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carcinoma using single-cell
and bulk transcriptomics
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Mathias Uhlen2, Cheng Zhang2 and Adil Mardinoglu2,4*
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Introduction: Macrophages and T cells play crucial roles in liver physiology, but

their functional diversity in hepatocellular carcinoma (HCC) remains

largely unknown.

Methods: Two bulk RNA-sequencing (RNA-seq) cohorts for HCC were analyzed

using gene co-expression network analysis. Key gene modules and networks were

mapped to single-cell RNA-sequencing (scRNA-seq) data of HCC. Cell type fraction

of bulk RNA-seq data was estimated by deconvolution approach using single-cell

RNA-sequencing data as a reference. Survival analysis was carried out to estimate the

prognosis of different immune cell types in bulk RNA-seq cohorts. Cell-cell interaction

analysis was performed to identify potential links between immune cell types in HCC.

Results: In this study, we analyzed RNA-seq data from two large-scale HCC cohorts,

revealing a major and consensus gene co-expression cluster with significant

implications for immunosuppression. Notably, these genes exhibited higher

enrichment in liver macrophages than T cells, as confirmed by scRNA-seq data from

HCC patients. Integrative analysis of bulk and single-cell RNA-seq data pinpointed

SPP1+ macrophages as an unfavorable cell type, while VCAN+ macrophages, C1QA+

macrophages, and CD8+ T cells were associated with a more favorable prognosis for

HCC patients. Subsequent scRNA-seq investigations and in vitro experiments

elucidated that SPP1, predominantly secreted by SPP1+ macrophages, inhibits CD8+

T cell proliferation. Finally, targeting SPP1 in tumor-associated macrophages through

inhibition led to a shift towards a favorable phenotype.

Discussion: This study underpins the potential of SPP1 as a translational target in

immunotherapy for HCC.
KEYWORDS

hepatocellular carcinoma, co-expression network, tumor-associated macrophage,
macrophage heterogeneity, single-cell sequencing
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1 Introduction

The advent of immunotherapy has ushered in a new era for

treating various cancers, relying on immune system activation and

reprogramming. Strategies like inhibiting immune checkpoints

(e.g., PD-1/PD-L1 and CTLA-4) have shown promise in

enhancing the immune system’s ability to target and eliminate

tumors (1). Liver cancer – a leading cause of global cancer-related

mortality (2), presents a unique challenge due to its often

asymptomatic nature, making early detection and treatment

opportunities scarce (3). Hepatocellular carcinoma (HCC) is the

most common type of primary liver cancer. Therefore, novel

therapeutic strategies that rely on immunotherapy are of great

interest for HCC treatment.

Despite the progress, a significant number of advanced HCC

patients do not respond to current immunotherapies, underscoring

the need for more effective treatment targets and combination

strategies (4). This necessitates a deeper understanding of the tumor

immune microenvironment (TIME), particularly the functional

diversity of liver macrophages and T cells, and their intricate

interactions within the TIME – a domain still partially explored (5).

Substantial efforts and an abundance of omics data, facilitated by the

widespread use of bulk and single-cell RNA-seq (scRNA-seq)

transcriptomics data, have sought to unravel the intricacies of the

liver TIME (6–9). Notably, scRNA-seq studies, providing gene

expression profiles at a single-cell level (10), have significantly

expanded our understanding of immune cell type heterogeneity in

HCC and other cancers (11). However, due to the high costs

associated with scRNA-seq experiments and computational

resources, scRNA-seq cohorts are often constrained by limited

sample sizes. This necessitates the translation and validation of

scRNA-seq findings on a larger scale, such as using bulk RNA-seq

cohorts, especially when these bulk RNA-seq cohorts are well-

documented with extensive clinical information. As exemplified by

The Cancer Genome Atlas (TCGA) project, such large-scale bulk

RNA-seq datasets offer an opportunity to correlate scRNA-seq

discoveries with patients’ survival outcomes for robust results (12).

This study addresses these challenges by concurrently analyzing

the bulk and single-cell RNA-seq transcriptomics data to estimate

immune cell heterogeneity and its impact on HCC patients’

survival. We employed gene co-expression network and

regulatory analysis using bulk RNA-seq data from two

independent HCC cohorts: the TCGA Liver Hepatocellular

Carcinoma (TCGA-LIHC or LIHC) and the Japanese Liver

Cancer – Riken cohort from the International Cancer Genome

Consortium (ICGC-LIRI-JP or LIRI). These analyses aimed to

identify consensus biological insights. To associate these findings

with specific liver cell types, we integrated a scRNA-seq dataset

(GSE166635) for HCC (13). Subsequently, we used the scRNA-seq

data as a reference to estimate the relative proportions of

heterogeneous immune cell types within the HCC tumors and

associate their contributions to patient survival. Additionally, we

analyzed interactions among the key immune cells and evaluated

the effects of inhibition of the key gene, SPP1 in tumor-

associated macrophages.
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2 Materials and methods

2.1 Bulk RNA sequencing data acquisition
and processing

Two independent RNA-seq data TCGA-LIHC (14) and ICGC-

LIRI-JP (15) for hepatocellular carcinomawere selected for the network-

based analysis. For TCGA-LIHC, read counts were downloaded from

the GDC Data Portal (https://portal.gdc.cancer.gov/). For ICGC-LIRI-

JP, read counts were downloaded from the ICGC Data Portal

(https://dcc.icgc.org/). For both cohorts, primary tumors and

adjacent normal tissues were included, resulting in a total of 421

samples obtained from the LIHC (371 tumors and 50 normal

samples), and 437 samples (240 tumors and 197 normal samples)

obtained from the LIRI cohort.

The count data of the two cohorts were processed in the same

way. First, only protein-coding genes obtained by the R package

biomaRt (v2.50.1) (16) were included in the downstream analysis.

Then, lowly expressed genes that have a count of less than 10 in

more than 90% of the samples were filtered out. The count data

were subsequently normalized and transformed by variance

stabilizing transformation (VST) using the R package DESeq2

(v1.34.0) (17). As genes with a low variance do not contribute to

the clustering analysis but introduce noise, after examining the

histograms of gene variance based on the VST expression (data not

shown), the top 15,000 most variable genes were selected for

downstream analyses. Gene identifiers were kept as original

(Ensembl ID for TCGA-LIHC; HUGO Gene Nomenclature

Committee HGNC gene symbol for ICGC-LIRI-JP) and were

converted by biomaRt when needed.

The publicly available data GSE230666 (18) was used to

investigate the inhibitory effect of SPP1 in HCC-TAMs. In this

study, THP-1 cells were differentiated into M0 macrophages by 24 h

incubation with 150 mM phorbol-12-myristate 13-acetate (PMA)

and were subsequently cultured with the supernatant of HepG2

liver cancer cells after starvation treatment to develop HCC-TAMs.

SPP1 shRNA was induced to inhibit the expression of SPP1 in

HCC-TAMs (shSPP1), with shControl generated for comparison.

Each condition has two samples. Transcript expression was

quantified from the fastq files using kallisto (v0.48.0) (19) based

on the Ensembl Homo sapiens reference cDNA. The transcript

expression was assembled to the gene level using the R package

tximport (v1.28.0) (20), with only protein-coding transcripts and

genes included. The lowly expressed genes with an average count

below 5 were filtered out, resulting in 13,821 genes for

downstream analysis.
2.2 Gene co-expression network analysis

Weighted gene co-expression network analysis (WGCNA,

v1.70) (21) was used to construct gene co-expression networks

(GCNs) for LIHC and LIRI cohorts, respectively, with both tumor

and normal samples included, to identify co-expressed genes

preserved in both phenotypes. The GCNs were constructed based
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on an adjacency matrix of signed correlations between gene pairs:

ai,j =
cor(genei, genej) + 1

2

� �b

where ai,j is the signed correlation between gene i and j, cor is

the Pearson’s Correlation Coefficient (PCC), and b is the soft-

thresholding power value to force the adjacency matrix to fit a scale-

free topology. In this way, the correlation between gene pairs

measured by PCC was scaled to lie between 0 (not connected)

and 1 (fully connected), where 0 equals the value -1 of PCC, and 1

equals the value 1 of PCC. Under the soft-thresholding power

values of 12 for LIHC and 14 for LIRI, both networks achieved the

scale-free topology criterion (22), with a scale-free fitting index of

0.854 for LIHC and 0.861 for LIRI. Hierarchical clustering was

made based on the dissimilarity of the topological overlap matrix

(TOM) (21) created from the adjacency matrix. This resulted in 22

and 23 gene co-expression clusters constructed from LIHC and

LIRI cohorts, denoted as LIHC-1 to LIHC-22 and LIRI-1 to LIRI-

23, respectively (Supplementary Table S2).

