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Histone methylation can affect chromosome structure and binding to other

proteins, depending on the type of amino acid beingmodified and the number of

methyl groups added, this modification may promote transcription of genes

(H3K4me2, H3K4me3, and H3K79me3) or reduce transcription of genes

(H3K9me2, H3K9me3, H3K27me2, H3K27me3, and H4K20me3). In addition,

advances in tumor immunotherapy have shown that histone methylation as a

type of protein post-translational modification is also involved in the

proliferation, activation and metabolic reprogramming of immune cells in the

tumor microenvironment. These post-translational modifications of proteins

play a crucial role in regulating immune escape from tumors and

immunotherapy. Lysine methyltransferases are important components of the

post-translational histone methylation modification pathway. Lysine

methyltransferase 2C (KMT2C), also known as MLL3, is a member of the lysine

methyltransferase family, which mediates the methylation modification of

histone 3 lysine 4 (H3K4), participates in the methylation of many histone

proteins, and regulates a number of signaling pathways such as EMT, p53, Myc,

DNA damage repair and other pathways. Studies of KMT2C have found that it is

aberrantly expressed in many diseases, mainly tumors and hematological

disorders. It can also inhibit the onset and progression of these diseases.

Therefore, KMT2C may serve as a promising target for tumor immunotherapy

for certain diseases. Here, we provide an overview of the structure of KMT2C,

disease mechanisms, and diseases associated with KMT2C, and discuss

related challenges.
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Introduction

Post-translational modification (PTM) of proteins is the

covalent modification of amino acid side chains in translated

proteins. It can expand the functional diversity of proteins by

regulating protein folding, activity, stability, localization, signal

transduction and binding under physiological and pathological

conditions (1). Its main forms include ubiquitination,

phosphorylation, methylation, acetylation, glycosylation and

succinylation (2). It is closely related to immune cell activation,

signal regulation, immune response and tumor metabolic

reprogramming (3–5). It can directly or indirectly affect the

efficacy of immunotherapy by modulating immune checkpoints

or remodeling the tumor immune microenvironment (6–8).

Numerous studies have demonstrated that aberrant post-

translational modifications of proteins can affect cancer

development by regulating tumor metabolic reprogramming (9).

Histone modification is the process by which histones are

methylated, acetylated, phosphorylated, adenylated, ubiquitinated,

ADP-ribosylated, etc. by the action of relevant enzymes. Histone

methylation occurs predominantly on lysine or arginine residues in

H3 and H4 and regulates cellular metabolic processes by activating

or repressing gene expression (10, 11).

Mutations and translocations of histone lysine methyltransferases

(KMTs) and lysine demethylases (KDMs) are common mechanisms

driving tumorigenesis (12–17). Thus, both KMTs and KDMs are

potential therapeutic targets for human cancer (18–21). KMTs were

classified into six subfamilies based onmajor amino acid sequences and

substrate specificity (22). SET1A, SET1B and MLL1-4 belong to the

KMT2 family and catalyzemono-, di- and trimethylation of histoneH3

lysine position 4, which is proposed to be involved in the positive

regulation of gene transcription (23, 24). This family of enzymes was

originally isolated biochemically from yeast as a macromolecular

complex named COMPASS (Complex Proteins Associated with

Set1) (24, 25).

Histone-lysine N-methyltransferase 2 (KMT2) family genes,

also known as MLL genes, are frequently mutated in various

types of cancer (26). The KMT2 complex methylates histone 3

lysine 4 (H3K4) to regulate DNA accessibility and transcription.

Unlike other COMPASS family members that trimethylated

H3K4, MLL3 (KMT2C) and MLL4 catalyze histone H3K4

monomethylation at the enhancer (27, 28) and are the most

common mutant histone modifiers in human cancer (29).

