
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Xiangpeng Dai,
Jilin University, China

REVIEWED BY

Wangpan Shi,
University of California, San Diego,
United States
Dong Ren,
UC Irvine Medical Center, United States
Rong Li,
Xinjiang Medical University, China

*CORRESPONDENCE

Ting Chen

chenting88613@163.com

Guanning Shang

gnshang@cmu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 07 June 2024

ACCEPTED 22 August 2024
PUBLISHED 11 September 2024

CITATION

Li J, Bai Y, Zhang H, Chen T and Shang G
(2024) Single-cell RNA sequencing reveals
the communications between tumor
microenvironment components and tumor
metastasis in osteosarcoma.
Front. Immunol. 15:1445555.
doi: 10.3389/fimmu.2024.1445555

COPYRIGHT

© 2024 Li, Bai, Zhang, Chen and Shang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 11 September 2024

DOI 10.3389/fimmu.2024.1445555
Single-cell RNA sequencing
reveals the communications
between tumor
microenvironment components
and tumor metastasis
in osteosarcoma
Jiatong Li1†, Yang Bai2†, He Zhang1, Ting Chen1*

and Guanning Shang1*

1Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China,
2Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
Introduction:Osteosarcoma is a common type of bone cancer characterized by

a poor prognosis due to its metastatic nature. The tumor microenvironment

(TME) plays a critical role in tumor metastasis and therapy response. Therefore,

our study aims to explore the metastatic mechanism of osteosarcoma,

potentially opening new avenues for cancer treatment.

Methods: In this study, we collected data from the GSE152048, GSE14359, and

GSE49003 datasets. Differentially expressed genes (DEGs) were identified in

osteosarcoma cases with primary and metastatic features using R software and

the limma package. Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were performed to investigate

metastasis-related genes. A protein–protein interaction (PPI) network was

established using the STRING database to further analyze these metastasis-

associated genes. The abundances of different cell types with a mixed cell

population were estimated using the CIBERSORT approach. The scRNA-seq

data were analyzed by the Seurat package in R software, and intercellular

communications were elucidated using the CellChat R package.

Results: In this study, 92 DEGs related to metastasis were identified, including 41

upregulated and 51 downregulated genes in both the GSE14359 and GSE49003

datasets. Metastasis-associated pathways were identified, including those

involving the cyclin-dependent protein kinase holoenzyme complex,

transferase complex, transferring phosphorus-containing groups, SCF ubiquitin

ligase complex, and the serine/threonine protein kinase complex. KEGG and PPI

network analyses revealed 15 hub genes, including Skp2, KIF20A, CCNF, TROAP,

PHB, CKS1B, MCM3, CCNA2, TRIP13, CENPM, Hsp90AB1, JUN, CKS2, TK1, and

KIF4A. Skp2 has been known as an E3 ubiquitin ligase involved in osteosarcoma

progression. The proportion of CD8+ T cells was found to be higher in metastatic

osteosarcoma tissues, and high expression of PHB was associated with a

favorable prognosis in osteosarcoma patients. Additionally, 23 cell clusters
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were classified into eight cell types, including chondrocytes, MSC, T cells,

monocytes, tissue stem cells, neurons, endothelial cells, and macrophages.

The 15 hub genes were expressed across various cell types, and interactions

between different cell types were observed.

Conclusion: Our study reveals the intricate communication between tumor

microenvironment components and tumor metastasis in osteosarcoma.
KEYWORDS

osteosarcoma, immunotherapy, therapy, RNA sequencing, TME
1 Introduction

Osteosarcoma is a common type of bone cancer that often occurs

in the long bones of the legs and arms and is more prevalent among

children and young adults. Symptoms of osteosarcoma include pain,

swelling, and a noticeable lump in the affected bones (1). Treatment

options include surgical excision, chemotherapy, radiation therapy, and

targeted therapy (2, 3). Early detection and intervention are crucial for

achieving better outcomes, which makes exploring the underlying

mechanism of osteosarcoma vital (4). Although the exact cause of

osteosarcoma is not fully understood, certain genetic and epigenetic

factors may increase the risk of its development (5–7). It is essential to

uncover the mechanisms of osteosarcoma development and

reoccurrence in order to develop effective therapy for patients (8, 9).

Tumor metastasis is a key factor influencing therapeutic

outcomes and prognosis in cancer patients (10, 11). Osteosarcoma

is particularly characterized by its highly metastatic feature. Due to

this tendency for metastasis, patients with osteosarcoma often

experience poor treatment responses and worse prognosis. The 5-

year survival rate for osteosarcoma is about 70%, but it drops to 20%–

30% for patients with metastatic disease (12). The lungs are the most

common site for osteosarcoma metastasis, although it can also spread

to other bones or organs via the bloodstream or lymphatic system

(13). Early detection of metastasis is critical for improving the

chances of successful management in osteosarcoma patients.

The tumor microenvironment (TME) has gained significant

attention because it plays a crucial role in tumor progression,

metastasis, and treatment outcomes (14, 15). The TME refers to

the surrounding microenvironment in which tumors exist,

including both cellular and noncellular components such as

noncancerous cells, blood vessels, and extracellular matrix (ECM)

components. Noncancerous cells include immune cells, fibroblasts,

and other cell types. Blood vessel formation supplies oxygen and

nutrients to tumor cells and provides a pathway for tumor

metastasis (16). The TME of osteosarcoma includes osteoblasts,

osteocytes, osteoclasts, pericytes, endothelial cells, fibroblasts,

mesenchymal stem cells, and various immune cells, such as

lymphoid and myeloid cells, as well as the ECM (17, 18).
02
A better understanding of the TME in osteosarcoma, including

the interactions between cancer cells and noncancerous cells and the

mechanisms of metastasis, is crucial for developing effective tumor

treatments (19). Tumor cells interact with their surrounding TME in

complex ways, influencing their biological behavior and response to

therapies. Immunotherapy often targets the TME to enhance the

immune response against cancer by focusing on specific components

within the TME. Immunotherapy includes treatments such as

checkpoint inhibitors, cytokines, cancer vaccines, and chimeric

antigen receptor (CAR) T-cell therapy (20). CAR T-cell therapy

has demonstrated promising results in combating osteosarcoma (21).