The reproducibility and preservation of the LIHC clusters in the

LIRI cohort were tested by the function modulePreservation()

provided in the WGCNA package. In short, a summarized z-

score (Zsummary) combining multiple cluster preservation statistics

(23) was obtained for each LIHC cluster, indicating the level of

cluster preservation and reproducibility in the independent LIRI

cohort. As suggested, a Zsummary > 10 indicates strong cluster

preservation; 2 < Zsummary < 10 for weak preservation; and

Zsummary < 2 for no preservation (23).

In addition, we deployed differential co-expression analysis (24)

on the LIHC cohort to identify tumor- or normal-specific GCNs.

First, two adjacency matrices based on normal tissues and tumor

samples, respectively, were established using the following formula:

atypei,j = cor  genei, genej
� �

Then, the differential adjacency matrix was calculated as

follows:

di,j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

sign(atumor
i,j )� (atumor

i,j )2 − sign(anormal
i,j )� (anormal

i,j )2
��� ���

r !b

Given the soft-thresholding power value b of 4, the differential

adjacency matrix achieved scale-free topology (scale-free fitting

index = 0.864). Similar to the conventional WGCNA, hierarchical

clustering was applied to the TOM based on the differential

adjacency matrix, resulting in 2,121 differentially co-expressed

genes between normal and tumor samples, and the genes were

clustered into 11 differential co-expression clusters (denoted as

LIHC-Diff-1 to LIHC-Diff-11, see Supplementary Table S2).
2.3 Consensus regulatory
network construction

A consensus gene regulatory network (GRN) integrating LIHC

and LIRI cohorts for HCC (including normal tissues and tumors) was

constructed using the cosifer (v0.0.5), a Python package for consensus
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inference of GRN by integrating different expression-based regulatory

inference algorithms (25). For this, a total of 1,639 human

transcription factors (TFs) were used as the candidate TFs (26). As

an example, for LIHC expression data, seven meta-GRNs were

constructed using GENIE3 (R package GENIE3, v1.16.0) (27),

ARACNe-a and ARACNE-m (additive and multiplicative model of

ARANCE, Algorithm for the Reconstruction of Gene Regulatory

Networks) (28), CLR (Context Likelihood of Relatedness) (29),

MRNET (Minimal Redundancy Maximal Relevance based network)

(30), Pearson’s Correlation Coefficient, and Spearman’s Correlation

Coefficient. Here, the ARACNe-a, ARACNE-e, CLR, and MRNET

regulatory networks were established by the R package parmigene

(v1.1.0) (31). Then, these GRNs were combined by the Strategy for

Unsupervised Multiple Method Aggregation (SUMMA) (32) to get a

consensus GRN for LIHC. The SUMMA is an unsupervised ensemble

learning algorithm that can estimate the performance of each learning

model (i.e., a GRN) and combine different GRNs into a consensus

GRN. The whole GRN construction workflow was applied to both the

LIHC and LIRI cohorts to obtain a series of meta-GRNs (each cohort

= 7). Those meta-GRNs were integrated by the cosifer to obtain a

GRN for LIHC, a GRN for LIRI, and finally, a comprehensive GRN

integrating all the 14 meta-GRNs from both cohorts.

ChIP-X Enrichment Analysis 3 (ChEA3) (33) was used to

identify the potential TFs for the common immune cluster

(LIHC-5 ∩ LIRI-11) based on the TF-targets knowledge

databases. The analysis was done by the online tool (https://

maayanlab.cloud/chea3/) by querying the intersected genes

between LIHC-5 and LIRI-11.
2.4 Single-cell RNA sequencing data
acquisition and processing

Read counts of the HCC single-cell RNA sequencing data

GSE166635 (13) were downloaded from the Gene Expression

Omnibus (GEO) as the discovery cohort. This cohort includes two

primary HCC samples HCC1 (16,077 cells) and HCC2 (9,112 cells)

from two patients, respectively. As described in the original

publication (13), the data have been processed by CellRanger

(v3.1.0) using the GRCh38 as the reference genome. Further

processing procedures were performed in R by us, filtering out cells

with 1) less than 200 detected genes; 2) less than 5% ribosomal reads;

3) more than 20% mitochondrial reads. We also removed gene

MALAT1, mitochondrial genes, and genes expressed in less than

three cells. In addition, doublets were detected by the R package

DoubletFinder (v2.0.3) (34) and were removed. After quality control,

the final data have 23,605 genes expressed in 18,724 cells.

Gene expression values of HCC1 and HCC2 were normalized by

NormalizeData() function, and cells from the two samples were

integrated by Seurat (v4.0.5) (35) using an anchor-based approach

(36) based on the 2,000 most variable genes in each sample. Then, the

integrated data were scaled by ScaleData(), and at the same time the

mitochondrial and ribosomal contamination, as well as the difference

between the G2M cell cycle scores and S phase cell cycle scores

calculated by CellCycleScoring() function were regressed out. In this

way, the signals separating non-cycling and cycling cells were
frontiersin.org
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maintained, and the differences between cell cycle phases

were removed.

Having reduced the dimensions of the data by principal

component analysis (PCA) and examined the statistical

significance of each principal component (PC) by the Jack Straw

method (data not shown), the cells were clustered by the Louvain

algorithm (37) based on the first 40 PCs, with the parameter

resolution = 0.5. This resulted in a total of 17 cell clusters

including four macrophage subpopulations characterized by the

high expression of CD68, and four T cell subpopulations

characterized by the high expression of CD3E. Further clustering

analysis was done on the T cells, splitting the whole T cell

population into five, thus in total 18 cell clusters were identified.

The cell clusters were annotated manually based on the markers

previously identified for liver and immune cells (6–8, 10, 38).

In addition, two independent cohorts GSE140228 (8) and

GSE156337 (39) for liver macrophages in HCC were selected for

validation. For GSE140228, read counts of the droplet-based data

(66,187 cells) were downloaded from GEO, whereas the SMART-

seq2 data were excluded due to a relatively low number of cells (n =

7,074). Cells annotated as “Mj-C1-THBS1” (n = 1,005) and “Mj-
C2-C1QA” (n = 1,702) in normal and tumor (core + edge) samples

collected from four HCC patients were selected for further analysis.

The other liver-derived myeloid cells were excluded due to

insufficient cell amounts. Read counts were normalized by the

Seurat function SCTransform(). Meanwhile, the mitochondrial and

ribosomal contamination and the cell cycling difference between the

G2M and S phases were regressed out. Cells from different patients

were integrated by the R package harmony (v0.1.0) (40). After that,

the top 10 macrophage markers identified in the discovery cohorts for

C1QA+, SPP1+, and VCAN+ Mj (see below differential expression

analysis) were verified for their expression in the GSE140228 cohort

by the Seurat function AddModuleScore().

For GSE156337, the processed data (Seurat object) for liver

myeloid cells were downloaded from the link given in the original

publication (HCC_mye.h5ad, related to Figure 1 in the original

paper, see https://doi.org/10.17632/6wmzcskt6k.1) (39). Four types

of tumor-associated macrophages (TAMs), i.e., FOLR2+ TAMs

(tissue-resident macrophages, TRMs; n = 1,063), FOLR2+ TAMs

(monocyte-derived macrophages, MDMs; n = 504), SPP1+ TAMs

(n = 821), and MT1G+ TAMs (n = 656) were analyzed. The top 25

markers for the above four macrophage subsets were obtained from

the supplemental table deposited in the GEO and were tested for

significance of overrepresentation in the top 25 markers for C1QA+,

SPP1+, and VCAN+ Mj identified in the discovery data by

hypergeometric testing with Benjamini-Hochberg correction.