KMT2C mutations have been detected in a variety of tumors,
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including hepatocellular carcinoma (30), breast cancer (31), colon

cancer (32), bladder cancer (33), myelodysplastic syndromes and

acute myeloid leukemia (AML) (34). In a PI3K-driven breast tumor

model, KMT2C interacts with the FOXA1 transcription factor and

mutational inactivation leads to increased mammary stem cell

activity and accelerated tumor progression (35, 36). In addition,

chromosome fragmentation leading to rearrangement of KMT2C

has been reported in colon cancer (37). In this review, we will focus

on KMT2C, the major mammalian histone methyltransferase. Its

established importance in gene regulation and mutation frequency

in developmental diseases and cancers warrants an exploration of

the literature to stimulate further research and development of new

therapeutic approaches. Thus, we focus on the structure of KMT2C

as well as the cancers associated with KMT2C and its mechanism of

action in cancer, and discuss the related challenges in the hope of

providing possible application value.
The structure of KMT2C

KMT2C, also known as MLL3, localized to chromosome 7q36.1,

is a member of the TRX/MLL gene family and is a histone

methyltransferase that specifically catalyzes the monomethylation

of histone H3 lysine K4 in enhancer regions (38, 39), thought to be

involved in tissue growth regulation, tumorigenesis and

transcriptional co-activation (40). As shown in Figure 1, the gene

encodes 4911 amino acids and contains seven plant homologous

structural domains (PHD), a high mobility group structural

domain, two FY (phenylalanine tyrosine) enriched regions, and a

SET (Su(var)3-9, Enhancer-of-zeste,Trithorax) structural domain.

PHD and SET structural domain proteins are chromatin regulators,

some of which are altered in cancer (41). Researchers find KMT2C

PHD mutations can expose vulnerability to EZH2 inhibitor therapy

by deregulating tumor suppressors (42).

The KMT2C protein binds and methylates the enhancer region

of histone 3 lysine 4 (H3K4), promoting the recruitment of

transcriptional activators involved in DNA replication restarting

(43, 44). Studies have shown that KMT2C has an oncostatic effect

and is frequently found in solid tumors inactivated by deletion or

mutation of this gene. Deletion of the catalytic core of the SET

structural domain in KMT2C induces cell hyperproliferation and

uroepithelial tumor formation (45), but knockout of the entire gene

is lethal in mice (46). Recently, several studies on polymorphisms in

the KMT2C gene have found positive associations with colorectal
FIGURE 1

The structure of KMT2C (UniProt ID: Q8NEZ4). PHD, the plant homeodomain (PHD) fingers; HMG, high mobility group domains; FYRN, “FY-rich”
domain, N-terminal region; FYRC, “FY-rich” domain, C-terminal region; SET, SET(Su(var)3-9, Enhancer of zeste, Trithorax) domain. KMT2C PHD
fingers 1–3 act as “readers” of the histone methylation status, recognizing monomethylated H3K4 (H3K4me1), while the SET domain, located in the
Cterminus, is the “writer” that adds methyl- groups to complete the methylation process.
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and pancreatic cancers (47, 48). Furthermore, the KMT2C gene is

associated with TKI resistance and may be a potential biomarker for

predicting the prognosis of cancer development (49, 50).
KMT2C regulates cellular
biobehavioral functions in
cancer development

Figure 2 demonstrates the biological function of KMT2C in

promoting cancer development.
Genetic mutation

The MLL family is known as myeloid/lymphoid or mixed-

spectrum leukemia proteins, and mutations, deletions and low

expression of the gene KMT2C (MLL3) appear to play an

important role in the development of leukemia. Chromosomal

translocations are the most common form of MLL mutation.

Chromosomal translocation fuses the MLL gene with a chaperone

gene to form a new fusion protein that promotes leukemia (51).

