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Obesity, dysbiosis and
inflammation: interactions
that modulate the efficacy
of immunotherapy
Ashutosh S. Yende and Dipali Sharma*

Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel
Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
Recent years have seen an outstanding growth in the understanding of

connections between diet-induced obesity, dysbiosis and alterations in the

tumor microenvironment. Now we appreciate that gut dysbiosis can exert

important effects in distant target tissues via specific microbes and metabolites.

Multiple studies have examined how diet-induced obese state is associated with

gut dysbiosis and how gut microbes direct various physiological processes that

help maintain obese state in a bidirectional crosstalk. Another tightly linked factor

is sustained low grade inflammation in tumor microenvironment that is

modulated by both obese state and dysbiosis, and influences tumor growth as

well as response to immunotherapy. Our review brings together these important

aspects and explores their connections. In this review, we discuss how obese

state modulates various components of the breast tumor microenvironment and

gut microbiota to achieve sustained low-grade inflammation. We explore the

crosstalk between different components of tumor microenvironment and

microbes, and how they might modulate the response to immunotherapy.

Discussing studies from multiple tumor types, we delve to find common

microbial characteristics that may positively or negatively influence

immunotherapy efficacy in breast cancer and may guide future studies.
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1 Introduction

The obesity pandemic currently affects over 42% of the United States population, and a

staggering one billion people worldwide are living with obesity (1). The past four decades

have seen obesity progress from an epidemic to a global pandemic. This is further evident

from the steady increase in mean Body Mass Index (BMI), a measure of obesity, across the
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globe. For instance, the global mean BMI, tracked between 1975 and

2014, swelled from 21.7 kg/m2 to 24.2 kg/m2 in men, and from 22.1

kg/m2 to 24.4 kg/m2 in women, respectively (2). During this period,

the number of obese individuals, as defined by a BMI of ≥30 kg/m2,

has more than tripled. Obesity, which is typically marked by an

increase in adiposity, has been linked with a plethora of pathological

conditions such as hypertension, type 2 diabetes, cardiovascular

diseases, musculoskeletal and kidney disorders, and even cancer (3,

4). The International Agency for Research on Cancer now

recognizes thirteen types of cancers that are poorly affected with

obesity: namely, esophageal cancer, stomach cancer, pancreatic

cancer, gallbladder cancer, liver cancer, postmenopausal breast

cancer, uterine cancer, ovarian cancer, meningioma, thyroid

cancer, kidney cancer, colorectal cancer and multiple myeloma

(5). Some of the factors contributing to the negative prognosis in

obese patients include the tumor promoting adipocytokine-rich

microenvironment, increased levels of growth factors and

inflammatory cytokines which fuel cancer progression and

associate with poor response to therapy (6, 7). It is well-

established that weight gain in late adulthood and after

menopause significantly increases the risk of developing breast

cancer (8, 9).

Obese state is also associated with gut dysbiosis. The gut

microbiota represents trillions of microorganisms that live as

commensals. These include diverse species of bacteria, archaea,

fungi and viruses which secrete discrete metabolites that affect vital

physiological processes in the gut, as well as distant organs (10, 11).

Composition of the gut flora varies greatly between individuals and

is often determined by host lifestyle and eating habits, genetic

factors, ongoing disease conditions and treatments as well as

antibiotics usage (11, 12). Microbes form a micro-ecosystem

within the host and maintain a state of physiological homeostasis

(10). The resident microbiota is critically involved in maintaining

host defenses against pathogens and pathobionts (13). Additionally,

the gut microbiota also promotes metabolic events in the gut to

generate energy by facilitating degradation of otherwise indigestible

carbohydrates and proteins through microbial enzymes (14, 15).

Alterations in the gut microbiota have been linked to obesity,

diabetes, gastrointestinal disease as well as cancer (10, 16–21). In

fact, an ever-increasing body of evidence suggests the gut

microbiota to be a major player/variable in the obesity-cancer

axis (22, 23). Several gut microbial species, such as Akkermansia,

Clostridiales, Ruminococcaceae, and Faecalibacterium, have been

liked to improved response to cancer therapy (24–27).