Targeting the TME has opened new avenues for cancer treatment. In

this study, we used single-cell RNA sequencing (scRNA-seq) to reveal

the communications between tumor microenvironment components

and tumor metastasis in osteosarcoma.
2 Materials and methods

2.1 Data collection

The GSE152048 dataset from the GEO (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE152048) database was

downloaded. The scRNA-seq data were obtained from the

GSE152048 dataset. We selected two primary osteosarcoma

samples (BC2, BC22) and two metastasis osteosarcoma samples

(BC10, BC17) for further analysis. Additionally, the GSE14359 and

GSE49003 datasets were downloaded from the GEO database. The

GSE14359 dataset includes 10 primary osteosarcoma samples and 8

metastatic osteosarcoma samples, while the GSE49003 dataset

includes 6 primary osteosarcoma samples and 6 metastatic

osteosarcoma samples.
2.2 Differential and functional analysis

Differentially expressed genes (DEGs) were explored in

osteosarcoma cases with primary and metastatic features using R
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software and the limma package. A cutoff of |log2 (fold change)| >

0.5 and p < 0.05 was used to determine the DEGs. Metastasis-related

genes were dissected when DEGs were shared between the

GSE14359 and GSE49003 datasets. Gene ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were performed to examine metastasis-

related genes. Several R packages, including “clusterProfiler”,

“org.Hs.eg.db”, and “enrichplot” were used for functional analysis.

A p-value < 0.05 was considered a significant enrichment.
2.3 Protein–protein interaction
network construction

A protein–protein interaction network was established using

the STRING database to analyze the metastasis-associated genes.

The network was reconstructed and visualized using Cytoscape

software. The cytohubba plugin was employed to identify hub genes.
2.4 Tumor microenvironment analysis

Tumor purity was calculated for each tumor sample. An

estimate algorithm was used to detect the scores for immune cells

and stromal cells (22). The estimate R package (https://

bioinformatics.mdanderson.org/estimate/rpackage.html) was

utilized to determine the stromal score, immune score,

ESTIMATE score, and tumor purity of different clusters in

osteosarcoma patients from the GSE14359 and GSE49003 datasets.
2.5 Tumor immune infiltration analysis

The abundance of different cell types was explored and

estimated in a mixed-cell population using the CIBERSORT

approach, developed by the Newman group (23). The

CIBERSORT approach was applied to estimate the differences in

22 immune cell types among osteosarcoma patients in the

GSE14359 and GSE49003 datasets. This analysis was performed

using the R package “e1071” (Version: 1.7-3) as a precondition.
2.6 scRNA-seq data processing
and analysis

The scRNA-seq data were further analyzed using the Seurat

package (version 3.1.5; http://satijalab.org/seurat/) in R software

(version 3.6.1) for each sample (24). In each sample, the Seurat

object containing gene expression data was represented using the

Read10× () function. Three quality control criteria were applied to

exclude low-quality cells: (1) genes observed in fewer than 10 cells;

(2) cells with fewer than 200 total observed genes; and (3) cells with

more than 5% of genes expressed in mitochondria.

Gene expression data were normalized by converting values

to the natural logarithm after multiplying the gene fraction by
Frontiers in Immunology 03
10,000. The top 2,000 highly variable genes were selected, scaled,

and analyzed using principal component analysis (PCA). Significant

principal component (PC) values for cell clustering were determined

using Dimheatmap and JackStrawPlot. Subsequently, t-distributed

stochastic neighbor embedding (t-SNE) was performed to identify

cell classification, and the maker genes of each cluster were screened

by the FindAllMarkers function, with cutoff values of |log2

fold change(FC)| > 1, the cell population ratio > 0.25, and an

adjusted p-value < 0.05. The SingleR (version: 1.0.6) package [16]

was used for cell cluster annotation, drawing on data from the celldex

package HumanPrimaryCellAtlasData. The monocle (version:

2.14.0) package (25) was used to reconstruct cell differentiation

trajectories. Dimension reduction analysis was conducted using the

reduceDimension function with reduction_method = “DDRTree”

and max_components = 2. Characteristic genes of different cell states

were filtered using the criteria of |log2FC| > 1 and adjusted p-value <

0.05 for downstream analysis.
2.7 Cell communication analysis
using CellChat

Intercellular communications were clarified through ligand–

receptor interactions and analyzed using the R package CellChat

(26). Firstly, all ligand–receptor pairs were required to be expressed

in the 8 cell subpopulations, and a ligand–receptor subnetwork was

developed and saved in the human ligand–receptor pair database

CellChatDB. Secondly, a biologically significant cell–cell

communication network was constructed, mediated by ligand–

receptor interactions. Thirdly, interacting ligand–receptor pairs

related to the TNF, ANGPTL, CXCL, and IL families were further

explored to examine the relationships among cell types.
3 Results

3.1 Identification of metastasis-
associated genes

To identify metastasis-associated genes in osteosarcoma, we

selected two osteosarcoma datasets in the GEO database: GSE14359

and GSE49003. These datasets include numerous primary and

metastatic osteosarcoma tissues. In the GSE14359 dataset, 1,195

genes were upregulated and 1,435 genes were downregulated, while

in the GSE49003 dataset, 561 genes were upregulated and 580 genes

were downregulated (Figures 1A, B). Among these, 92 DEGs were

shared between both datasets, with 41 DEGs upregulated and 51

DEGs downregulated (Figure 2A).
3.2 Identification of metastasis-
associated pathways

GO and KECG enrichment analyses were performed on the 92

DEGs (Figures 2B, C). The GO analysis revealed that the regulation of
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cyclin-dependent protein kinase activity, growth plate cartilage

chondrocyte differentiation, chondrocyte development involved in

endochondral bone morphogenesis, and chondrocyte differentiation

were enriched in the 92 DEGs (Figure 2B). In terms of cellular

components, the cyclin-dependent protein kinase holoenzyme

complex, transferase complex, transferring phosphorus-containing

groups, SCF ubiquitin ligase complex, serine/threonine protein kinase

complex, and G-protein beta/gamma-subunit complex were found to

be enriched (Figure 2B). Regarding molecular function, cyclin-

dependent protein serine/threonine kinase regulator activity,

protein kinase regulator activity, kinase regulator activity, electron

transfer activity, and S100 protein binding were involved (Figure 2B).
3.3 KEGG analysis

KEGG pathway analysis showed that the 92 DEGs were

involved in regulating the cGMP-PKG and NOD-like receptor

signaling pathways (Figure 2C). Furthermore, the protein–protein
Frontiers in Immunology 04
interaction (PPI) network of the DEGs was generated using the

STRING database (Figure 2D). We found the top 15 hub genes by

cytoHubba plug-in of the Cytoscape software, including Skp2,

KIF20A, CCNF, TROAP, PHB, CKS1B, MCM3, CCNA2, TRIP13,

CENPM, Hsp90AB1, JUN, CKS2, TK1, and KIF4A (Figure 2D).