Other studies suggest that loss of KMT2C may contribute to the

development of myelodysplastic syndromes and acute myelocytic

leukemia (AML) by promoting myelopoiesis (52). In addition, the

reduction of KMT2C gene expression can synergize with other

factors at chromosome 7q to promote AML (34). Abnormalities in

DNAmethylation caused by germline mutations in the KMT2C gene

were found in Chinese AML and colorectal cancer families and may

be responsible for the pathogenesis of patients in the family lines (32,

53). Recent second-generation sequencing has also identified a

heterozygous deletion due to a nonsense mutation in KMT2C that

promotes human T-cell virus-induced acute T-cell leukemia (54).
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Interaction with long non-coding RNA and
RNA interacting with PIWI protein

Non-coding RNAs can interact with KMT2C to regulate gene

expression. Wang et al. found that LncRNA SSTR5-AS1 increased

the enrichment of KMT2C and H3K4me3 in the promoter region of

the growth inhibitory receptor 5 by interacting with KMT2C and

induced the transcription of the oncogene growth inhibitory

receptor 5 in laryngeal squamous carcinoma (55). In addition, the

LncRNA HOTAIR, which is highly expressed in tumors such as

breast cancer, can mediate oncogene silencing by interacting with

KMT2C, and its mechanism of action is also related to promoter

activity (56). He et al. also found that piRNA effectively up-

regulated the transcription of apoptosis-inducing ligands related

to the pro-apoptotic protein tumor necrosis factor (TNF) by

inducing the methylation of H3K4/demethylation of H3K27,

thereby inhibiting tumor growth (57).
Cellular aging

The absence of cellular senescence mechanisms has been

suggested as a possible reason for the unlimited proliferation of

tumor cells. Xia et al. found that KMT2C promoted senescence of

esophageal squamous carcinoma cells, and its mRNA level was

down-regulated in esophageal squamous carcinoma tissues.

Knockdown of KMT2C down-regulated senescence factors p21,

p27 and p53 mRNA levels, while KMT2C overexpression up-

regulated senescence factor levels (58). The mutation rate of

KMT2C was found to be higher in breast cancer patients >50

years of age than in those <50 years of age, which may reflect

the correlation between KMT2C mutations and cellular

senescence (59).
FIGURE 2

The biological function of KMT2C in promoting cancer development.
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Cell cycle

Disturbance of the cell cycle is an important mechanism of

tumorigenesis, and abnormalities of various molecules that regulate

the cell cycle can cause tumorigenesis. Dawkins et al. experimented

with eight human pancreatic cell lines and showed that cell

proliferation was reduced in the presence of methyltransferase

depletion, possibly due to cell cycle arrest. Enrichment analyses of

the gene sets following KMT2C and KMT2D knockdown showed

significant down-regulation of genes related to cell cycle and growth

(60). Yuan et al. found that the proliferation of human

hepatocellular carcinoma cells HepG2 was significantly inhibited

after the expression of KMT2C was down-regulated by the

interference of small interfering RNAs, and flow cytometry

showed that the cells were mainly blocked in the S phase.

KMT2C is an H3K4 monomethyltransferase, and silencing of this

gene blocks the normal modification of histone proteins, which may

result in cell cycle arrest in S-phase, thus inhibiting

cell proliferation.
DNA repair

DNA repair is a cellular reaction in which damaged DNA

molecules are restored to their normal DNA sequence structure

and genetic information is maintained relatively stable by the

action of various enzymes. Abnormalities in the DNA repair

system can lead to tumor development. Bladder cancer cells with

low KMT2C activity lack homologous recombination-mediated DNA

repair of double-strand breaks, resulting in greater endogenous DNA

damage, leading to genomic instability and promoting tumorigenesis

(61). Another experiment showed that, in order to resist Adriamycin-

induced DNA damage, MLL3/4 collaborated with the ASCOM

complex to increase the methylation level of H3K4, activate p53,

increase the expression of endogenous p53 target genes, and

participate in the tumor-suppressing pathway of p53 (45).
Tumor stem cells

Tumor stem cells are important for tumor survival,

proliferation, metastasis and recurrence. Tumor stem cells

maintain the viability of the tumor cell population through self-

renewal and unlimited proliferation. KMT2C-related H3K4

methylation is thought to be associated with stem cell self-

renewal (62). KMT2C also regulates the proliferation and

transformation of tumor stem cells, and Gervais found that

KMT2C regulates the proliferation of intestinal stem cells, and

that its absence leads to an increase in the level of EGFR proteins,

which promotes the self-renewal of intestinal stem cells and the

overgrowth of tumor-like stem cells (63). Another study found that

knockdown of KMT2C in gastric epithelial cells promoted

epithelial-to-mesenchymal transition and enhanced the expression

of mesenchymal transition-associated proteins, and that migration
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and invasion of gastric epithelial cells were increased 47-88-fold by

knockdown of KMT2C (64).