Mechanistically, it has been suggested that metabolites secreted by

the diverse gut microbial flora influence the breast tumor

microenvironment (TME) (28, 29), and act on immune signaling

cascades thereby modulating immune responses within the TME

(24, 30, 31). Dysbiosis in the gut ecosystem, common in obese

breast cancer patients, affects the metabolic composition around the

breast tissue which consequently influences tumor progression,

response to therapy, and disease outcome (29, 32). In this review,

we summarize recent progress in the connections between breast

cancer, obesity and microbiota, to understand the interplay, and

identify potential areas of interest for future research.
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2 Obesity negatively impacts
breast cancer

Breast cancer is the most frequently diagnosed cancer and the

leading cause of cancer-related deaths among women in the United

States. It is estimated that, in 2024 alone, about 310,720 women and

2,790 men in US will be diagnosed with breast cancer (33, 34). Apart

from the genetic, gender and age-related risk factors, several

modifiable risk factors such as eating habits, lack of physical

exercise, obesity, smoking and alcohol-drinking are associated

with breast cancer incidence. The relationship between obesity

and breast cancer is of particular interest as premenopausal

women who are either overweight or obese, show reduced

occurrence of breast cancer (35), however, in postmenopausal

women, increased incidences of breast cancer are strongly

correlated with higher BMI (36–38). Obese breast cancer patients

with BMI ≥35 kg/m2, in particular postmenopausal women,

demonstrate significantly higher hazard ratios for the

development of hormone receptor positive (ER+/PR+) breast

cancer, with larger tumors and more advanced disease (37, 39).

An alarming 12% increase in breast cancer risk with every 5 kg/m2

BMI increase in overweight and obese postmenopausal women was

revealed through a meta-analysis (40). The Women’s Health

Initiative clinical trial which enrolled ~67,000 postmenopausal

breast cancer patients aged 50-79 years, also reported a greater

risk of developing invasive breast cancer in overweight and obese

women (39). The TME in obese patients is dominated by excess

adipocytes surrounding the tumor. Mechanistically, estrogens

derived from adipose tissue by increased aromatization of

androstenedione substitute for the lack of ovary-derived estrogens

in post-menopausal stage and fuel the hormone receptor (ER+PR+)

positive tumors (41–43). Obese and overweight state in breast

cancer patients present additional set of challenges ranging from

poorer initial screening, presence of comorbidities, complications in

surgery to reduced efficacy of chemotherapeutic drugs and

endocrine therapy (44–46). Some studies have suggested higher

drug toxicities in obese breast cancer patients which may lead to

dose de-escalation and poor overall survival (47, 48). Although the

relationship between obesity and endocrine therapy resistance in

breast cancer has been inconclusive in clinical studies (46, 49–53),

our preclinical studies uncovered the molecular mechanisms by

which obesity might mediate endocrine therapy resistance (54, 55).
3 Obese state yields major alterations
in breast tumor microenvironment

As with any malignancy, the breast TME greatly influences the

tumor growth and progression. The breast TME comprises of

stromal cells such as fibroblasts, adipocytes, endothelial and

immune cells, as well as soluble factors (55, 56), and tumor cells

are known to modify the stromal cells facilitating the expression of

genes necessary for tumor growth and stemness (55, 57). Cancer-

associated adipocytes (CAAs) within the stroma, secrete
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chemokines, adipokines, growth factors, extracellular matrix (ECM)

modifying enzymes and proteins that promote tumor growth and

metastasis (57, 58). Cancer associated fibroblasts (CAFs) which

form majority of the tumor stroma, secrete growth factors such as

vascular endothelial growth factor (VEGF) and transforming

growth factor b (TGFb) that further promote angiogenesis and

fibrosis within the TME (55) and help tumor growth.
3.1 Modulation of adipokines, steroid
hormones and growth factors mediates
the molecular effects of obesity

Obesity brings about endocrine and metabolic reprogramming

which promotes tumor growth. Adipose tissue is the source for key

adipokines such as adiponectin and leptin and the ratio of

adiponectin/leptin is adversely affected in obese breast cancer

patients. While level of adiponectin which exerts protective effects

against obesity-related breast cancer progression is reduced,

expression of leptin is strongly increased in obese state (59, 60).