For both the discovery and validation cohorts, cells were

visualized in the UMAP (Uniform Manifold Approximation and

Projection) (41) space based on the first 40 PCs.
2.5 Deconvolution cell type in bulk RNA-
seq based on scRNA-seq reference

The CIBERSORTx (42) was used to estimate the relative

proportion of different immune cell subpopulations in liver
Frontiers in Immunology 04
immune cells. Using the scRNA-seq discovery cohort as the

reference, the expression profiles of liver myeloid cell subsets

(C1QA+ Mj, SPP1+ Mj, VCAN+ Mj, cycling Mj, and DCs) and

T cell subsets (CD8+ CTLs, CD4+ Tregs, memory, tissue-resident, and

cycling T cells) were extracted from the full dataset and analyzed

separately to estimate the relative content of the corresponding cell

type in LIHC and LIRI cohorts, respectively. The separation of

myeloid cells and T cells is to ensure the identification of the most

discriminative markers for deconvolution. In addition, we also

performed CIBERSORTx with the full scRNA-seq discovery cohort

with major cell annotation as reference (i.e., without annotating

myeloid and T cell subsets) to estimate the fraction of myeloid cells

and T cells, respectively. The CIBERSORTx program embedded in

the Docker (https://www.docker.com/) was performed in a

command line manner, and the batch correction (S-mode, for

10X genomics data) was enabled. The resulting relative cell

fractions (Supplementary Table S6) were used to analyze the

survival risk of the cell content for prognosis (see below section).
2.6 Differential expression analysis

For bulk RNA-seq data LIHC and LIRI, differential expression

analysis was carried out by the R package DESeq2 (v1.34.0) (17).

For both LIHC and LIRI cohorts, after filtering out lowly expressed

genes, the rest protein-coding genes were analyzed based on the

read count values, comparing their expression between tumors and

adjacent normal tissues. The Benjamini-Hochberg procedures were

used to correct the p-values. The significance threshold for

differentially expressed genes (DEGs) was set as the adjusted p-

value < 0.05, with the log2 fold change above zero for up-regulation

and below zero for down-regulation in tumors (Supplementary

Table S1). Similarly, the RNA-seq data of HCC-TAMs was analyzed

using the same pipeline.

For scRNA-seq data, differential expression analysis was carried

out using the Seurat function FindMarkers(), with the settings of the

adjusted p-value < 0.05 and the average log2 fold change > 0 for the

identification of the macrophage markers within the liver myeloid

subsets and the T cell markers with the liver T cell subsets

(Supplementary Table S5).
2.7 Single-cell regulatory analysis

The single-cell regulatory analysis of liver cell subsets was

performed using the pySCENIC pipeline (the Python package

pyscenic v0.11.2) (43) based on the scRNA-seq discovery cohort.

First, the preprocessed count matrix including 23,605 genes of the

total 18,724 cells was further processed by the geneFiltering()

function in the R SCENIC package (v1.2.4) to filter out lowly

expressed genes. Then, the rest 10,641 genes were used to build a

GCN by GRNBoost (the Python package arboreto v0.1.6) in Python

(v3.7.11). The gene filtering and the use of GRNBoost were to

ensure that the program can be finished in due time. Based on the

established GCN, the transcription factor binding motif analysis

was performed based on the motif collection file hg38:refseq-
frontiersin.org
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FIGURE 1

Co-expressed genes associated with immune activities are suppressed in HCC. (A) Venn diagram shows the overlap of the DEGs between the LIHC and
LIRI cohorts. (B) GSOA and GSEA of the WGCNA clusters LIHC-5, LIHC-1, and LIHC-4. For GSEA, genes in the LIHC cohort were sorted based on log2
fold change in tumor vs. normal in descending order. (C) Evaluation of LIHC co-expression clusters in LIRI cohort. To prioritize biologically significant
clusters, only clusters with a CES > 10 are shown (n = 9). Y-axis indicates the module preservation statistics Zsummary, whereas X-axis indicates the cluster
enrichment score. Blue dash line, Zsummary = 2; green dash line, Zsummary = 10. (D) Jaccard similarity between the selected co-expression clusters from
LIHC and LIRI cohorts. The number in brackets indicates the size of the cluster. (E) GO semantic similarity between the selected co-expression clusters
from LIHC and LIRI cohorts. The number in brackets indicates the CES of the clusters. (F) Pearson’s correlation between the size of the matched LIHC
and LIHC co-expression clusters (n = 8 for each). Each dot represents a pair of matched clusters in (D, E). Data normality was tested by the Shapiro-Wilk
test. (G) Pearson’s correlation between the CES of the matched LIHC and LIHC co-expression clusters (n = 8 for each). Each dot represents a pair of
matched clusters in (D, E). Data normality was tested by the Shapiro-Wilk test. (H) Heatmap shows differentially co-expressed genes between normal
and tumor samples in the LIHC cohort, as evaluated by Pearson’s correlation coefficient. Upper triangular matrix, correlation in tumor samples; lower
triangular matrix, correlation in normal samples; red triangle, correlations between the genes in LIHC-Diff-10 cluster. (I) GSOA of the differential co-
expression cluster LIHC-Diff-10.
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r80:10kb_up_and_down_tss.mc9nr.feather. The enrichment of the

candidate transcription factors (26) was estimated by the AUCell

method provided in the pySCENIC pipeline. Finally, a total of 254

TFs were significantly enriched in at least one of the cell types in

liver scRNA-seq discovery data (Supplementary Table S7).
2.8 Trajectory analysis

The trajectory analysis was applied by the R package monocle3

(v1.0.0) (44) to study the trajectory of the differentiation of the cells

in the myeloid cell subsets and the T cell subsets, respectively. To

determine the starting point of the pseudo time of cell

differentiation, the cell that expressed the highest CD14 was

selected as the root for myeloid cells, and the cell that expressed

the lowest CD3E was selected as the root for T cells.
2.9 Cell-cell interaction analysis

CellChat (v1.1.3) (45), an R package for inferring the strength of

intercellular communication was applied to the scRNA-seq

discovery cohort. Based on the human ligand-receptor databases

embedded in the package, the overexpressed genes and the

interactions between cell types were identified, followed by the

computation of communication probability.
2.10 Functional analysis of co-expression
gene sets and scRNA-seq cell populations

For bulk RNA-seq data LIHC and LIRI, gene set

overrepresentation analysis (GSOA, based on gene ontology) and

gene set enrichment analysis (GSEA) were applied to investigate

the biological implication of the (differential) co-expression

clusters. The analyses were conducted by the R package

clusterProfiler (v4.2.1) (46) and fgsea (v1.20.0) (47), respectively.

For GSOA, the background was set as the 15,000 genes for co-

expression analysis. Here, we defined cluster enrichment score

(CES) as the absolute log-transformed (base 10) adjusted p-value of

the most significant GO term associated with a co-expression

cluster, to help prioritize the most biologically meaningful co-

expression clusters (Supplementary Table S3). GO terms with a

Benjamini-Hochberg adjusted p-value < 0.05 were considered

significant (Supplementary Table S3). Top-ranked and

representative GO terms were selectively shown as dot plots.

Similarly, DEGs obtained from the scRNA-seq discovery cohorts

(Supp lementary Tab le S5) were ana lyzed by GSOA

(Supplementary Table S8). For GSEA, the analyzed genes by

DESeq2 were sorted by the log2 fold change of tumor vs. normal

from high to low, followed by the examination of the distribution

of the (differentially) co-expressed genes in the ranking list. Here, a

positive normalized enrichment score (NES) indicates that the

(differential) co-expression cluster is up-regulated (activated) in

tumors, and vice versa for negative NES for inhibition

(Supplementary Table S4). For RNA-seq data of HCC-TAMs,
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hallmark gene sets obtained from MSigDB (48) with

shSPP1 effects.

In order to compare the biological similarity between co-

expression clusters from LIHC and LIRI, we calculated the

semantic similarity between these clusters based on the significant

GO biological processes terms, using the function mgoSim()

provided in the R package GOSemSim (v2.20.0) (49). In addition,

the Jaccard index defined as the intersection relative to the union of

two gene sets was used to measure the similarity between co-

expression clusters.