In conclusion, mutations in the KMT2C gene alter the epigenetic

state of chromatin and affect gene transcription. In the case of

KMT2C wild type, epigenetic regulation of chromatin is in

equilibrium. The KMT2C complex can be recruited to the

enhancer by the BAP1 complex to catalyze H3K4me1 and enhance

gene transcription. However, in tumors with KMT2C mutations, the

KMT2C complex is not recruited to BAP1-dependent enhancers, and

the increased level of repressive H3K27me3 leads to an imbalance in

the epigenetic state of enhancer chromatin, increased chromosome

stability, and reduced transcriptional activity, which may result in

silencing of tumor suppressor genes (42).
The role of KMT2C in cancer

In recent years, more and more studies have shown the

correlation between KMT2C and tumors. According to

cBioportal, KMT2C is frequently mutated in a variety of cancer

types such as breast cancer (~ 12%), melanoma (~ 45%), colon

cancer (~ 14%) and hepatocellular carcinoma (50%) (30). KMT2C

was found to be aberrantly expressed in cell lines and tumor tissues

of many tumor patients, suggesting that KMT2C is involved in

many cancer-related signaling pathways (Figure 3).
Digestive system cancer

Liver cancer
One study identified HMT genes with significant rates of

genetic alteration in 360 hepatocellular carcinoma (HCC)

samples. Among them, KMT2C had the highest mutation rate in

HCC samples at 5.6 (65), and is associated with a poor prognosis

(66). In particular, higher KMT2C mutation rates were detected

in adolescent and young adult patients with advanced

cholangiocarcinoma, which may suggest that cholangiocarcinoma

is more aggressive in adolescent and young adult patients (67).

KMT2C, a histone methyltransferase involved in transcriptional

co-activation and co-repression, is seen as a silent/intronic

mutation or structural alteration in hepatic metastases from

breast, melanoma, and colon cancer. Mutations in KMT2C may

enhance homing and habituation of hepatocellular carcinoma cells

in the l iver (68). Thus, common KMT2C mutations/

rearrangements may be a driver not only for primary tumors but

also for liver metastases. Researchers find KMT2C, which is

mutated in >50% of hepatocellular carcinomas, is also mutated in

liver metastases (68).

In a recent study, Zhu et al. concluded that KMT2C likely acts

as a tumor suppressor to limit Myc-driven hepatocellular

carcinomas, identifying multiple tumor suppressor programs

regulated by KMT2C including cell-autonomous mechanisms

(cellular metabolism) and non-autonomous mechanisms

(interactions with the extracellular matrix and the immune
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system) (69). Mechanistically, the CDKN2A locus is a genomic and

transcriptional target of KMT2C in hepatocellular carcinoma cells,

and KMT2C mediates oncogene-induced apoptosis in a CDKN2A-

dependent manner.

In addition to its role in hepatocellular cancers, KMT2C

regulates bile acid (BA) homeostasis by modulating the

expression of Farnesoid X Receptor (FXRs) and p53-dependent

small heterodimeric chaperone receptors (SHPs) (70).

Gastric cancer
Mutations and low expression of the KMT2C gene are

associated with a high risk of progression and poor prognosis in

gastric cancer patients and are independent predictors of disease

recurrence (71–74). In addition, it has been shown that KMT2C has

a high mutation rate in different metastatic sites occurring in gastric

cancer patients: peritoneal metastasis (42%), haematogenous

metastasis (67%), and distant lymph node metastasis (35%) (75).

