medium-size nodules: 10-20 mm.
Any nodule size ≤ 10 mm, Grade IIIa nodules with malignant features

such as gemstones, vacuoles, tumor vessels, lobulation, etc.

High

IIIc Large-size nodules:20-30 mm.
Any nodule size ≤ 10 mm, Grade IIIb nodules with malignant features

such as gemstones, vacuoles, tumor vessels, lobulation, etc.

Very high

Highly suspicion of malignancy IV Any nodule size:8-30 mm(with spiculation sign or vacuoles, tumor
vessels, lobulation, etc).

Partial solid nodules (gemstone feature, solid composition> 5 mm).

Malignancy confirmed
by imaging

Pathologically confirmed malignant V Malignancy was confirmed by pathology. Malignancy
confirmed
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The PNI-GARS system were all recognized by the three machine

learning models as a first indicator of the influence of the benign

versus malignant nature of lung nodules. In contrast, the Lung-

RADS classification criteria, which are now widely used

internationally, were less effective in classifying lung nodules as

benign or malignant in our dataset. The results suggest that our use

of clinical patient characteristics and the PNI-GARS grading system

can help radiologists improve the accuracy of their diagnosis of

pulmonary nodules.

Currently, research is focused on how CT can be used to achieve

an accurate diagnosis of pulmonary nodules without interventional

procedures. The Mayo Clinic model, the Veterans Affairs (VA)

model, the Brock model (PanCan model), and the Herder model
Frontiers in Immunology 12
were widely used for pulmonary nodule malignancy diagnosis

(19, 20, 27). However, the above studies suggest that these models

have limited performance in the clinical prediction of malignant

lung nodules (28–30). Moreover, these models were performed with

data from lung cancer screening trials, where the majority of

patients were clinically asymptomatic and more benign. In

contrast, the model we developed was based on a wider range of

patient CT imaging presentations and combined two pulmonary

nodule diagnostic systems for lung nodules, which were

comprehensively evaluated in patients, validated with internal

data as well as cross-center validation. In the same data situation,

the models proposed in previous studies and the diagnoses made by

radiologists were compared, our model had a predictive accuracy
FIGURE 6

Main grading basis of PNI-GARS.
TABLE 5 Performance comparison between machine learning model and Radiologist in external-validation set.

Model AUC(95%CI) Accuracy Sensitivity Specificity PPV NPV

Gradient Boosting 0.875
[0.821-0.925]

0.866
[0.831-0.901]

0.888
[0.784-0.902]

0.861
[0.844-0.886]

0.967
[0.903-0.985]

0.625
[0.554-0.701]

Random Forest 0.893
[0.806-0.925]

0.899
[0.855-0.932]

0.822
[0.786-0.856]

0.919
[0.875-0.935]

0.952
[0.899-0.978]

0.725
[0.621-0.832]

Explainable Boosting 0.904
[0.855-0.948]

0.899
[0.888-0.925]

0.911
[0.894-0.935]

0.895
[0.881-0.922]

0.974
[0.945-0.989]

0.694
[0.644-0.721]

Radiologist A 0.600
[0.500-0.714]

0.707
[0.610-0.751]

0.200
[0.174-0.353]

0.993
[0.901-1.000]

0.684
[0.593-0.755]

0.986
[0.905-0.993]

Radiologist B 0.720
[0.611-0.792]

0.751
[0.699-0.830]

0.552
[0.435-0.699]

0.982
[0.956-1.000]

0.754
[0.674-0.815]

0.991
[0.965-1.000]
PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval.
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with an AUC of 90.3% (CI: 85.5%-94.8%), which was not only

higher than that of radiologists with 60% (CI: 50.0%-71.4%), but

also higher than that of Mayo, (74.5%; 95% CI: 71.8%-81.5%);

Brock, (78.3%, 95% CI: 71.5% -83.8%); VA, (70%, 95% CI

65.5%-71.4%).

As artificial intelligence continues to develop, machine learning

is also commonly used in the analysis of medical data. Machine

learning algorithms specialize in discovering associations between

data rather than the one-dimensional statistical methods currently

used (31) (e.g., logistic regression). As computing power and storage

continue to increase, machine learning algorithms are able to

analyze more complex data and make decisions faster (32, 33). A

one-dimensional logistic model was used to predict cancer

classification, a traditional approach in the study by Cui X et al

(34, 35). Our research uses multiple integrated learning models to fit

the data and makes the machine learning decision-making process

more transparent by outputting a ranking of model features.

Random Forest classification is a method that combines several

randomly selected trees and makes predictions by averaging them.

This method is of great interest to the research community due to

its high accuracy, superiority, and improved performance (36). The

gradient boosting method can capture complex relationships in

clinical research better than methods based on generalized linear

models (37). Magunia H et al. stratified patient risk and predicted

ICU survival and prognosis by developing a machine learning

model(ExplainableBoosting) based on retrospective and

prospective clinical data (38). In this paper, all three machine

learning models performed well in terms of classification

predictive results in the medical data.

In addition, the PNI-GARS system is proposed on the premise

of standardizing the writing of CT reports on lung cancer and

grading different nodules, classifying nodules into grades 0 to V. As

the grading level increases, the risk of malignancy of the nodules

increases, and the different grades of nodules are closely related to

the next step of the diagnostic and therapeutic protocols. However,

we found that the PNI-GARS system is limited by combining all

features into one level. So, we used machine learning to combine

clinical and radiological features and the PNI-GARS system to

obtain more accurate predictions.

There are several limitations of this study, the first is that our

model did not take into account additional clinical indicators of the

patient such as smoking history, living environment, family history

of cancer, work environment, and previous history of cancer, etc.,

and the VA model used smoking history and history of cancer to

determine the malignancy of lung nodules. However, even in the

case where we did not use these indicators, the prediction

performance of our model was still higher than that of the VA

model. Secondly, the samples selected for our model were surgically

confirmed disease cases, which may have been treated surgically

with a high degree of suspicion of malignancy by the radiologist,

which may be biased. Thirdly, the small number of cases in the
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external dataset phase of the multicenter study meant that we did

not search for cases with two pulmonary nodules or more at the

same time. In subsequent studies, we will include as many more

clinical factors as possible as well as life factors of the patients and

apply the model to cases that were not involve surgical treatment to

validate the validity of the model.

To conclude, we selected the machine learning model by

analyzing the best results obtained in the previous studies,

combining it with our self-developed PNI-GARS system and

clinical characterization data, and validating it with data from

different centers, resulting in excellent predictions of the nature of

pulmonary nodules. This demonstrates that by combining the PNI-

GARS system with clinical imaging features and using machine

learning to predict the nature of lung nodules, it can be used to

clinically assist radiologists in pathological diagnosis.
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