For scRNA-seq data, we applied single-sample GSEA (ssGSEA)

(50) to infer the overrepresentation of the (differential) co-expression

clusters in the scRNA-seq discovery data based on the preprocessed

read count matrix. This analysis was carried out by the R package

GSVA (v1.42.0) (51). In addition, to understand the functional

heterogeneity of liver macrophages and DCs, a list of functional

markers for macrophages and DCs was obtained from previous

studies (52–54), and their expression was tested in the scRNA-seq

discovery cohort by AddModuleScore() function.
2.11 PROGENy pathway analysis

PROGENy (Pathway RespOnsive GENes for activity inference)

(55) was used to analyze the 14 cancer-related pathway activities of

each cell type in the scRNA-seq dataset and the SPP1 inhibition in

HCC-TAMs. For scRNA-seq data, the average count for each cell

type was calculated, and the cell type expression was normalized

and scaled by Seurat. Pathway activity was evaluated using the

function progeny() in the R package progeny (v1.22.0). For HCC-

TAMs data, log2 fold changes of genes in shSPP1 HCC-TAMs

relative to shControls were used as input, and the pathway activity

was calculated using the R package decoupleR (v2.6.0) (56) based on

the PROGENy pathway signatures. Similarly, transcription factor

activity for shSPP1 HCC-TAMs was calculated based on the

CollecTRI network – a comprehensive resource containing a

curated collection of TFs and their transcriptional targets

compiled from 12 different resources (57).
2.12 Survival analysis

Survival analysis was performed to study the association of liver

myeloid cell subsets and T cell subsets to patients’ survival. For this, cell

type abundances (in percentage, see Supplementary Table S6) predicted

by the CIBERSORTx were used as the input, followed by the univariate

Cox regression model and the Kaplan-Meier (KM) survival analysis

based on the clinical information of LIHC and LIRI cohorts. For the

LIHC cohort, clinical information was retrieved from the TCGA Pan-

Cancer Clinical Data Resource (TCGA-CDR) (58). For KM analysis,

patients were segregated into high and low groups for each cell type

based on the first quartile of the CIBERSORTx abundance. For both

survival analyses, cell types with a p-value less than 0.05 were regarded

as significantly associated with survival outcomes. The survival analysis

was performed by the R package survival (v3.2-13).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1446453
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2024.1446453
2.13 Human primary CD8+ T cell culture
and Western blot analysis

Human primary CD8+ T cells were purchased from Creative

Biolabs. CD8+ T cells were maintained with RPMI 1640 (R2405,

Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS,

F7524, Sigma-Aldrich), 1% P/S (P4333, Sigma-Aldrich), IL-2

(PHC0026, Thermo Fisher), and DynabeadsTM Human T-

Activator CD3/CD28 (11161D, Thermo Fisher). 2x106 cells were

seeded into 6 well plate and treated purified SPP1 (ab281819,

Abcam) at 400ng/ml concentration. The whole cell lysate was

prepared with CelLytic M (C2978, Sigma-Aldrich) buffer and

prepared with 2x Laemmli Sample Buffer (1610737, Biorad) at

10μg protein lysate. SDS PAGE was performed Mini-PROTEAN®

TGX™ Precast Gels (Bio-Rad) and transferred using Trans-Blot®

Turbo™ Transfer System (Bio-Rad). CD44 (ab254530, Abcam),

and GAPDH (ab8245, Abcam) were blotted as primary antibodies

overnight. Secondary antibodies, Goat Anti-Rabbit HRP

(ab205718) and goat anti-mouse IgG-HRP (ab97265, Abcam)

were blotted for one hour. The protein band was detected with

ImageQuantTMLAS 500 (29-0050-63, GE).
2.14 Statistical analysis

Data normality was evaluated by the Shapiro-Wilk test. For

CIBERSORTx results, statistical differences between tumors and

normal tissues were estimated by Wilcoxon rank-sum test. All

statistical analyses were done by R (v4.1.2).
3 Results

3.1 Co-expressed genes associated with
immune activities are suppressed in HCC

This study was initiated by exploring two bulk RNA-seq HCC

cohorts, LIHC and LIRI. Through differential expression analysis

comparing tumor and adjacent normal tissues, we observed a

substantial overlap in differentially expressed genes (DEGs)

between the LIHC and LIRI cohorts, indicating consistent

molecular alterations (Figure 1A; Supplementary Table S1).

Utilizing weighted co-expression network analysis (WGCNA),

which identifies co-expressed genes based on gene-gene

correlations (21), we identified 22 co-expressed gene clusters in

the LIHC cohort, denoted as LIHC-1 to LIHC-22 (Supplementary

Table S2). Subsequent gene ontology (GO)-based gene set

overrepresentation analysis (GSOA) highlighted the remarkable

associations of genes in LIHC-5, LIHC-1, and LIHC-4 with

immune activities, metabolic processes, and cell proliferation,

respectively (Figure 1B; Supplementary Table S3). Gene set

enrichment analysis (GSEA) further illustrated the up-regulation

of LIHC-4 and down-regulation of LIHC-5 and LIHC-1 in tumors

compared to normal tissues, as observed by the signed normalized

enrichment score (NES) (Figure 1B; Supplementary Table S4). This
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malignant cells) and suppression of immune and metabolic

processes in HCC tumors.

Analysis of the LIRI cohort independently yielded concordant

results with the LIHC cohort. Among the 23 identified co-expressed

gene clusters in the LIRI cohort (LIRI-1 to LIRI-23; Supplementary

Table S2), three clusters (LIRI-11, LIRI-1, and LIRI-5) exhibited

similar biological implications and activation/suppression with

those in the LIHC-5, LIHC-1, and LIHC-4 clusters, respectively

(Supplementary Figure S1A, Supplementary Tables S3, S4). To

confirm this correspondence, we assessed the reproducibility of

the LIHC clusters in the LIRI cohort using a summarized statistics

Zsummary for network cluster preservation (23). Nine LIHC clusters

exhibited both strong reproducibility (Zsummary > 10) in the LIRI

data and high biological relevance (cluster enrichment score, CES >

10; see Methods), particularly LIHC-5, LIHC-1, and LIHC-4

(Figure 1C). The robust biological relevance of these three pairs

of co-expression clusters (Supplementary Figure S1A,

Supplementary Table S3) and their high reproducibility in LIRI

(Figure 1C) established immune activities, metabolic processes, and

cell proliferation as the foremost biological processes in HCC.

Apart from the major three pairs of high consensus co-

expression clusters, we also identified five pairs of clusters from

each cohort also showing high correspondence based on the Jaccard

index for the overlapped gene members (Figure 1D) and the GO

semantic similarity for biological relevance (Figure 1E;

Supplementary Figure S1B). These pairs included LIHC-21 and

LIRI-23 associated with defense response (both suppressed), LIHC-

11 and LIRI-13 associated with extracellular matrix (ECM) and

collagen (both suppressed), LIHC-8 and LIRI-3 associated with

ECM, LIHC-15 and LIRI-18 associated with angiogenesis (both

non-directional), and LIHC-9 and LIRI-6 associated with Golgi

organization and histone modification (both suppressed).

Furthermore, significant correlations were observed between

LIHC and LIRI in terms of the size and CES of these eight pairs

of clusters (Figures 1F, G). In summary, by jointly analyzing

transcriptomic data from two independent cohorts including,

LIHC and LIRI, these analyses identified and validated consensus

co-expression networks that are linked to disease-related biological

processes in HCC.

To further highlight the dysregulated biological processes

between the HCC tumors and normal tissues, we conducted a

differential gene co-expression analysis (24) in the LIHC cohort.

This analysis identified eleven differentially co-expressed gene

clusters, wherein genes were exclusively co-expressed in either

normal tissues or HCC tumors (Figure 1H; Supplementary Table

S2). Notably, one of these clusters, LIHC-Diff-10, which was

associated with immune activities (Figure 1I; Supplementary

Table S3), was found to exist only in normal tissues but not in

HCC tumors (red triangle in Figure 1H). Additionally, the LIHC-

Diff-9 cluster, linked to immune responses and type I interferon

(Supplementary Figure S2, Supplementary Table S3), was

exclusively co-expressed in normal tissues (Figure 1H). These

findings suggest the suppression of immune responses in HCC

tumors, aligning with our prior observations.
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3.2 The consensus immunosuppression
co-expression cluster is dominated by
immunoregulatory transcription factors

To obtain a comprehensive overview of the consensus portion of

the two co-expression networks, matched co-expression clusters (n =

8 from each) were visualized separately per cohort (Figure 2A), with

clusters aligned according to their corresponding counterparts (see

Figures 1D, E). Notably, these eight pairs of co-expression clusters

encompassed more than half of the total 15,000 analyzed genes (in

LIHC, 9,722 genes in the eight clusters, 65%; in LIRI, 10,316 genes in

the eight clusters, 69%), providing a representation of the global

transcriptional landscape in HCC. Clear links were observed between

the immunosuppression clusters LIHC-5/LIRI-11 and other

biologically significant clusters, underscoring the pivotal role of

these immunosuppression clusters in both networks. Furthermore,

LIHC-5 and LIRI-11 exhibited similar topological characteristics,

evidenced by a strong correlation between the degree (the sum of

weighted connections) of the common genes (n = 921) in LIHC-5

and LIRI-11 (Figure 2B). Collectively, these findings suggest that the

immunosuppression co-expression clusters LIHC-5 and LIRI-11

were highly consistent and represented the most central and

biologically relevant clusters in the TCGA-LIHC and ICGC-LIRI-

JP co-expression networks, respectively.