Zhou et al. found that KMT2C mutations were predominantly

detected in HER2 + gastric cancer samples (7/10) and were also

associated with the lysine degradation pathway (76).

Cho et al. showed that in vitro knockdown of KMT2C promotes

migration and invasion of gastric epithelial cells by promoting the

EMT signaling pathway (64). Specifically, there is an increase in
Frontiers in Immunology 05
KMT2C mutations, which show higher levels of “clock-like”

mutational features, increased genome-wide doubling,

chromosomal instability (especially copy number loss),

reprogrammed microenvironments, enriched cell-cycle pathways,

Myc activation, and impaired immune responses (77).

Evidence that KMT2C mutations are potential predictors of

immunotherapy response in solid malignancies (78). However, in

contrast to the high mutation rate of KMT2C, which promotes

migration and invasion of gastric epithelial cells, the high mutation

rate of KMT2C tends to show a better prognosis in patients treated

with immune checkpoint inhibitors (ICIs), and the KMT2C

mutation is significantly and positively correlated with higher

intratumoural infiltration of CD8+ lymphocytes, CD163+ tumor-

associated macrophages, and PD-L1 in gastric cancer tumors (79).

Pancreas cancer
Cancers with high TMB have been shown to respond better to

ICI, such as pancreatic adenocarcinoma (PAAD) (80). PAAD

patients with KMT2C mutations have a higher severity of tumor

mutational burden (TMB) and a worse prognosis, mainly related to

the fact that mutations in the KMT2C gene affect the composition of

immune cells in PAAD patients and positively regulate metabolic

and protein-related pathways in PAAD (81). These all suggest
FIGURE 3

Role of KMT2C in cancer.
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that KMT2C mutations may serve as biomarkers for

predicting the prognosis of PAAD patients and guiding anti-

PAAD immunotherapy.

Notably, in a 2016 article, Dawkins et al. suggest that targeting

KMT2C in PDAC may also have therapeutic benefit, especially in

those patients who exhibit higher KTM2C expression (60). They

found by biopsy that low expression of KMT2C also demonstrated a

better prognosis, and experiments on eight human pancreatic cell

lines showed that when KMT2C was depleted, cell cycle arrest and

reduced progression from G0-G1 led to attenuated cell proliferation.

Furthermore, KRAS mutation is a marker for pancreatic ductal

adenocarcinoma (PDAC) and is associated with key aspects of its

biology, such as inflammation, immune escape and metabolic

alterations (82–85). Mutant KRAS is a major oncogenic driver of

PDAC and an attractive therapeutic target (86, 87). However, KRAS

wild-type (WT) is present in a small proportion of PDAC, and

Philip et al. (88) and Yoon et al. (89) found that KMT2C is

frequently mutated in KRAS wild-type tumor samples of

pancreatic ductal adenocarcinomas, providing a new promising

therapeutic target for the targeted treatment of KRAS wild-type

PDAC patients. Tumor mutation burden (TMB), a new biomarker,

has shown its potential as a predictive biomarker for a variety of

applications, including the correlation between different levels of

TMB and the response of patients with various types of cancers to

immune checkpoint inhibitors (ICIs) (90).

Colorectal cancer
KMT2C is considered an oncogene in colorectal cancer. It has

been found to be frequently mutated in colorectal cancer (91) and is

commonly mutated in both primary CRC and peritoneal metastases

(92) and has been associated with CRC prognosis, and can be used

to predict OS and PFS in patients with CRC (93, 94) It is a potential

candidate for potentially identifying patients with high-risk

colorectal cancer (95).