Among these, CCNA2 and KIF20A emerged as the top two

candidates within the PPI network (Figure 2D). Additionally, we

observed that the proportion of CD8+ T cells was higher in

metastatic tissues compared to primary osteosarcoma tissues

(Figure 3A). Notably, high expression of PHB was associated with

a favorable prognosis in osteosarcoma patients, as shown by

Kaplan–Meier survival analysis (Figure 3B).
3.4 scRNA-seq data analysis

Next, we analyzed a total of 24,375 single-cell samples. First, we

used Pearson’s correlation to measure the relationship between

sequencing depth and mitochondrial gene expression (Figure 4A).
FIGURE 1

Identification of metastasis-related genes. (A) Heatmaps depicting metastasis-related genes in the GSE14359 and GSE49003 datasets. (B) Volcano
plot illustrating differentially expressed genes in primary and metastatic osteosarcoma tissues.
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Sequencing depth had a positive correlation with the number of

genes, with a coefficient of 0.91 (Figure 4B). We also demonstrated

the number of genes and sequencing depth in 24,375 cells from four

osteosarcoma patients (Figures 4C–E). A volcano plot highlighted

the highly variable genes across the cells, including MYL1, ACTC1,

MYLPF, TNNC2, TNNT2, MYH3, MYOG, and PLA2G2A

(Figure 4F). The principal component analysis (PCA) was
Frontiers in Immunology 05
performed based on these highly variable genes (Figure 4G). The

determination of significant components was guided by the

JackStraw function, with 20 principal components selected

(Figure 4H). We then applied the t-SNE algorithm for nonlinear

dimension reduction, ultimately identifying 23 clusters within the

single-cell samples (Figure 5A). These 23 cell clusters were marked

by a total of 4,164 genes, with the top three marker genes of each
FIGURE 2

Identification of metastasis-related pathways. (A) In total, 41 DEGs were upregulated and 51 DEGs were downregulated in both the GSE14359 and
GSE49003 datasets. (B) GO enrichment analysis of the 92 DEGs. (C) KEGG pathway analysis of the 92 DEGs. (D) PPI network of the DEGs generated
using the STRING database.
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cluster shown in a heatmap (Figure 5B). Furthermore, the 23 cell

clusters were classified into eight cell types: chondrocytes, MSC, T

cells, monocytes, tissue stem cells, neurons, endothelial cells, and

macrophages (Figure 5C).
3.5 Analysis of top 15 hub genes

We further examined the expression and function of the top 15

hub genes across the eight cell types in osteosarcoma (Figures 6A,

B). We found that TK1, CCNF, KIF4A, and KIF20A had higher

expression levels in neurons, MSC, and chondrocytes (Figure 6B).

Skp2, CCNA2, TRIP13, CENPM, and TROAP were highly
Frontiers in Immunology 06
expressed in neurons. JUN was more highly expressed in T cells

and endothelial cells, while its expression was lower in neurons.

Hsp90AB1 showed higher expression in chondrocytes and T cells

but lower expression levels in tissue stem cells, monocytes, and

MSC (Figures 6B, C). These 15 hub genes were expressed across

various cell types (Figure 7), suggesting that they play different roles

in osteosarcoma development (Figure 7).
3.6 Cell–cell communications

Finally, we analyzed cell–cell communication between different

cell types using the CellChat tool. We found that there was an
FIGURE 3

CD8+ T cells are associated with metastasis. (A) Difference in the fraction of 22 immune cells across different tumor types. The proportion of CD8+
T cells was higher in metastatic tissues. (B) Kaplan–Meier survival analysis showing that high expression of PHB is associated with a favorable
prognosis in osteosarcoma patients.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1445555
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1445555
interaction between different cell types (Figure 8A). Each cell type

interacted differently with other cell types (Figure 8B). Using

netVisual bubble plots, we observed significant interactions

between certain cell groups and others (Figures 9A, B). We also

compared the outgoing or incoming signaling associated with each

cell population (Figures 10A, B). The incoming communication of

target cells and outgoing communication patterns of secreting

cells highlighted the correspondence between cell groups and

signaling pathways (Figure 10C). Additionally, we discovered the
Frontiers in Immunology 07
contribution of different cell populations to all signaling

pathways (Figure 10D).
4 Discussion

The TME plays a crucial role in the progression and metastasis of

osteosarcoma (27). Comprehensive bioinformatics analyses have

been utilized to explore the mechanisms underlying osteosarcoma
FIGURE 4

scRNA-seq data analysis. (A) Pearson correlation between sequencing depth and mitochondrial gene expression. (B) The sequencing depth has a
positive correlation with the number of genes, with a coefficient of 0.91. (C–E) The number of genes and sequencing depth across 24,375 cells are
shown. (F) Volcano plot data show highly variable genes across cells, including MYL1, ACTC1, MYLPF, TNNC2, TNNT2, MYH3, MYOG, and PLA2G2A.
(G) Principal component analysis was performed based on these highly variable genes. (H) Determination of principal component value using the
JackStraw function.
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development, prognosis, immune microenvironment, and drug

sensitivity. For example, one bioinformatics study identified the

oncogenic function of FoxM1 and its association with TME,

prognosis, and drug resistance in osteosarcoma (28). Another study

identified 28 metastasis-related genes in osteosarcoma, including 16

upregulated and 12 downregulated genes. GO analysis suggested that

these genes were enriched in Wnt and kinase pathways, bone

morphogenesis, and development. KEGG pathway analysis showed

that these genes were involved in the Wnt, JAK-STAT pathway, and

cytokine–cytotoxic receptor interactions and were also associated

with immunity in osteosarcoma patients (29). In this study, we

identified 41 upregulated and 51 downregulated DEGs in both the

GSE14359 and GSE49003 databases.

ScRNA-seq is a powerful tool for evaluating intratumoral

heterogeneity in various cancers, including osteosarcoma (30–32).