The remarkable correspondence between LIHC-5 and LIRI-11

prompted the establishment of a consensus gene regulatory network

(GRN) for the immune system in HCC. To achieve this, the cosifer

algorithm (25) was applied to both the LIHC and LIRI

transcriptomics data, independently forming two global GRNs.

The cosifer is an ensemble gene regulatory network inference

algorithm that integrates multiple state-of-the-art gene regulatory

network inference methods, generating a consensus GRN by

harnessing the wisdom of crowds (59). For each cohort, eight

meta-GRNs were constructed using different GRN inference

algorithms and subsequently combined (see Methods) to create a

cohort-specific GRN. Examination of the top 50 transcription

factors (TFs) in each cohort-specific GRN (evaluated by the

network degree, i.e., the sum of the regulatory strength from a TF

to its targets) revealed a significant overlap of TFs (n = 30, p =

1.22E-33, hypergeometric testing) (Figure 2C), indicating

substantial similarity among the key TFs in the LIHC and LIRI

GRNs. Furthermore, these 30 TFs were significantly associated with

regulatory and hepatocyte-related processes (Figure 2D), further

supporting their relevance in HCC. Overall, the establishment of

cohort-specific GRNs revealed a high degree of correspondence

between LIHC and LIRI at the gene regulatory level.

Given this strong concordance, we integrated the meta-GRNs

from LIHC and LIRI using cosifer to create a unified global GRN,

capturing consensus information from both cohorts. Given the

established importance of immune clusters in both cohorts, we

focused on constructing a sub-GRN for the consensus

immunosuppression cluster, defined as the intersection of genes

between LIHC-5 and LIRI-11 (LIHC-5 ∩ LIRI-11, n = 921), from

the global consensus GRN. Based on network degree, the top 100

highest-ranked TFs for this immunosuppression sub-GRN were

prioritized. These data-driven, computation-based TFs were further
Frontiers in Immunology 08
refined by intersecting with the top 100 TFs for the consensus

immunosuppression cluster predicted by ChEA3, a knowledge-

based TF prediction algorithm (33), resulting in 16 highly

credible TFs (p = 2.23E-04, hypergeometric testing) for the

consensus immune cluster (Figure 2E).

Among the 16 TFs, several have previously been linked to HCC

and immune activities, including PRDM1 in CD8+ T cells (60), SPI1

in myeloid cell development, FOXP3 in regulatory T cells (61), and

TCF7 in HCC (62). The 16 TFs, along with their top three

connected targets, were visualized as a network to portray the

entire sub-GRN for the consensus immunosuppression cluster

(Figures 2F, G). Generally, the TFs and targets consistently

exhibited differential expression in tumors compared to normal

tissues in both LIHC and LIRI cohorts. Furthermore, a higher

number of genes and targets were down-regulated in this sub-GRN,

further corroborating the suppression of the immune response

in HCC.
3.3 Single-cell RNA-sequencing analysis
associated the immune co-expression
network with liver macrophages

As the bulk RNA-seq cohort cannot precisely capture gene

expression and co-expression in specific cell types, we utilized a

publicly available scRNA-seq cohort, GSE166635, as the discovery

cohort for HCC (13). After performing the quality control and

preprocessing, which included the removal of lowly expressed genes,

unqualified cells, and droplets (Supplementary Figures S3A-E) (see

Methods), a total of 18,724 cells were clustered into 18 distinct cell

types based on the expression of 23,605 genes (Figure 3A). Cell

clusters were annotated based on previous scRNA-seq studies in

HCC (6–8, 10, 38) and the Tabula Sapiens (63). These included B

cells (MS4A1, CD79A), dendritic cells (DCs; CLEC10A, CD1C),

hepatic stellate cells (HSCs; ACTA2, COL1A1, COL1A2, COL3A1),

liver sinusoidal endothelial cells (LSECs; PECAM1, CLDN5, VWF),

mast cells (MS4A2, TPSB2, TPSAB1), macrophages (Mj; CD68), T
cells (CD3D, CD3E, CD3G), plasma cells (IGHG1, CD79A),

hepatocytes (including malignant cells; ALB, TF, APOB),

cholangiocytes (KRT19, EPCAM), and natural killer cells (NK cells;

NKG7, GNLY, KLRD1) (Figure 3B).

Furthermore, macrophage subsets were annotated based on

highly expressed markers, including C1QA+ Mj, SPP1+ Mj,
VCAN+ Mj, and cycling Mj (TOP2A, MKI67) (Figure 3B). DCs

formed a major myeloid cluster (Figure 3A). Similarly, five distinct

T cell subsets were identified in the large T cell cluster. Based on the

markers in Figure 3B (9), these T cell subsets were annotated as

CD4+ Tregs (CD4, TIGIT, CTLA4, FOXP3, IL2RA), CD8+ cytotoxic

T (lymphocyte) cells (CD8+ CTLs; CD8A, CD8B, GZMK, CCL4,

CCL5), tissue-resident T cells (CD69), memory T cells (CD44), and

cycling T cells (TOP2A, MKI67).

For the eight pairs of co-expression clusters obtained from

the bulk RNA-seq analysis (see Figures 1D, E), we associated the

overlapping genes between the corresponding clusters with the cells

in the scRNA-seq data using single-sample gene set enrichment

analysis (ssGSEA) (50). While previous results from gene set
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overrepresentation analysis (GSOA) associated LIHC-5 and LIRI-

11 primarily with T cell activities and adaptive immune responses

(Figure 1B; Supplementary Figure S1A), we found that genes in the

consensus immunosuppression cluster (LIHC-5 ∩ LIRI-11) were

predominantly enriched in liver macrophages, with a lesser extent
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of enrichment in T cells (Figure 3C). This observation shifted our

focus toward liver macrophages. Additionally, several consensus

clusters were enriched in specific cell types (Figure 3C;

Supplementary Figure S4A), including the consensus metabolic

cluster (LIHC-1 ∩ LIRI-1) in hepatocytes (including malignant
FIGURE 2

The consensus immunosuppression co-expression cluster is dominated by immunoregulatory transcription factors. (A) WGCNA network structure of
the selected corresponding co-expression clusters (see Figures 1D, E) from LIHC and LIRI cohorts, respectively, presented at the cluster level. Edges
were evaluated by the average connections between all genes in different clusters based on the adjacency matrix. (B) Spearman’s correlation
between the node degree of the common genes (n = 921) in LIHC-5 and LIRI-11 clusters. (C) Venn diagram shows the overlap between the top 50
TFs in LIHC and LIRI GRNs. (D) GSOA of the intersected TFs in (C). (E) Venn diagram shows the overlap between the top 100 TFs in the cosifer-
combined GRNs and the results of ChEA3. (F) The sub-regulatory network for the consensus immunosuppression cluster. Blue and green bars show
the log2 fold change of the TFs/targets in the LIHC and LIRI cohort, respectively, with the upper bound as 1 and lower bound as -1. For simplicity,
only the 16 TFs in (E) and their 3 most connected targets are shown. (G) Heatmap shows the edge weights presented in (F), defined by the
cosifer scores.
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FIGURE 3