Elevated leptin level (hyperleptinemia) not only promotes obesity-

associated inflammation, but also potentiates tumor growth,

invasion and metastasis (55, 60). Hyperleptinemia also interferes

with tamoxifen efficacy in luminal breast cancer (55). Moreover,

excess adipose tissue contributes to hormonal dysregulation. In

obese women, particularly after menopause, estrogens are derived

almost exclusively from adipose tissue, and adipocytes demonstrate

higher activity of aromatase, an enzyme which is critical to estrogen

biosynthesis (61). Furthermore, the inflammatory signaling in the

TME, and the crosstalk between macrophages and stromal cells is

also suggested to promote aromatase activity (60). Thus, estrogen-

rich adipose environment promotes the growth of ER+ breast

tumors. The relationship between obesity and risk of recurrence

in breast cancer patients treated with adjuvant aromatase inhibitor

has been further highlighted in a recent study conducted on a

cohort of 13,230 patients with ER+PR+ breast cancer. Essentially,

high BMI associated with increased risk of breast cancer recurrence

in patients treated with aromatase inhibitor (62). These results

support the findings of Arimidex, Tamoxifen Alone or in

Combination (ATAC) trial which showed that women in higher

quintile of obesity present poorer prognosis as compared to lean

women (63). Additionally, increased levels of circulating insulin and

insulin-like growth factor 1 (IGF1), typically associated with high

BMI and obesity, positively influence aromatase activity in the

adipose tissue. Hyperinsulinemia is reported to not only increase

the risk of developing post-menopausal breast cancer but also

cancer recurrence and mortality (61, 64). Exhibiting a

bidirectional crosstalk, tumor cells restructure endocrine and

metabolic signaling in surrounding adipocytes to promote tumor

growth, stemness and endocrine therapy resistance (55, 60, 61).

Ambrosio et al. reported an increase in connective tissue growth

factor (CTGF) mRNA with reduced sensitivity to tamoxifen in

breast cancer cells cocultured with mammary adipocytes under

conditions of high glucose, an effect that was reversed by inhibiting

adipocyte-derived interleukin 8 (IL8) (65). In another study, sera

obtained from obese breast cancer patients was demonstrated to
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promote viability, growth and endocrine resistance of breast cancer

cells via ERa-mediated activation of the PI3K/Akt signaling

pathways (66). Additionally, using a high fat diet (HFD)-induced

obese murine model to develop ER+ patient-derived xenografts

(PDXs), Wellberg et al. showed that obesity and excess energy form

a TME that is conducive to endocrine resistance, and also identified

fibroblast growth factor receptor 1 (FGFR1) signaling as a critical

mediator (67). Along similar lines, mice fed with a fasting

mimicking diet (FMD) displayed superior tumor-inhibition in

response to tamoxifen and fulvestrant compared to control diet

fed mice (68). Further analysis revealed that FMD mice had lower

circulating levels of IGF1, insulin and leptin along with

upregulation of EGR1 and PTEN which inhibited the AKT-

mTOR signaling axis. Moreover, fulvestrant and cyclin-dependent

kinase (CDK) 4/6 inhibitor palbociclib, when combined with FMD,

promoted superior tumor regression and also reversed acquired

resistance (68). Overall, obesity-associated endocrine deregulation

marked by alterations in adiponectin, leptin, insulin, IGF1 and

estrogens contributes to increased risk of cancer progression and

recurrence in obese breast cancer patients. These studies warrant

consideration of BMI in therapeutic decisions, and including higher

doses of tamoxifen or aromatase inhibitors as well as improved

combination regimens that can effectively treat obese ER+PR+

breast cancer patients.
3.2 Obese state fosters a hypoxic tumor
microenvironment to support breast
cancer growth