For instance, the ScRNA transcriptome has revealed the

heterogeneity and immunosuppressive roles of regulatory T cells
Frontiers in Immunology 08
(Tregs) in osteosarcoma, with patients displaying high Tregs

risk showing sensitivity to axitinib, sunitinib, and sorafenib. This

finding suggests that Treg heterogeneity could open a new window

for osteosarcoma treatment (33). Li et al. used ScRNA-seq data to

identify natural killer (NK) cell marker genes, finding that low-risk

osteosarcoma patients had high levels of infiltrating immune cells,

particularly naïve CD4 and CD8 T cells, in an immunosuppressive

microenvironment (34). Yi et al. reported that a proangiogenic

tumor-associated macrophages (TAMs) gene risk signature could

serve as a prognostic biomarker and therapeutic target in

osteosarcoma (35). He et al. analyzed scRNA-seq data from lung

metastasis samples and identified intratumoral heterogeneity in

osteosarcoma lung metastasis, highlighting the abundance of T

cells, particularly CD8+ T cells, which showed low immune

checkpoints (36). In our study, we found that CD8+ T-cell

proportions were higher in metastatic tissues than in primary

osteosarcoma tissues.
FIGURE 5

Cell clusters and cell types are identified. (A) The t-SNE algorithm was applied to reduce the nonlinear dimension, identifying 23 clusters within the
single-cell samples. (B) Heatmap data showing the top three marker genes for each cluster. (C) The 23 cell clusters were classified into eight cell
types, including chondrocytes, MSC, T cells, monocytes, tissue stem cells, neurons, endothelial cells, and macrophages.
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RNA-sequencing of individual cells from lung metastatic

tissues, primary tissues, and recurrent osteosarcoma tissues

revealed 11 cell clusters in osteosarcoma, with lower osteoclast

infiltration in chondroblastic, recurrent, and lung metastatic tissues,

suggesting intratumoral heterogeneity and an immunosuppressive

microenvironment in advanced osteosarcoma (37). Another study

using single-cell transcriptomics observed the complexity of the TME

in osteosarcoma patients without chemotherapy, identifying nine
Frontiers in Immunology 09
major cell types and highlighting T-cell depletion as a key feature

(38). Moreover, one study integrating scRNA-seq, microarray, and

bulk RNA-seq data identified tumor stem cell-related genes associated

with survival, TME, and immune infiltration status in osteosarcoma,

such as CKLF, DKK1, and Myc (39). Based on the scRNA-seq data, 11

clustered cell types were identified, and cell–cell interactions were

found among various cell types in recurrent, metastatic, and primary

osteosarcomas. NF-kB pathway was critically involved in controlling
FIGURE 6

Expression analysis of the top 15 hub genes. (A) Distribution of 23 clusters in primary and metastatic tissues. (B) Bubble plot showing the expression
levels of the top 15 hub genes across the 23 cell clusters. (C) tSNE maps illustrating the expression of the top 15 genes within the 23 cell clusters.
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the TME in osteosarcoma (40). Herein, we identified eight cell types,

including chondrocytes, MSC, T cells, monocytes, tissue stem cells,

neurons, endothelial cells, and macrophages in osteosarcoma using

scRNA-seq.

Based on scRNA-seq and bulk RNA-seq, Qin et al. revealed

ATG16L1 as a potential immune signature and prognostic factor in

osteosarcoma (41). Similarly, several survival-related genes, including

MUC1, COL13A1, KAZALD1, and JAG2, were identified as

prognostic markers in osteosarcoma by scRNA-seq and TARGET

analysis (42). Osteoclast differentiation-related genes such as LOXL1,

SERPINE2, FAM207A, TPM1, ST3GAL4, and S100A13 were also

linked to prognosis (43). Additionally, genes like COL6A1, COL6A3,
Frontiers in Immunology 10
and MIF were associated with lung metastasis, indicating that a

highly invasive subcluster in osteosarcoma correlated with a poor

prognosis (44). Our study reported that high expression of PHB was

associated with a favorable prognosis in osteosarcoma patients.

Using scRNA-seq, a chemoresistant risk-scoring model was

established, demonstrating that scRNA-seq could be a valuable

tool for evaluating chemoresistance in osteosarcoma (45). Genes

such as EGFL7 and VEGF were differentially expressed in

osteosarcoma (46), and NR4A1 was found to play a key role in

osteosarcoma pathophysiology (47). Single-cell transcriptomics

have also been employed to explore the functions of cancer-

associated fibroblasts in the TME of recurrent osteosarcoma (48).
FIGURE 7

Across various cell types, 15 hub genes are expressed.
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A five-gene panel, including BAMBI, TMCC2, NOX4, DKK1, and

CBS, was revealed as a prognostic model via scRNA-seq and bulk

RNA-seq analysis (49). Similar studies integrating bulk RNA-seq

and scRNA-seq have been conducted to explore the TME and

metabolic pattern in osteosarcoma (50). Moreover, scRNA-seq has

been used to characterize TME phenotypes in pleural effusion and

tumor tissues from advanced-stage osteosarcoma patients (51).

Seven genes, including ANXA1, FKBP11, SP7, TPM1, FDPS,

IFITM5, and SQLE, were identified as prognostic biomarkers in

mesenchymal stem cells using scRNA-seq (52). LPAR5 was

identified as a potential indicator for TME remodeling and a

therapeutic target for osteosarcoma based on scRNA-seq data

(53). Additionally, five key genes, including CD4, RUNX2, OMD,

COL9A3, and JUN, were found to be associated with osteosarcoma
Frontiers in Immunology 11
progression (54). GNG4 (55) and C1Q+ tumor-associated

macrophages (56) were reported to predict osteosarcoma

prognosis using scRNA-seq. Our study identified 15 hub genes

expressed across various cell types, including TK1, CCNF, KIF4A,

KIF20A, Skp2, CCNA2, TRIP13, CENPM, and TROAP.

Among these hub genes, Skp2 has been reported as an E3

ubiquitin ligase involved in osteosarcoma progression. Studies have

shown that suppression of Skp2 attenuates cell proliferation and

invasion in osteosarcoma, while overexpression of Skp2 enhances

cell growth and motility (57, 58). Additionally, Skp2 has been

implicated in promoting epithelial-mesenchymal transition

(EMT) in osteosarcoma cells (59) and facilitating stemness and

tumor progression through interaction with p27 (60). Targeting

Skp2 inhibition has demonstrated anticancer effects, leading to
FIGURE 8

Comparison of cell–cell interactions among various cell types. (A) CellChat analysis of cell–cell communication across various cell types, showing an
overview of the different interactions in osteosarcoma. Interaction number (left side) and interaction strength (right side) are illustrated. (B) Cell–cell
communication analysis across eight cell types.
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survival benefits in osteosarcoma (61). It has been known that

retinoblastoma (RB) and p53 pathways are critically involved in

aging, senescence, and tumorigenesis (62, 63). Skp2 knockout has

been shown to trigger immune infiltration and improve prognosis

in Rb1/p53-deficient mice with osteosarcoma (64).