Single-cell RNA-sequencing analysis associated the immune co-expression network with liver macrophages. (A) Two-dimensional UMAP
visualization of the liver cancer cells in the scRNA-seq GSE166635 cohort. (B) Expression of markers for cell types presented in (A). (C) Enrichment of
the intersected genes between LIHC and LIRI consensus co-expression clusters (see Figures 1D, E) in the scRNA-seq discovery cohort evaluated by
ssGSEA. (D) Heatmap shows the expression of the top-ranked markers for C1QA+, SPP1+, and VCAN+ liver macrophages. (E) Expression of the
markers for C1QA+, SPP1+, and VCAN+ macrophages in the macrophage subsets Mj-C1-THBS1 and Mj-C2-C1QA in GSE140228 cohort (8).
(F) Overrepresentation of the markers for C1QA+, SPP1+, and VCAN+ macrophages in the macrophage subsets FOLR2+ TAMs (TRMs, tissue-resident
macrophages), FOLR2+ TAMs (MDMs, monocyte-derived macrophages), SPP1+ TAMs, and MT1G+ TAMs in GSE156337 cohort (39). Significance was
evaluated by hypergeometric testing followed by Benjamini-Hochberg correction (adjusted p-value).
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cells), the consensus proliferation cluster (LIHC-4 ∩ LIRI-5) in

cycling cells and a portion of hepatocytes (which could be

malignant cells), and the consensus angiogenesis cluster (LIHC-15

∩ LIRI-18, see Supplementary Figure S1B) in LSECs. Moreover,

cluster LIHC-Diff-10, which was exclusively co-expressed in normal

tissues (Figure 1H) and associated with immune activities

(Figure 1I), was also enriched in macrophages, with a lesser

extent of enrichment in T cells (Supplementary Figures S4B, C).

Another noteworthy observation is the enrichment of LIHC-Diff-11

in HSCs (Supplementary Figures S4B, C) – the cells primarily

responsible for the accumulation of the extracellular matrix

(ECM) in liver fibrosis (64). These genes in the LIHC-Diff-11

cluster were exclusively co-expressed in HCC tumors (Figure 1H)

and were associated with ECM (Supplementary Figure S2),

implying a potential role for HSCs regulated by this differential

co-expression network in the context of HCC.

The myeloid cell cluster (located at the bottom left in Figure 3A)

showing the highest relevance to the immunosuppression co-

expression cluster (Figure 3C), was further subdivided into DCs

and four subtypes of liver macrophages. Beyond the proliferating

macrophages, three distinct macrophage subsets were annotated:

C1QA+ Mj, characterized by high expression of C1QA, C1QB,

C1QC, VCAM1, SEPP1; SPP1+ Mj, characterized by high

expression of SPP1, SLC2A1, S100A10; and VCAN+ Mj,
characterized by high expression of FCAN, FCN1, S100A8,

S100A9 (Figure 3D; Supplementary Table S5). The existence of

these three Mj subsets was further validated in two independent

scRNA-seq datasets for HCC: GSE140228 (8) and GSE156337 (39).

C1QA+ Mj markers were highly expressed in Mj-C2-C1QA cell

cluster and in tumors, while VCAN+ Mj markers were highly

expressed in Mj-C1-THBS1 cell cluster and in normal tissues

(Figure 3E; Supplementary Figure S5A), confirming the presence

of C1QA+ and VCAN+ Mj subsets in GSE140228 and suggesting

distinct functions between these two Mj subsets. Although SPP1+

Mj markers were not highly expressed in macrophages in

GSE140228 (Figure 3E, Supplementary Figure S5A), they were

overrepresented in SPP1+ tumor-associated macrophages (TAMs)

in GSE156337. While VCAN+ macrophage markers were not

overrepresented in the GSE156337 cohort (Figure 3F;

Supplementary Figure S5B), C1QA+ macrophage markers were

significantly overrepresented in FOLR2+ TAMs (Figure 3F), which

were reported as immunosuppressive macrophage subset (39).

Overall, our analysis successfully validated the existence of all

three identified macrophage populations in two independent

cohorts. Furthermore, the absence of SPP1+ macrophages in

GSE140228 and VCAN+ macrophages in GSE156337 suggested a

diverse landscape of macrophage subsets within the

discovery cohort.
3.4 A high fraction of SPP1+ macrophages
is harmful to HCC patients’ survival

The analysis of the relative proportion of immune cells in bulk

RNA-seq data using the CIBERSORTx method (42), with scRNA-

seq data as the reference, revealed consistent results between the
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LIHC and LIRI cohorts (Figures 4A, B; Supplementary Figure S6,

Supplementary Table S6). First, we found an increased level of

myeloid cells and a decreased level of T cells in tumors over normal

samples across the two cohorts (Supplementary Figure S6),

suggesting an overall immunosuppression of T cells in tumors,

which could be regulated by the infiltrated myeloid cells. Among the

myeloid cell cluster components (C1QA+ Mj, SPP1+ Mj, VCAN+

Mj, cycling Mj, and DCs), C1QA+ Mj and SPP1+ Mj were the

two most abundant macrophage subsets constituting more than

50% of the total liver macrophages and DCs (Figure 4A).

Furthermore, SPP1+ Mj, cycling Mj, and DCs exhibited

significantly higher content in tumors, while C1QA+ and VCAN+

Mj were reduced in tumor samples in both the LIHC and LIRI

HCC cohorts (Figure 4B).

To assess the impact of the relative content of liver macrophages

and DCs on patient survival, we performed univariable Cox regression

analysis. High proportions of C1QA+ and VCAN+ macrophages were

associated with a favorable prognosis (Hazard Ratio HR < 1, p < 0.05),

whereas high proportions of SPP1+ and cycling macrophages were

linked to an unfavorable prognosis (HR > 1, p < 0.05), consistently

observed in both the LIHC and LIRI cohorts (Figure 4C). The Kaplan-

Meier survival analysis further confirmed these findings

(Supplementary Figure S7A).

Despite the close relationship between DCs and macrophages,

trajectory analysis (44) of the myeloid cell cluster revealed

differentiation trajectories exclusively between macrophage cell

types and not to DCs (Figure 4D). The C1QA+ macrophages were

identified as progenitor cells giving rise to SPP1+, VCAN+, and

cycling macrophages through three distinct trajectories (Figure 4D).

To identify cell-type-specific transcription factors, we applied

single-cell regulatory network inference and clustering (SCENIC)

(43) to the scRNA-seq discovery cohort. A total of 254 TFs were

enriched in at least one of the 18 liver cell types (Supplementary

Table S7). UMAP visualization based on the SCENIC TF-target

activity matrix showed six major cell clusters among the 18,724

cells, with most liver cell types clearly separated (Supplementary

Figure S8A). Nine of the 16 total TFs identified for the consensus

immunosuppression cluster (Figure 2F) were also significant in the

single-cell regulatory analysis and were predominantly enriched in

macrophages and T cells (Supplementary Figure S8B), reaffirming

their relevance. For each of the three major macrophage subsets

(SPP1+ Mj, VCAN+ Mj, and C1QA+ Mj), we identified the top 10

most specific TFs as representatives (Figure 4E). Notably, VCAN+

Mj appeared to be regulated by pro-inflammatory TFs such as

NFKB1, NFKB2, and STAT5A (65), indicating a pro-inflammatory

and M1-like phenotype of VCAN+ Mj.
The functional heterogeneity of myeloid cells was explored in

detail by analyzing the overall expression of macrophage functional

markers obtained from previous studies (52–54) as well as

conducting GSOA of the markers for each cel l type

(Supplementary Tables S5, S8). SPP1+ Mj displayed an M2-like

phenotype, involved in matrix remodeling, angiogenesis, and wound

healing (Figure 4F, Supplementary Figure S9A, Supplementary Table

S8). Conversely, VCAN+ Mj exhibited an M1-like phenotype,

characterized by pro-inflammatory cytokine production (Figure 4F;

Supplementary Figure S9A, Supplementary Table S8). Additionally,
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C1QA+ Mj showed relevance to both an M2-like phenotype and

phagocytosis, but not angiogenesis and matrix remodeling,

distinguishing from the other M2-like (SPP1+) macrophage subset

(Figure 4F; Supplementary Figure S9A; Supplementary Table S8).

The cycling macrophages, despite being significantly associated with

prognosis (Figure 4C; Supplementary Figure S7A), were less

emphasized in our analyses, mainly due to their nondirective

developmental trajectory to any other macrophage subtypes

(Figure 4D) with certain biological functions (Figure 4F;
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Supplementary Figure S9A), and absence as a major source of liver

macrophages in other HCC studies (6–8, 10, 39).