Mutations in KMT2C may be involved in the transition of non-

dysplastic cells to a dysplastic phenotype in patients with long-

standing ulcerative colitis (UC) and have a high risk of progression

to colorectal tumors (96). Watanabe et al. found that code-shifting

mutations in KMT2C in CRC cells and primary tumors were more

common in cases of microsatellite instability. In addition, the CpG

island-associated promoter of the KMT2C gene is not DNA

methylated in CRC cells, nor is it DNA methylated in primary

tumors or normal colon, and this region is highly homologous to a

pseudogene for age-associated DNA methylation (psi TPTE22)

(97). Meanwhile, restoration of KMT2C inhibited CRC cell

growth and enhanced genome-wide histone H3 position 4-

methylation deposition on enhancers; however, this effect varied

depending on the histone H3 position 4-methylation status of the

KMT2C-deficient cells. The results suggest that KMT2C

inactivation may promote colorectal cancer development through

transcriptional dysregulation of several pathways known to be

associated with cancer (98). Importantly, it has been found that

KMT2C loss-of-function variants (LOF) are associated with higher

TMB, and specifically, KMT2C LOF variants are associated with
Frontiers in Immunology 06
decreased regulatory T cells and increased levels of CD8+T cells,

activated NK cells, M1-type macrophages and M2-type

macrophages in colorectal cancer (99).
Respiratory system cancers

KMT2C mutations are very common in early stage lung

adenocarcinoma and their low expression is associated with

shorter overall survival time (100, 101), and the mutation

frequency of KMT2C in lung adenocarcinoma patients was

shown to be significantly higher in smokers than in non-smokers

(102), and more importantly, variants in the gene were associated

with younger lung adenocarcinoma patients (103).

Distant organ metastases are still the leading cause of cancer-

related deaths (104), and the KMT2C gene, a high-frequency

mutated gene common to both primary and metastatic foci of

lung cancer, may provide a potential biomarker for immune

checkpoint blockade in LUAD with metastases to different

organs (105).

For lung cancer, the most common sites of metastasis are the

contralateral lung, brain, bone, and liver (106, 107), and the study of

Gao et al. (104) found that in the whole cohort of primary (PR) and

metastatic foci (MT - liver, MT - bone, and MT - brain), the

frequency of mutations in the KMT2C gene was high and the

mutations were common to PR and metastatic foci (MT - liver, MT

- bone, and MT - brain), and in the MT - bone, LRP1B mutations

co-occurred with KMT2C mutations. Meanwhile, Liu et al. found

that KMT2C mutations were associated with lung cancer metastasis

to the brain by whole exome sequencing (108).

The development of specific antibodies against the programmed

death (PD1) receptor, its ligand PD-L1 (programmed death ligand-

1), and the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)

receptor in first- or second-line therapeutic strategies for patients

with non-small-cell lung cancer has led to an unprecedented

prolongation of patient survival in the last decade (109).

Therefore, there is an urgent need for effective biomarkers to

predict the response of non-small cell lung cancer (NSCLC),

especially NSCLC with low tumor mutation load, to immune

checkpoint block (ICB) therapy (110). Gu et al. found that KRAS

and KMT2C co-mutations improved the response to

immunotherapy in patients with non-small cell lung cancer (111).

The study by Bai et al. highlighted the potential predictive value of

KMT2C for immunotherapeutic benefit in non-squamous NSCLC,

and furthermore, the combination of KMT2C and PD-L1 could

serve as the best partner for guiding therapeutic decisions based on

anti-PD-(L)1 (112). In a recent study, researchers found that

mutations in three chromatin remodeling-associated genes,

KMT2C, BCOR and KDM5C, were associated with ICB responses

in NSCLC, including NSCLC with low TMB levels. Moreover, the

combination of KMT2C mutation with TMB or PD - L1 expression

further improved this correlation. These data suggest the potential

of KMT2C mutation status as a predictive biomarker for ICB

therapy in NSCLC. KMT2C mutations were shown to have
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potential as predictive biomarkers for ICB therapy in NSCLC alone

or in combination with PD - L1 expression or TMB (110).
Urogenital system cancers

Bladder cancer
KMT2C plays a repressive role in bladder cancer and is one of

the most commonly mutated genes in BCa patients (113).