Recently, Lu et al. used integrative analysis of single-cell and

bulk transcriptome data to discover neutrophil-related genes in

osteosarcoma, such as C3AR1 and FCER1G (65). Zheng et al.

employed single-cell transcriptomics to uncover chemotherapy-

mediated remodeling of the TME in osteosarcoma (66). Yi et al.

identified a pro-protein synthesis osteosarcoma subtype using

scRNA-se1, which could be useful for predicting prognosis and

treatment (67). Additionally, Truong et al. discovered a single-cell

differentiation landscape in osteosarcoma, which may aid in

developing targeted therapy (68).
Frontiers in Immunology 12
5 Conclusion

In this study, we identified metastasis-associated genes and

pathways in osteosarcoma. Additionally, we verified the presence

of 8 cell types, including chondrocytes, MSC, T cells, monocytes,

tissue stem cells, neurons, endothelial cells, and macrophages, in

osteosarcoma using scRNA-seq. Furthermore, 15 hub genes were

observed in various cell types. Our study provides valuable

insights into the metastatic mechanisms of osteosarcoma.

However, it is important to acknowledge the limitations of this

study. The findings from scRNA-seq have not been validated

through cellular experiments and mouse studies. Additionally,

metastasis-associated genes and pathways in osteosarcoma have

not been clarified through clinical studies. To validate our findings,

in vitro experiments and in vivo studies are required. It is also
FIGURE 9

Interactions between various cell groups. (A) NetVisual bubble plot showing interactions between specific cell groups. (B) Heatmaps depicting
interactions among eight cell types.
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necessary to examine the expression of the 15 hub genes in

metastatic tissues of osteosarcoma patients. By unraveling the

complex interactions between osteosarcoma cells and the

surrounding microenvironment at the single-cell level, we can

identify novel therapeutic targets to inhibit metastasis and

improve treatment outcomes. Moreover, scRNA-seq could be

instrumental in uncovering mechanisms of resistance to current

therapies, leading to the development of combination therapies

that overcome resistance. Future research should explore how the

TME evolves during tumor progression and how certain

microenvironmental niches contribute to osteosarcoma metastasis.
Frontiers in Immunology 13
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding authors.
Author contributions

JL: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Resources, Software, Writing –
FIGURE 10

Outgoing and incoming signaling in each cell population. (A) Comparison of outgoing and incoming signaling associated with each cell population.
(B) Signaling dots are illustrated. (C) Incoming and outgoing communication patterns across various cell types. (D) Contribution of cell populations
to signaling pathways, with outgoing communication patterns of secreting cells (top) and incoming communication patterns of target cells
(bottom) illustrated.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1445555
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1445555
original draft. YB: Formal analysis, Investigation, Methodology,

Resources, Software, Writing – original draft. HZ: Data curation,

Formal analysis, Investigation, Methodology, Software, Writing –

original draft. TC: Conceptualization, Investigation, Project

administration, Supervision, Validation, Visualization, Writing –

review & editing. GS: Conceptualization, Project administration,

Supervision, Validation, Visualization, Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Frontiers in Immunology 14
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Beird HC, Bielack SS, Flanagan AM, Gill J, Heymann D, Janeway KA, et al.
Osteosarcoma. Nat Rev Dis Primers. (2022) 8:77. doi: 10.1038/s41572-022-00409-y

2. Gill J, Gorlick R. Advancing therapy for osteosarcoma. Nat Rev Clin Oncol. (2021)
18:609–24. doi: 10.1038/s41571-021-00519-8

3. Yan P, Wang J, Yue B, Wang X. Unraveling molecular aberrations and pioneering
therapeutic strategies in osteosarcoma. Biochim Biophys Acta Rev Cancer. (2024)
1879:189171. doi: 10.1016/j.bbcan.2024.189171

4. Twenhafel L, Moreno D, Punt T, Kinney M, Ryznar R. Epigenetic changes
associated with osteosarcoma: A comprehensive review. Cells. (2023) 12(12):1595.
doi: 10.3390/cells12121595

5. Zhang Y, Xu Y, Bao Y, Luo Y, Qiu G, He M, et al. N6-methyladenosine (m6A)
modification in osteosarcoma: expression, function and interaction with noncoding
RNAs - an updated review. Epigenetics. (2023) 18:2260213. doi: 10.1080/
15592294.2023.2260213

6. Almansa-Gomez S, Prieto-Ruiz F, Cansado J, Madrid M. Autophagy modulation
as a potential therapeutic strategy in osteosarcoma: current insights and future
perspectives. Int J Mol Sci. (2023) 24(18):13827. doi: 10.3390/ijms241813827

7. Qin S, Wang Y, Ma C, Lv Q. Competitive endogenous network of circRNA,
lncRNA, and miRNA in osteosarcoma chemoresistance. Eur J Med Res. (2023) 28:354.
doi: 10.1186/s40001-023-01309-x

8. Wang S, Ren Q, Li G, Zhao X, Zhao X, Zhang Z. The targeted therapies for
osteosarcoma via six major pathways. Curr Mol Pharmacol. (2024) 17:e210823220109.
doi: 10.2174/1874467217666230821142839

9. Ji Z, Shen J, Lan Y, Yi Q, Liu H. Targeting signaling pathways in osteosarcoma:
Mechanisms and clinical studies. MedComm (2020). (2023) 4:e308. doi: 10.1002/
mco2.308

10. Entenberg D, Oktay MH, Condeelis JS. Intravital imaging to study cancer
progression and metastasis. Nat Rev Cancer. (2023) 23:25–42. doi: 10.1038/s41568-
022-00527-5

11. Li YQ, Sun FZ, Li CX, Mo HN, Zhou YT, Lv D, et al. RARRES2 regulates lipid
metabolic reprogramming to mediate the development of brain metastasis in triple
negative breast cancer. Mil Med Res. (2023) 10:34. doi: 10.1186/s40779-023-00470-y

12. Sheng G, Gao Y, Yang Y, Wu H. Osteosarcoma and metastasis. Front Oncol.
(2021) 11:780264. doi: 10.3389/fonc.2021.780264

13. Du X, Wei H, Zhang B, Wang B, Li Z, Pang LK, et al. Molecular mechanisms of
osteosarcoma metastasis and possible treatment opportunities. Front Oncol. (2023)
13:1117867. doi: 10.3389/fonc.2023.1117867

14. Hou B, Chen T, Zhang H, Li J, Wang P, Shang G. The E3 ubiquitin ligases regulate
PD-1/PD-L1 protein levels in tumor microenvironment to improve immunotherapy.
Front Immunol. (2023) 14:1123244. doi: 10.3389/fimmu.2023.1123244

15. Walsh LA, Quail DF. Decoding the tumor microenvironment with spatial
technologies. Nat Immunol. (2023) 24:1982–93. doi: 10.1038/s41590-023-01678-9

16. Tian B, Du X, Zheng S, Zhang Y. The role of tumor microenvironment in
regulating the plasticity of osteosarcoma cells. Int J Mol Sci. (2022) 23(24):16155.
doi: 10.3390/ijms232416155