In parallel, we applied the same analytical pipeline to investigate

the heterogeneity and prognosis of liver T cells. Consistent results

were observed between LIHC and LIRI, showing significantly

higher content of CD4+ Tregs and tissue-resident T cells and

lower content of cycling and CD8+ CTLs in liver tumors

(Figures 5A, B). Among the five T cell subsets, both Cox survival

analysis and Kaplan-Meier survival analysis consistently
FIGURE 4

A high fraction of SPP1+ macrophages is harmful to HCC patients’ survival. (A) Relative fractions of C1QA+, SPP1+, VCAN+, and cycling macrophages
and DCs in the LIHC and LIRI cohorts estimated by CIBERSORTx. (B) Comparison of the relative fractions of the five subtypes in (A) between normal
tissues and tumors in LIHC and LIRI cohorts. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by Wilcoxon rank-sum test. (C) Forest plot shows
the hazard ratio (HR) and 95% confidence interval (CI) of the association of relative macrophage/DC content to patients’ survival, evaluated by
univariate Cox survival model. (D) Cell differentiation trajectories between macrophage subtypes and DCs. The zero-pseudo time was determined as
the cell expressed the highest monocyte marker CD14. (E) The top 10 enriched TFs for C1QA+, SPP1+, and VCAN+ macrophages identified by
SCENIC. (F) Average (relative) expression of predefined functional markers in the macrophages/DCs from the GSE166635 cohort.
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demonstrated a favorable prognosis associated with CD8+ CTLs,

highlighting their importance for patient survival (Figure 5C;

Supplementary Figure S7B). However, the prognostic significance

of the other T cell subsets was inconclusive. GSOA of liver T cell

subsets revealed functional heterogeneity of T cell subsets, with

CD8+ CTLs involved in cytotoxic and cell-killing functions, and

cycling T cells related to proliferation (Supplementary Figure S9B,

Supplementary Table S8). Trajectory analysis identified

differentiation trajectories of CD4+ Tregs and CD8+ CTLs

originating from memory and tissue-resident T cells, suggesting the

latter two as the sources of functional T cells in HCC (Figure 5D).
3.5 SPP1+ macrophages interact with
T cells through the SPP1 – CD44
ligand-receptor pair

In the analysis of cell-cell interactions within the scRNA-seq

discovery cohort by CellChat (45), it was found that HSCs exhibited
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strong interactions with other liver cells (Figure 6A), consistent with

a previous report (38). More importantly, SPP1+ Mj showed

significant interactions with LSECs, suggesting a potential anti-

inflammatory role. Notably, among the three major liver

macrophage subsets, CD8+ CTLs and CD4+ Tregs were highly

influenced by these macrophage subsets through different ligand-

receptor pairs, with SPP1 – CD44 ligand-receptor pair as the

strongest one (Figures 6A, B).

As depicted in Figure 6C, SPP1 was highly expressed in SPP1+

Mj, followed by C1QA+ Mj, but not in VCAN+ Mj. Indeed, the
average expression of SPP1 in SPP1+ Mj was almost 3 folds higher

than in C1QA+ Mj (average log2 fold change = 1.53, adjusted p-

value = 2.27E-236), suggesting that SPP1+ Mj are key

contributors to the SPP1 – CD44 ligand-receptor axis,

facilitating interactions between macrophages and T cells in

HCC. Moreover, a supplement of purified SPP1 protein to

primary human CD8+ T cells reduced the expression of CD44 –

a prominent marker for T cell activation, showing that
FIGURE 5

A high fraction of CD8+ CTLs is favorable for patients’ survival. (A) Relative fractions of CD4+ Tregs, CD8+ CTLs, memory, tissue-resident, and cycling
T cells in the LIHC and LIRI cohorts estimated by CIBERSORTx. (B) Comparison of the relative fractions of the five T cell subtypes in (A) between
normal tissues and tumors in LIHC and LIRI cohorts. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by Wilcoxon rank-sum test. (C) Forest plot
shows the hazard ratio (HR) and 95% confidence interval (CI) of the association of relative T cell content to patients’ survival, evaluated by univariate
Cox survival model. (D) Cell differentiation trajectories between T cell subtypes. The zero-pseudo time was determined as the cell expressed the
lowest T cell marker CD3E.
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macrophage-secreted SPP1 regulates CD8+ T cell activity in a

reversed direction (Figure 6D).

In summary, the SPP1 – CD44 ligand-receptor pair plays a

critical role in mediating interactions between liver macrophages –

particularly SPP1+ Mj, and various T cell subsets in the liver,

programming immune responses in the TIME.
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3.6 Inhibition of SPP1 in HCC-TAMs drives
macrophage transition toward a
favorable phenotype

Given that SPP1 is primarily expressed in liver macrophages

and hepatocytes (Figure 6C), we explored whether the overall
FIGURE 6

SPP1+ macrophages interact with T cells through the SPP1 – CD44 ligand-receptor pair. (A) Cell-cell interactions between 18 cell types in HCC.
Edges represent the total interaction strength between two cell types; node size indicates the number of cells in one cell type. Interaction maps
from C1QA+, SPP1+, and VCAN+ macrophages to the other cell types are shown independently. (B) Dot plot shows the communication probability
based on the ligand-receptor pair between C1QA+, SPP1+, VCAN+ macrophages, and T cells. Only significant ligand-receptor pairs are shown as
dots. (C) Violin plots show the expression of SPP1 in the 18 cell types. (D) Western blot shows the level of CD44 in CD8+ T cells treated with 400ng/
ml of purified SPP1. Band intensity was normalized with GAPDH.
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expression of SPP1 in HCC correlates with patient survival.

Employing GEPIA2 (66), we conducted Kaplan-Meier survival

analysis and univariate Cox survival analysis, both of which

provided compelling evidence that elevated levels of SPP1 are

associated with poor patient outcomes (Figure 7A), confirming

the unfavorable role of SPP1 expression in HCC.

To further elucidate the molecular mechanisms of SPP1 in

TAMs, we analyzed publicly available data (GSE230666), which

involved the inhibition of SPP1 in HCC-TAMs (shSPP1) along

with negative control (shControl) (18). Upon inhibition of SPP1

in HCC-TAMs, we observed a significant down-regulation of

numerous matrix metalloproteinase (MMP) genes (Figure 7B),

suggesting that SPP1 plays a role in ECM functions in TAMs,

in accordance with the findings in Figure 4F. Additionally,

GSEA indicated that SPP1 inhibition led to the attenuation

of pro-inflammatory effects in HCC-TAMs (Figure 7C).

This observation was further substantiated by a parallel

analysis based on PROGENy pathway activity (55), which

demonstrated the suppression of TNFa and NFkB pathway

activities in shSPP1 (Figure 7D). Similarly, transcription factor

analysis revealed a decrease in NFkB activity upon SPP1

inhibition (Figure 7E).

For comparative purposes, we conducted PROGENy pathway

analysis on the scRNA-seq dataset of the discovery cohort. This

analysis unveiled several noteworthy findings, including the

heightened activity of EGFR and VEGF signaling pathways in
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LSECs, as well as elevated TGFb signaling in HSCs (the primary

cell type associated with liver fibrosis) (Figure 7F). Focusing on liver

macrophage cell types, we observed a heightened JAK-STAT

signaling activity in C1QA+ Mj, hypoxia signaling in SPP1+ Mj,
and activation of TNFa and NFkB signaling pathways in VCAN+

Mj (Figure 7F). These findings align with our prior results, which

demonstrated the association of SPP1+ Mj with responses to

hypoxia (Supplementary Figure S9A), and VCAN+ Mj with pro-

inflammatory responses (Figures 3E, F).