Adipocyte hypertrophy and hyperplasia are commonly

observed in obese state (69). In breast TME, a vast number of

enlarged adipocytes with large lipid molecules surround the tumor,

that eventually lowers oxygen availability and increases oxidative

stress (69, 70). Thus, adiposity changes the TME landscape by

creating a hypoxic and inflammatory environment that is rich in

cytokines and free fatty acids (55, 71). Hypoxia, in turn causes

endoplasmic reticulum stress that manifests into dysregulated

adiponectin secretion by adipocytes (72). These changes further

reduce the metabolic flexibility of adipocytes, thereby increasing the

rate of apoptosis and ultimately accumulating more inflammatory

cells around the tumor. Hypoxia triggers the release of excessive

chemokines and inflammatory cytokines that promote the

recruitment of tumor associated macrophages and escape from

immune surveillance (73, 74). Using 4T1 murine breast cancer

mouse models subjected to 8% O2 for 6h/day to create the hypoxic

environment, Wang et al. showed that hypoxia promotes galectin-3

expression and macrophage infiltration in tumors to promote

angiogenesis and metastasis (73). Hypoxic conditions trigger the

activation of hypoxia-induced factor 1 (HIF-1) in adipocytes which

is known to initiate metastasis and adversely affect patient survival

(75, 76). FVB mice harboring Hif-1a knockout mammary tumor

epithelial cells displayed reduced tumor growth, reduced lung

metastasis and increased survival compared to wild type cells

(77). Several studies suggest that the hypoxic environment and

oxidative stress within obese TME also impact treatment efficacy
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(53, 78, 79). In fact, stable HIF-1a overexpression in MCF7 cells

resulted in loss of sensitivity to the selective ER degrader fulvestrant,

while its knockdown sensitized the cells to fulvestrant (78).

Inhibition of HIF-1a transcription with zoledronic acid, a drug

used to treat postmenopausal osteoporosis, proved useful to

potentiate endocrine therapy. Further, MCF7 cells subjected to

chronic oxidative stress through exposure to hydrogen peroxide

readily transformed to become estrogen-independent with

aggressive growth characteristics (80). Increased phosphorylation

of Jun NH (2)-terminal kinase (JNK) and c-Jun, and elevated AP-1

activity were suggested to be one of the mechanisms involved in

transformation of MCF7 xenografts from tamoxifen sensitive to

tamoxifen resistant (79). An improved understanding of hypoxia

and its molecular impact within the breast TME can potentially lead

to the development of promising targets for overcoming drug

resistance and enhancing the efficacy of current therapeutic

regimens. While many direct inhibitors of HIF-1a have shown

promising results in preclinical studies (74, 81), comprehensive

breast cancer clinical trials are still needed.
3.3 Sustained low grade inflammation is a
characteristic feature of tumor
microenvironment in obese state

Obesity, in general, marks a state of chronic low-grade

inflammation which provides supportive TME for the tumor cells,

promoting mutational and epigenetic changes that favor growth

and metastasis (82). Adipocyte hypertrophy, hyperplasia, hypoxia

and the resultant inflammation lead to infiltration by macrophages

(37, 57, 60). These macrophages in turn release proinflammatory

signals such as tumor necrosis factor a (TNFa), cyclooxygenase-2
(COX-2), IL6, IL1b and monocyte chemoattractant protein-1

(MCP1) (60). TNFa has been found to play complex roles in

cancer. While it has anticancer properties primarily through

inducing cancer cell death—a process that can be harnessed for

cancer therapy—it can also promote tumor growth in many cancer

cells resistant to TNF-induced cytotoxicity by stimulating

proliferation, survival, migration, and angiogenesis. In obesity-

associated tumors, the pro-inflammatory and tumor-promoting

effects of TNFa seem to be more prominent (83, 84). MCP1

stimulates the recruitment of monocytes which polarize to

proinflammatory M1 macrophages in adipose tissue. Of note,

adipose tissue from obese individuals displays predominantly M1

macrophages while M2 macrophages are more common in adipose

tissue from lean individuals (85). The proinflammatory M1

macrophages accumulate around the dying adipocytes, forming

focal inflammatory points referred to as crown like structures

(CLS), which in turn have been positively correlated with higher

BMI (86–89). In addition to necrotic adipocytes and

proinflammatory macrophage signature, CLS are also marked by

an increased infiltration of other immune cells including CD8+,

Th1 and Th17 T lymphocytes, neutrophils and mast cells (90–92).