17. Baron M, Drohat P, Crawford B, Hornicek FJ, Best TM, Kouroupis D.
Mesenchymal stem/stromal cells: immunomodulatory and bone regeneration
potential after tumor excision in osteosarcoma patients. Bioeng (Basel). (2023) 10
(10):1187. doi: 10.3390/bioengineering10101187

18. Zeng J, Peng Y, Wang D, Ayesha K, Chen S. The interaction between
osteosarcoma and other cells in the bone microenvironment: From mechanism to
clinical applications. Front Cell Dev Biol. (2023) 11:1123065. doi: 10.3389/
fcell.2023.1123065

19. Jin J, Cong J, Lei S, Zhang Q, Zhong X, Su Y, et al. Cracking the code:
Deciphering the role of the tumor microenvironment in osteosarcoma metastasis. Int
Immunopharmacol. (2023) 121:110422. doi: 10.1016/j.intimp.2023.110422

20. Xiong D, Zhang L, Sun ZJ. Targeting the epigenome to reinvigorate T cells for
cancer immunotherapy. Mil Med Res. (2023) 10:59. doi: 10.1186/s40779-023-00496-2

21. Cheng S, Wang H, Kang X, Zhang H. Immunotherapy innovations in the fight
against osteosarcoma: emerging strategies and promising progress. Pharmaceutics.
(2024) 16(2):251. doi: 10.3390/pharmaceutics16020251

22. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun. (2013) 4:2612. doi: 10.1038/ncomms3612

23. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.
Determining cell type abundance and expression from bulk tissues with digital
cytometry. Nat Biotechnol. (2019) 37:773–82. doi: 10.1038/s41587-019-0114-2

24. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat
Biotechnol. (2018) 36:411–20. doi: 10.1038/nbt.4096

25. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph
embedding resolves complex single-cell trajectories. Nat Methods. (2017) 14:979–82.
doi: 10.1038/nmeth.4402

26. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference
and analysis of cell-cell communication using CellChat. Nat Commun. (2021) 12:1088.
doi: 10.1038/s41467-021-21246-9

27. Nirala BK, Yamamichi T, Petrescu DI, Shafin TN, Yustein JT. Decoding the
impact of tumor microenvironment in osteosarcoma progression and metastasis.
Cancers (Basel). (2023) 15(20):5108. doi: 10.3390/cancers15205108

28. Shi S, Wang Q, Du X. Comprehensive bioinformatics analysis reveals the oncogenic
role of FoxM1 and its impact on prognosis, immunemicroenvironment, and drug sensitivity
in osteosarcoma. J Appl Genet. (2023) 64:779–96. doi: 10.1007/s13353-023-00785-5

29. Qin S, Li L, Liu D. Metastasis-related gene signature associates with immunity
and predicts prognosis accurately in patients with osteosarcoma. Aging (Albany NY).
(2023) 15:7219–36. doi: 10.18632/aging.204902

30. Thomas DD, Lacinski RA, Lindsey BA. Single-cell RNA-seq reveals intratumoral
heterogeneity in osteosarcoma patients: A review. J Bone Oncol. (2023) 39:100475.
doi: 10.1016/j.jbo.2023.100475

31. Feng DC, Zhu WZ, Wang J, Li DX, Shi X, Xiong Q, et al. The implications of
single-cell RNA-seq analysis in prostate cancer: unraveling tumor heterogeneity,
therapeutic implications and pathways towards personalized therapy. Mil Med Res.
(2024) 11:21. doi: 10.1186/s40779-024-00526-7

32. Tang L, Huang ZP, Mei H, Hu Y. Insights gained from single-cell analysis of
chimeric antigen receptor T-cell immunotherapy in cancer.Mil Med Res. (2023) 10:52.
doi: 10.1186/s40779-023-00486-4

33. Cheng D, Zhang Z, Mi Z, Tao W, Liu D, Fu J, et al. Deciphering the
heterogeneity and immunosuppressive function of regulatory T cells in osteosarcoma
using single-cell RNA transcriptome. Comput Biol Med. (2023) 165:107417.
doi: 10.1016/j.compbiomed.2023.107417

34. Li Q, Huang X, Zhao Y. Prediction of prognosis and immunotherapy response
with a novel natural killer cell marker genes signature in osteosarcoma. Cancer Biother
Radiopharm. (2023). doi: 10.1089/cbr.2023.0103
frontiersin.org

https://doi.org/10.1038/s41572-022-00409-y
https://doi.org/10.1038/s41571-021-00519-8
https://doi.org/10.1016/j.bbcan.2024.189171
https://doi.org/10.3390/cells12121595
https://doi.org/10.1080/15592294.2023.2260213
https://doi.org/10.1080/15592294.2023.2260213
https://doi.org/10.3390/ijms241813827
https://doi.org/10.1186/s40001-023-01309-x
https://doi.org/10.2174/1874467217666230821142839
https://doi.org/10.1002/mco2.308
https://doi.org/10.1002/mco2.308
https://doi.org/10.1038/s41568-022-00527-5
https://doi.org/10.1038/s41568-022-00527-5
https://doi.org/10.1186/s40779-023-00470-y
https://doi.org/10.3389/fonc.2021.780264
https://doi.org/10.3389/fonc.2023.1117867
https://doi.org/10.3389/fimmu.2023.1123244
https://doi.org/10.1038/s41590-023-01678-9
https://doi.org/10.3390/ijms232416155
https://doi.org/10.3390/bioengineering10101187
https://doi.org/10.3389/fcell.2023.1123065
https://doi.org/10.3389/fcell.2023.1123065
https://doi.org/10.1016/j.intimp.2023.110422
https://doi.org/10.1186/s40779-023-00496-2
https://doi.org/10.3390/pharmaceutics16020251
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.3390/cancers15205108
https://doi.org/10.1007/s13353-023-00785-5
https://doi.org/10.18632/aging.204902
https://doi.org/10.1016/j.jbo.2023.100475
https://doi.org/10.1186/s40779-024-00526-7
https://doi.org/10.1186/s40779-023-00486-4
https://doi.org/10.1016/j.compbiomed.2023.107417
https://doi.org/10.1089/cbr.2023.0103
https://doi.org/10.3389/fimmu.2024.1445555
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1445555
35. Yi C, Li Z, Zhao Q, Gong D, Zhao S, Chen Z, et al. Single-cell RNA sequencing
pro-angiogenic macrophage profiles reveal novel prognostic biomarkers and
therapeutic targets for osteosarcoma. Biochem Genet. (2023) 62(2):1325–46.
doi: 10.1007/s10528-023-10483-w