Specifically, downregulation of KMT2C in bladder cancer cells

results in widespread changes in epigenetic status and expression

of DNA damage response and DNA repair genes. More specifically,

cells with low KMT2C activity lack homologous recombination-

mediated DNA repair of double-strand breaks, and as a result, these

cells suffer much higher levels of endogenous DNA damage and

genomic instability. Finally, these cells appear to be heavily

dependent on PARP1/2 for DNA repair and treatment with the

PARP1/2 inhibitor Olaparib results in synthetic lethality, suggesting

that low KMT2C-expressing cancer cells are an attractive target for

PARP1/2 inhibitor therapy (61).

Prostate cancer
KMT2C has been described as the most mutated epigenetic

regulator and driver in PCa tumor tissues (114).Coelho et al. suggest

that the KMT2C gene may play as important a role in tumor

suppression in PCa patients as BRCA2 (115). Moreover, alterations

in KMT2C are more likely to coincide with alterations in TP53,

suggesting a more aggressive phenotype in PCa, which correlates

with sensitivity to treatment with poly ADT-ribose polymerase

(PARP) inhibitors (116). KMT2C mutations indicate rapid

progression during conventional combined antiandrogen

blockade (CAB) therapy and may serve as a potential biomarker

for predicting response to prostate cancer therapy (117).

Currently, high-risk human papillomavirus (hr HPV) infection is

also considered a risk factor for PCa (118), and KMT2C, KMT2D and

ERCC2 mutations are more frequent in HPV-positive tumors (119).

The frequency of mutations in PREX2, PTEN, AGO2, and KMT2C

was significantly higher in patients with a history of smoking than in

nonsmokers. Smokers (p = 0.006) had a significantly higher overall

mortality rate (28.5% versus 22.8%) (120). In a recent study, the

authors found that KMT2C mutations were associated with PCa

metastasis, and in addition, they found that KMT2C mutations were

associated with reduced PCa disease-free survival, and that inhibition

of the MYC signaling axis may be a viable therapeutic option for

patients with KMT2C truncation (121).

Breast cancer
KMT2C is a gene with a high number of mutations found in

breast cancer, some of which are associated with chromatin

function, affecting transcriptional mechanisms identified in breast

tumorigenesis and development (122) and, in addition, KMT2C

mutations observed in circulating tumor DNA (ctDNA) from six-

month postoperative samples may be indicative of breast cancer

recurrence and prognosis (123). Alterations in KMT2C are

significantly enriched in metastatic populations compared to
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primary breast cancers (124). KMT2C is mutated at a higher rate

in HR +/HER2 type breast cancers than in other subtypes (59).

KMT2C mutations have also been shown to be critical for ER a
regulation, which can lead to hormone-driven proliferation of

breast cancer cells (125).

Role of KMT2C as a key chromatin regulatory protein in

enhancer elements and as a factor that promotes histone H3

position 4-methylation deposition in these enhancers. The

precursor factor FOXA1 interacts with the chromatin-modifying

factor KMT2C to promote monomethylation of H3K4 on enhancer

elements, thereby generating the potential for transcription from

these enhancer regions (35). In the presence of E2, KMT2C and

KMT2D, together with ER, regulate the expression of the HOXC10

gene and promote breast cancer progression (126).

Ovarian cancer
Huang et al. found that overexpression of XIST enhanced the

anticancer sensitivity of paclitaxel on ovarian cancer cells, and its

effect may be related to the up-regulation of KMT2C. XIST affects

the expression of KMT2C in ovarian cancer by enhancing the

stability of KMT2C mRNA through the direct targeting of mi -93-

5p. The results of this study suggest that the miR-93-5p/XIST/

KMT2C signaling axis may provide new potential therapeutic

targets for ovarian cancer treatment and play an important role

in future ovarian cancer therapy (127).
Blood system cancers

KMT2C is localized at 7q36 and was first described as a

chromosomal region frequently missing in myeloid leukemia (128).

KMT2C levels decrease during progression of chronic

granulocytic leukemia and correlate with different clinical stages.