In fact, CD8+ T cell infiltration is suggested to precede macrophage

recruitment to CLS (91). Moreover, Interferon‐gamma (IFN-g)
produced by Th1 and CD8+ T cells stimulates polarization of
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macrophages to M1 (91, 93). Adipocytes also produce excessive

levels of granulocyte-macrophage colony stimulating factor (GM-

CSF), which induces recruitment and differentiation of neutrophils

(94). Following this, immunosuppressive cell types such as T-

regulatory cells and myeloid derived suppressor cells (MDSCs)

are recruited at the inflammation site (94). Chronic low-grade

inflammation in obesity also leads to the activation the

proinflammatory oncoprotein nuclear factor kB (NF‐kB) (95),

which is a constitutively active, well-established negative

prognostic factor for breast cancer as it promotes tumor

progression, invasion, stemness and also, endocrine resistance

(96–102). Enhanced NF‐kB activity negatively impacts tamoxifen

efficacy in ER+ breast cancer cells, and inhibition of NF‐kB
signaling rendered the cells sensitive to tamoxifen (103–105).

Combining NF‐kB-targeting proteasome inhibitor with endocrine

therapy provides improved outcomes in patients with therapy-

resistance and aggressive metastatic disease (106, 107). In

addition, several inflammatory mediators have also been shown

to play a role in conferring endocrine resistance. IL6, for instance,

acts via STAT3-signaling pathway to regulate self-renewal of

hormonal therapy-resistant cancer stem cells (108, 109). More

recently, the cytokine CC‐chemokine ligand 2 (CCL2) produced

by tumor associated macrophages was shown to induce tamoxifen

resistance in MCF7 cells via activation of the PI3K/Akt/mTOR axis

(104). Obese state, by virtue of modulating the immune TME

impacts tumor progression as well as response to therapy and

recurrence. Figure 1 provides a summary (Figure 1). A recent study

conducted on a Chinese cohort proposed four biomarkers—

adiponectin, soluble leptin receptor, resistin, and C-reactive

protein—as indicators of increased breast cancer risk in obese

postmenopausal women (110). It is essential to methodically

analyze these markers across a broader population and assess

their relevance in predicting therapy resistance. Obesity

contributes to the growth and metastatic dissemination of breast

cancer cells in multiple ways. Key features of obesity-associated

breast cancer including endocrine deregulation, hypoxia, and

chronic low-grade inflammation are associated with complex

molecular signaling networks, and several of these molecular

nodes are currently being explored as predictive biomarkers for

recurrence and therapy resistance.
4 Obese state and gut microbial
dysbiosis form a close partnership that
fuels breast cancer

Gut microbial dysbiosis alters metabolic processes leading to

eating disorders and weight gain, through modification of the gut-

brain axis (111, 112). Metagenomic analysis of obese vs lean gut

microbiota revealed differences in relative abundance of two

predominant bacterial phyla, Bacteroidetes and Firmicutes, and

the obesity-associated microbiota had increased capacity to

harvest energy compared to their lean counterpart (113). Of

particular importance is a study conducted on twins discordant

for body mass, which showed that transplanting gut microbiota to
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germ-free mice resulted in transmission of obesity, and that it was

reversed upon housing with mice transplanted with lean microbiota

(114). These studies highlight the significant contribution of gut

microbiota towards determining body mass and adiposity.
4.1 Shift towards gut dysbiosis in obese
state associates with breast
cancer progression

Gut microbial dysbiosis in obesity is characterized by a less

diverse and less abundant flora (10); Bacteroides, Akkermansia

muciniphila, Faecalibacterium prausnitzii are typically lower while

firmicutes are much higher in obese state (18, 115). Alteration in the

host-gut ecosystem disturbs the established physiological

homeostasis and may induce carcinogenesis by modulating host
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cell proliferation, apoptosis, immune cell function, inflammation,

hormonal signaling, gene expression and mutagenesis (116–120).

For instance, in a recent study conducted on syngeneic breast tumor

models in mice, it was noted that gut colonization with the obesity-

associated enteropathogenic Bacteroides fragilis induced systemic

inflammation while reshaping the immune landscape of the tumor

and facilitating metastasis to lungs and liver (121). Certain gut

bacteria that are modulated in obesity, including Firmicutes,

Actinobacteria, and Bacteroidetes, exhibit high levels of b-
glucuronidase (b-GUS) or b-glucosidase (b-Gluc) activity (119,