36. He M, Jiang X, Miao J, Feng W, Xie T, Liao S, et al. A new insight of
immunosuppressive microenvironment in osteosarcoma lung metastasis. Exp Biol
Med (Maywood). (2023) 248:1056–73. doi: 10.1177/15353702231171900

37. Zhou Y, Yang D, Yang Q, Lv X, HuangW, Zhou Z, et al. Single-cell RNA landscape
of intratumoral heterogeneity and immunosuppressive microenvironment in advanced
osteosarcoma. Nat Commun. (2020) 11:6322. doi: 10.1038/s41467-020-20059-6

38. Liu Y, Feng W, Dai Y, Bao M, Yuan Z, He M, et al. Single-cell transcriptomics
reveals the complexity of the tumor microenvironment of treatment-naive
osteosarcoma. Front Oncol. (2021) 11:709210. doi: 10.3389/fonc.2021.709210

39. Xu A, Qian C, Lin J, Yu W, Jin J, Liu B, et al. Cell differentiation trajectory-
associated molecular classification of osteosarcoma. Genes (Basel). (2021) 12(11):1685.
doi: 10.3390/genes12111685

40. Wu R, Dou X, Li H, Sun Z, Li H, Shen Y, et al. Identification of cell
subpopulations and interactive signaling pathways from a single-cell RNA
sequencing dataset in osteosarcoma: A comprehensive bioinformatics analysis. Front
Oncol. (2022) 12:853979. doi: 10.3389/fonc.2022.853979

41. Qin Z, Luo K, Liu Y, Liao S, He J, He M, et al. ATG16L1 is a potential prognostic
biomarker and immune signature for osteosarcoma: A study based on bulk RNA and
single-cell RNA-sequencing. Int J Gen Med. (2022) 15:1033–45. doi: 10.2147/
IJGM.S341879

42. Feleke M, FengW, Rothzerg E, Song D, Wei Q, Koks S, et al. Single-cell RNA-seq
identification of four differentially expressed survival-related genes by a TARGET:
Osteosarcoma database analysis. Exp Biol Med (Maywood). (2022) 247:921–30.
doi: 10.1177/15353702221080131

43. Shao H, Ge M, Zhang J, Zhao T, Zhang S. Osteoclasts differential-related
prognostic biomarker for osteosarcoma based on single cell, bulk cell and gene
expression datasets. BMC Cancer. (2022) 22:288. doi: 10.1186/s12885-022-09380-z

44. Guo J, Tang H, Huang P, Guo J, Shi Y, Yuan C, et al. Single-cell profiling of
tumor microenvironment heterogeneity in osteosarcoma identifies a highly invasive
subcluster for predicting prognosis. Front Oncol. (2022) 12:732862. doi: 10.3389/
fonc.2022.732862

45. Zeng Z, Li W, Zhang D, Zhang C, Jiang X, Guo R, et al. Development of a
chemoresistant risk scoring model for prechemotherapy osteosarcoma using single-cell
sequencing. Front Oncol. (2022) 12:893282. doi: 10.3389/fonc.2022.893282

46. Feleke M, Feng W, Song D, Li H, Rothzerg E, Wei Q, et al. Single-cell RNA
sequencing reveals differential expression of EGFL7 and VEGF in giant-cell tumor of
bone and osteosarcoma. Exp Biol Med (Maywood). (2022) 247:1214–27. doi: 10.1177/
15353702221088238

47. Liu W, Hao Y, Tian X, Jiang J, Qiu Q. The role of NR4A1 in the pathophysiology
of osteosarcoma: A comprehensive bioinformatics analysis of the single-cell RNA
sequencing dataset. Front Oncol. (2022) 12:879288. doi: 10.3389/fonc.2022.879288

48. Huang X, Wang L, Guo H, Zhang W, Shao Z. Single-cell transcriptomics reveals
the regulative roles of cancer associated fibroblasts in tumor immune microenvironment
of recurrent osteosarcoma. Theranostics. (2022) 12:5877–87. doi: 10.7150/thno.73714

49. Yang J, Zhang J, Na S, Wang Z, Li H, Su Y, et al. Integration of single-cell RNA
sequencing and bulk RNA sequencing to reveal an immunogenic cell death-related 5-
gene panel as a prognostic model for osteosarcoma. Front Immunol. (2022) 13:994034.
doi: 10.3389/fimmu.2022.994034

50. Huang R, Wang X, Yin X, Zhou Y, Sun J, Yin Z, et al. Combining bulk RNA-
sequencing and single-cell RNA-sequencing data to reveal the immune
microenvironment and metabolic pattern of osteosarcoma. Front Genet. (2022)
13:976990. doi: 10.3389/fgene.2022.976990

51. Zhang Z, Ji W, Huang J, Zhang Y, Zhou Y, Zhang J, et al. Characterization of the
tumour microenvironment phenotypes in Malignant tissues and pleural effusion from
Frontiers in Immunology 15
advanced osteoblastic osteosarcoma patients. Clin Transl Med. (2022) 12:e1072.
doi: 10.1002/ctm2.1072

52. Jiang H, Du H, Liu Y, Tian X, Xia J, Yang S. Identification of novel prognostic
biomarkers for osteosarcoma: a bioinformatics analysis of differentially expressed genes
in the mesenchymal stem cells from single-cell sequencing data set. Transl Cancer Res.
(2022) 11:3841–52. doi: 10.21037/tcr-22-2370

53. He Y, Zhou H, Huang X, Qu Y, Wang Y, Pei W, et al. Infiltration of LPAR5(+)
macrophages in osteosarcoma tumor microenvironment predicts better outcomes.
Front Immunol. (2022) 13:909932. doi: 10.3389/fimmu.2022.909932

54. Wang Y, Qin D, Gao Y, Zhang Y, Liu Y, Huang L. Identification of therapeutic
targets for osteosarcoma by integrating single-cell RNA sequencing and network
pharmacology. Front Pharmacol. (2022) 13:1098800. doi: 10.3389/fphar.2022.1098800

55. Jiang X, Tang F, Zhang J, He M, Xie T, Tang H, et al. High GNG4 predicts
adverse prognosis for osteosarcoma: Bioinformatics prediction and experimental
verification. Front Oncol. (2023) 13:991483. doi: 10.3389/fonc.2023.991483

56. Tu J, Wang D, Zheng X, Liu B. Single-cell RNA datasets and bulk RNA datasets
analysis demonstrated C1Q+ tumor-associated macrophage as a major and antitumor
immune cell population in osteosarcoma. Front Immunol. (2023) 14:911368.
doi: 10.3389/fimmu.2023.911368