Collectively, the inhibition of SPP1 in HCC-TAMs resulted in

the down-regulation of pro-inflammatory signaling pathways

(TNFa and NFkB) and relevant transcription factors (NFkB
family) (Figures 7D, E). This response contrasted with the

behavior of VCAN+ Mj. Additionally, SPP1 inhibition induced

an up-regulation of the JAK-STAT signaling pathway (Figure 7D),

mirroring the pathway activity profile observed in C1QA+ Mj
(Figure 7F). These findings collectively suggest that the inhibition

of SPP1 in HCC-TAMs leads to a transition of macrophages toward

a phenotype resembling C1QA+ Mj, a favorable TAM subtype in

the context of HCC.
4 Discussion

In this study, we conducted a comprehensive analysis of bulk

and single-cell RNA-seq data to elucidate key biological processes
FIGURE 7

Inhibition of SPP1 in HCC-TAMs drives macrophage transition toward a favorable phenotype. (A) Kaplan-Meier survival analysis (Logrank) and
univariate Cox survival analysis (HR) associate the expression of SPP1 to patients’ survival based on the LIHC cohort. (B) Volcano plot shows the
dysregulated genes between shSPP1 and shControl in HCC-TAMs. (C) GSEA plot shows the top-3 most enriched hallmark gene sets associated with
shSPP1 effects. (D) Barplot shows the PROGENy pathway activity of shSPP1 relative to control. (E) Barplot shows the transcription factor activity of
shSPP1 relative to control. (F) Heatmap shows the relative PROGENy pathway activity of 18 cell types in the HCC scRNA-seq dataset.
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and associated functional cell types in HCC. Our analysis of bulk

RNA-seq data from two independent cohorts including, LIHC and

LIRI, highlighted the pivotal role of immunosuppression, with a

particular focus on liver macrophages, which emerged as central

players in the tumor microenvironment, even surpassing T cells in

importance according to our scRNA-seq analysis. By integrating

bulk RNA-seq with scRNA-seq analyses, we pinpointed the pivotal

role of SPP1+ macrophages in modulating TIME in liver cancer and

demonstrated the inhibition effects of SPP1 in HCC-TAMs.

Co-expression network analysis has been widely employed in

biomedicine research (67), including HCC (68), to uncover disease

mechanisms and associated pathways. However, most co-

expression analyses have been conducted on bulk tissue data,

which can only reflect gene-gene correlation based on the average

expression across multiple cell types within tissues. In contrast, co-

expression analysis on single-cell RNA-seq data has been less

common due to data sparsity and low dimensionality (69),

making it challenging to establish reliable correlations. Although

the use of GSOA can sometimes implicitly associate gene sets (e.g.,

genes in a co-expression cluster) with cell type-specific biological

functions, in some cases, such associations can be misleading, as

exemplified in our study, where the consensus immunosuppression

co-expression cluster indeed showed higher enrichment in

macrophages than T cells by scRNA-seq analysis, despite being

associated with T cells based on GSOA. Not to mention that most of

the GO terms pointed to general biological functions (e.g., ECM)

that may exist in various cell types, lacking the link of the co-

expression cluster to certain cell types. Our study addressed this

challenge by mapping bulk-derived co-expression clusters to certain

cell types in scRNA-seq. Apart from the most significant co-

expression clusters identified in HCC, i.e., LIHC-5 ∩ LIRI-11 for

immunosuppression in macrophages and T cells, and two other

consensus clusters for proliferation and metabolism (Figure 2B;

Supplementary Figure S1A), our approaches identified several

interesting co-expression clusters associated with specific cell

types, including the consensus angiogenesis cluster LIHC-5 ∩
LIRI-11 with LSECs (Figure 4C; Supplementary Figure S1B), and

the tumor-specific ECM cluster LIHC-Diff-11 with HSCs

(Supplementary Figures S2, S3B, C). These interesting clusters

and cell types, while deviating from the main scope of this study,

have been previously studied for their diverse roles in liver (38). It is

expected that further exploration of the key genes within these

clusters may uncover novel mechanisms and potential drug targets

to modulate the entire tumor microenvironment.

One of the strengths of our study was the successful translation of

findings from cell-level analyses based on scRNA-seq to bulk RNA-

seq data through in silico cell-type deconvolution. This allowed us to

estimate the abundance of specific immune cell types in large-scale

RNA-seq cohorts and link TIMEwith patient prognosis. As a recently

developed bioinformatic pipeline, many software packages for in

silico cell-type deconvolution have been developed and benchmarked

(70, 71), promoting the wide application of this approach in

estimating the TIME (5) in cancer studies. Most of the applications

simply deconvoluted the bulk RNA-seq based on pre-trained
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signatures obtained from data mining in publicly available

resources, e.g., the 22 hematopoietic cell types in CIBERSORT (72),

which often only result in the estimation of specific cell types that

may not perfectly fit the tissue to be analyzed, this study addressed

this issue by using the scRNA-seq expression data as the reference to

deconvolute bulk RNA-seq from the same tissue/disease. By

separately analyzing myeloid cell subsets and T cell subsets, we

ensured a precise deconvolution that was less likely to be

confounded by overlapping signatures between multiple cell types.

Notably, our findings on the unfavorable role of SPP1+ Mj and

the favorable role of CD8+ CTLs in HCC prognosis were consistent

across two independent RNA-seq cohorts and were supported by in

vitro validation. The SPP1 – CD44 ligand-receptor pair emerged as a

crucial communication axis between SPP1+ Mj and various T cell

subsets. Indeed, the significance of the SPP1 – CD44 axis between

TAMs and T cells (both CD4+ and CD8+) has been reported in HCC

but not in normal liver tissues (39), showing the disease-specific

characteristic of this signaling pathway. A spatial transcriptomic

study identified the co-occurrence of the presence of SPP1+ Mj in

the HCC tumor area and the exclusion of CD8+ T cells from the

tumor region, implying the immunosuppressive role of SPP1+ Mj on

CD8+ T cells (73). Indeed, OPNhigh (osteopontin, encoded by SPP1)

facilitates M2-like Mj polarization, and the reduction of Mj
recruitment and M2 polarization leads to increased CD8+ T cell

infiltration, which is favorable for anti-PD-L1 immune checkpoint

blockade in OPNhigh HCC (74). In colorectal cancer, the SPP1+ Mj
were positively correlated with the tumor-specific FAP+ fibroblasts,

and the high infiltration of SPP1+ Mj and FAP+ fibroblasts was

associated with poor anti-PD-L1 therapeutic effects (75), highlighting

the important role of SPP1 in cancer development. Similarly, SPP1

expression was also found to be inversely correlated with CD8+ T cells

in renal cell carcinoma (76). In addition, studies have suggested the

critical role of the SPP1 – CD44 axis between macrophages and

glioma cancer cells (77) and between cancer-associated fibroblasts

and pancreatic cancer cells (78). Based on in vitro experiments, the

inhibition of SPP1 in THP-1 differentiated macrophages co-cultured

with the A549 cell line can mitigate lung cancer progression in the cell

line model and restore T cell activation (79), showing the potential of

targeting SPP1 in various cancers. Moreover, another in vivo study

has demonstrated the mechanisms of the SPP1 – CD44 axis in colon

cancer in a mouse model, that the osteopontin acts as an immune

checkpoint to suppress T cell activation and promotes tumor

immune evasion in colon carcinoma (80). As reported, the

expression of osteopontin is reversely regulated by the transcription

factor IRF8 (80), where the TF was significantly enriched in the

favorable C1QA+ Mj in our study. Considering the differentiation

trajectories from C1QA+ Mj toward two distinct macrophage subsets

SPP1+ (unfavorable) and VCAN+ (favorable) (Figure 4D), a potential

intervention could be designed to interfere with macrophage

differentiation so as to reduce the content of unfavorable and

adverse macrophages.

Despite the strengths of our study, as demonstrated by

consistent results identified from multiple analyzed datasets, there

are limitations. The scRNA-seq discovery cohort, while extensive,
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included samples from a limited number of patients, providing only

a partial reflection of macrophage subpopulations. A larger and

more comprehensive scRNA-seq cohort that covers a wider range of

macrophage subsets in HCC is currently unavailable. Integrating

data from multiple studies to address this limitation would require

overcoming challenges related to harmonizing technical and

biological batch effects. In addition, future in vitro validation

would need to demonstrate the effect of Mj-secreted SPP1 act on

T cells via CD44. Nevertheless, the consistency of our findings in

two independent cohorts and an in vitro experimental validation of

the adverse functions of SPP1+ macrophage subsets holds promise

for advancing immunotherapy in HCC. In this context, novel

strategies that modulate macrophage differentiation in

conjunction with multitarget therapeutic approaches can

be developed.

In conclusion, our study sheds light on the complex

interplay between the immune cell types in the liver tumor

microenvironment, with a focus on SPP1+ macrophages and

CD8+ CTLs. We highlight the potential of targeting SPP1 in

HCC treatment and emphasize the importance of translating

insights from single-cell analyses to bulk RNA-seq data to

translational clinical applications. These findings contribute to

our understanding of HCC immunology and offer new

perspectives for novel therapeutic interventions.
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