After treatment of the imatinib mesylate (IM)-sensitive CML cell line

KCL22S with Dasatinib or Nilotinib, a restoration of KMT2C gene

expression and a higher rate of apoptosis and enhanced expression of

p21 (CDKN1A) compared to the control group was observed,

accompanied by a decrease in the expression of CDK2, CDK4, and

Cyclin B1 (CCNB1), which suggests that the p53 regulatory pathway

is involved in the regulation of cancer by KMT2C (49).
Nervous system cancers

KMT2C was one of the first few recurrently mutated genes

identified in a sequencing study of early medulloblastoma (129). In

the adult medulloblastoma cohort in the Jones et al. study, KMT2C

was one of the most commonly mutated genes, with 30% of

mutations detected in cases of different ages, sexes, histological

types, and molecular typologies, again demonstrating the central

importance of chromatin modifications in the pathophysiology of

medulloblastomas (130) and highlighting the fact that a more

comprehensive review of the adult medulloblastoma epigenetic

landscape is the need for a more comprehensive assessment

(131). In another study, researchers identified inactivating
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mutations in the histone lysine N -methyltransferase genes KMT2C

or KMT2D in 16% of patients with childhood medulloblastoma

(MB) (129).

Alterations in KMT2C at the gene level or at the protein level

may disrupt the epigenetic programme and lead to malignant

transformation of gliomas (132).Kleefstra et al. (133) found that

an autosomal dominant nonsense mutation (p. Arg1481 *) in

KMT2C leads to neurodevelopmental disorders manifested by

mental retardation, growth retardation, mild dysmorphic features

(including prominent eyebrows, thick ear whorls, and misaligned

teeth), and neuropsychiatric traits, including hyperactivity and

aggression. Mutations in KMT2C in neurodevelopmental

disorders have also been described by Vallianatos et al. (134).
Future prospects and conclusions

Post-translational modifications are typical biochemical

reactions that covalently bind (poly)peptide chains, chemical

parts, lipids or carbohydrates to amino acids of a target molecule

during or after translation. PTMs occur in most known proteins,

and virtually all amino acids can be changed by one or more of these

reactions. Modified proteins gain uncommon amino acids that can

have a significant impact on their structure and function. Post-

translational modifications diversify the proteome by altering the

structure, location, interactions, and function of proteins and their

regulation, thereby affecting various functional aspects of the cell.

Methylation is an important post-translational modification that

regulates various biological functions of cells by modifying proteins.

In recent years, due to increased research on tumor progression and

treatment, more and more researchers have begun to focus on

methylation in the search for effective anti-tumor therapy.

KMT2C is the writer of the methylation process that is

widespread in eukaryotes. it plays an essential role in histone

methylation modification. KMT2C is frequently mutated in a

variety of human cancers, including hepatocellular carcinoma,

non-small-cell lung cancer, and breast cancer. KMT2C stimulates

the development, progression and metastasis of human tumors by

regulating different signaling pathways associated with human

tumors, as well as a variety of proteins that are not involved in

the above signaling pathways. The EMT signaling pathway

promotes tumor cell migration and invasion, and is an important

tumor-promoting factor. KMT2C inhibits the expression of

proteins associated with the EMT signaling pathway, which may

provide a direction for the development of new anticancer drugs.

However, the regulation of GSK3b/p65, DSB repair and other

signaling pathways by KMT2C needs to be further investigated,
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and the specific mechanism of KMT2C’s action in other tumors and

its potential as a novel anti-tumor therapy need to be further

studied. Although previous findings have shown that KMT2C is a

promising target for the treatment of cervical and bladder cancers,

the specific molecular mechanisms involved in the regulation of

KMT2C in cervical and bladder cancers remain to be further

investigated. We suggest that future studies focus on the pathways

that promote cancer progression activated by KMT2C mutations,

develop inhibitors of the corresponding pathways and demonstrate

their efficacy and safety in treating these diseases.
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