57. Ding L, Li R, Han X, Zhou Y, Zhang H, Cui Y, et al. Inhibition of Skp2 suppresses
the proliferation and invasion of osteosarcoma cells. Oncol Rep. (2017) 38:933–40.
doi: 10.3892/or.2017.5713

58. Ding L, Li R, Sun R, Zhou Y, Zhou Y, Han X, et al. S-phase kinase-associated
protein 2 promotes cell growth and motility in osteosarcoma cells. Cell Cycle. (2017)
16:1547–55. doi: 10.1080/15384101.2017.1346760

59. Ding L, Wang C, Cui Y, Han X, Zhou Y, Bai J, et al. S-phase kinase-associated
protein 2 is involved in epithelial-mesenchymal transition in methotrexate-resistant
osteosarcoma cells. Int J Oncol. (2018) 52:1841–52. doi: 10.3892/ijo.2018.4345

60. Wang J, Aldahamsheh O, Ferrena A, Borjihan H, Singla A, Yaguare S, et al. The
interaction of SKP2 with p27 enhances the progression and stemness of osteosarcoma.
Ann N Y Acad Sci. (2021) 1490:90–104. doi: 10.1111/nyas.14578

61. Wang J, Ferrena A, Zhang R, Singh S, Viscarret V, Al-Harden W, et al. Targeted
inhibition of SCF(SKP2) confers anti-tumor activities resulting in a survival benefit in
osteosarcoma. Oncogene. (2024) 43:962–75. doi: 10.1038/s41388-024-02942-4

62. Huang Y, Che X, Wang PW, Qu X. p53/MDM2 signaling pathway in aging,
senescence and tumorigenesis. Semin Cancer Biol. (2024) 101:44–57. doi: 10.1016/
j.semcancer.2024.05.001

63. Pareek A, Kumar D, Pareek A, Gupta MM, Jeandet P, Ratan Y, et al.
Retinoblastoma: An update on genetic origin, classification, conventional to next-
generation treatment strategies. Heliyon. (2024) 10:e32844. doi: 10.1016/
j.heliyon.2024.e32844

64. Ferrena A, Wang J, Zhang R, Karadal-Ferrena B, Al-Hardan W, Singh S, et al.
SKP2 knockout in rb1/p53-deficient mouse models of osteosarcoma induces immune
infiltration and drives a transcriptional program with a favorable prognosis. Mol
Cancer Ther. (2024) 23:223–34. doi: 10.1158/1535-7163.MCT-23-0173

65. Lu J, Rui J, Xu XY, Shen JK. Exploring the role of neutrophil-related genes in
osteosarcoma via an integrative analysis of single-cell and bulk transcriptome.
Biomedicines. (2024) 12(7):1513. doi: 10.3390/biomedicines12071513

66. Zheng X, Wu W, Zhao Z, Zhang X, Yu S. Single-cell transcriptomic insights into
chemotherapy-induced remodeling of the osteosarcoma tumor microenvironment. J
Cancer Res Clin Oncol. (2024) 150:356. doi: 10.1007/s00432-024-05787-2

67. Yi C, Liu J, Zhao S, Gong D, Xu B, Li A, et al. Identification of a pro-protein
synthesis osteosarcoma subtype for predicting prognosis and treatment. Sci Rep. (2024)
14:16475. doi: 10.1038/s41598-024-67547-z

68. Truong DD,Weistuch C, Murgas KA, Admane P, King BL, Chauviere Lee J, et al.
Mapping the single-cell differentiation landscape of osteosarcoma. Clin Cancer Res.
(2024) 30:3259–72. doi: 10.1158/1078-0432.CCR-24-0563
frontiersin.org

https://doi.org/10.1007/s10528-023-10483-w
https://doi.org/10.1177/15353702231171900
https://doi.org/10.1038/s41467-020-20059-6
https://doi.org/10.3389/fonc.2021.709210
https://doi.org/10.3390/genes12111685
https://doi.org/10.3389/fonc.2022.853979
https://doi.org/10.2147/IJGM.S341879
https://doi.org/10.2147/IJGM.S341879
https://doi.org/10.1177/15353702221080131
https://doi.org/10.1186/s12885-022-09380-z
https://doi.org/10.3389/fonc.2022.732862
https://doi.org/10.3389/fonc.2022.732862
https://doi.org/10.3389/fonc.2022.893282
https://doi.org/10.1177/15353702221088238
https://doi.org/10.1177/15353702221088238
https://doi.org/10.3389/fonc.2022.879288
https://doi.org/10.7150/thno.73714
https://doi.org/10.3389/fimmu.2022.994034
https://doi.org/10.3389/fgene.2022.976990
https://doi.org/10.1002/ctm2.1072
https://doi.org/10.21037/tcr-22-2370
https://doi.org/10.3389/fimmu.2022.909932
https://doi.org/10.3389/fphar.2022.1098800
https://doi.org/10.3389/fonc.2023.991483
https://doi.org/10.3389/fimmu.2023.911368
https://doi.org/10.3892/or.2017.5713
https://doi.org/10.1080/15384101.2017.1346760
https://doi.org/10.3892/ijo.2018.4345
https://doi.org/10.1111/nyas.14578
https://doi.org/10.1038/s41388-024-02942-4
https://doi.org/10.1016/j.semcancer.2024.05.001
https://doi.org/10.1016/j.semcancer.2024.05.001
https://doi.org/10.1016/j.heliyon.2024.e32844
https://doi.org/10.1016/j.heliyon.2024.e32844
https://doi.org/10.1158/1535-7163.MCT-23-0173
https://doi.org/10.3390/biomedicines12071513
https://doi.org/10.1007/s00432-024-05787-2
https://doi.org/10.1038/s41598-024-67547-z
https://doi.org/10.1158/1078-0432.CCR-24-0563
https://doi.org/10.3389/fimmu.2024.1445555
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Single-cell RNA sequencing reveals the communications between tumor microenvironment components and tumor metastasis in osteosarcoma
	1 Introduction
	2 Materials and methods
	2.1 Data collection
	2.2 Differential and functional analysis
	2.3 Protein–protein interaction network construction
	2.4 Tumor microenvironment analysis
	2.5 Tumor immune infiltration analysis
	2.6 scRNA-seq data processing and analysis
	2.7 Cell communication analysis using CellChat

	3 Results
	3.1 Identification of metastasis-associated genes
	3.2 Identification of metastasis-associated pathways
	3.3 KEGG analysis
	3.4 scRNA-seq data analysis
	3.5 Analysis of top 15 hub genes
	3.6 Cell–cell communications

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