122). These bacteria contribute to the enterohepatic recycling of

estrogens by deconjugating them, which raises estrogen levels in the

bloodstream and consequently increases breast cancer risk (122,

123). Multiple studies have indicated the existence of modified gut

microbiome signatures in breast cancer patients versus matched

healthy controls (124–127). A comparison of gut microbiota from
FIGURE 1

Obese breast tumor microenvironment: The breast TME is a complex network influenced by various cell types and secreted factors, crucial for
tumor growth and progression. Stromal cells like fibroblasts and adipocytes, and immune cells like macrophages and T cells, play pivotal roles in
shaping this environment. Obesity-associated breast TME is marked by adipocyte hypertrophy and hyperplasia. Adiposity exacerbates tumor growth
through endocrine and metabolic reprogramming, altering adipokines such as leptin and adiponectin. High adiposity leads to hypoxia within the
TME, fostering a pro-inflammatory milieu rich in cytokines. Chronic low-grade inflammation associated with obesity attracts macrophages and other
immune cells, forming focal inflammatory points and crown-like structures (CLS). This inflammatory microenvironment is marked by the presence of
proinflammatory molecules like TNFa and IL6. Tumor cells manipulate stromal architecture by producing matrix metalloproteinases (MMPs) leading
to invasion and migration of cancer cells. This results in epithelial to mesenchymal transition (EMT) of cancer cells leading to increased expression of
metastatic and stem cell signatures.
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31 breast cancer patients categorized as per BMI (128) showed that

the total number of bacteria, and abundance of Firmicutes,

Faecalibacterium prausnitzii, E. Lenta, and Blautia sp. were lower

in overweight and obese breast cancer patients compared to lean

breast cancer patients (128), contrary to some prior studies. Overall

microbial diversity decreased with higher body fat composition in

32 overweight and obese early-stage breast cancer patients, and an

inverse relationship between A. muciniphila abundance and body

fat was observed (129). Further, the higher BMI and higher ‘Total

Body Fat’ (TBF, ≥46%) groups also showed increased prevalence of

Firmicutes (f_Clostridiaceae). Additional observations made from

the high TBF group included a higher abundance of Firmicutes

(g_Clostridium and g_Lachnospira) and lower abundance of

Actinobacteria (f_Coriobacteriaceae) and g_Catenibacterium

(130). A similar cross-sectional study on fecal samples from 70

breast cancer survivors indicated a significantly lower relative

abundance of g_Ruminococcus, g_Streptococcus, g_Roseburia, and

g_Dorea in women with a BMI of ≥30 kg/m2 (131). The authors also

noted an increased abundance of Proteobacteria (g_Proteus and

g_Pseudomonas), which are known to be detrimental to

gastrointestinal health, in obese breast cancer survivors (132,

133). In addition, the gut microbes, and their metabolites and

enzymes regulate metabolism and absorption of orally as well as

systemically administered drugs, thereby also affecting response to

therapy (11). Studies examining the relationship between gut

microbiota and obesity have uncovered interesting microbial

connections, where microbes associated with obese state may also

fuel breast cancer (Figure 2).
4.2 Dysbiosis directly and indirectly
interferes with cancer therapy

Due to the ability of the host microbial ecosystem to affect

various physiological processes, response to cancer therapy is also
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influenced by gut microbiota composition. This is achieved at

multiple levels involving regulation of drug pharmacokinetics

such as absorption, metabolism, as well as modulation of drug-

induced toxicity and immune responses (11, 134). Gastrointestinal

microbes induce biotransformation of drugs through reactions like

hydrolysis, reduction, decarboxylation, deconjugation and removal

of functional groups, thereby modifying key features that may be

necessary for activity (135). Additionally, they affect drug

absorption by altering the gut barrier physiology, and also by

indirectly regulating expression of hepatic genes involved in

xenobiotic metabolism (11, 136). Anticancer-immune response

promoting effects of gut microbiota on cyclophosphamide- and

platinum- drug based therapies have been studied in mice. Viaud

et al. showed that depletion of Gram-positive bacteria in tumor

bearing mice caused a reduction in Th17 responses along with

resistance to cyclophosphamide (137). Efficacy and inflammatory

signatures of platinum chemotherapy on subcutaneous tumors was

markedly reduced in germ-free or gut microbiota-depleted mice

(138). In addition, several studies have suggested improved

antitumor efficacy and reduced toxicity of cisplatin when

supplemented with the probiotic bacteria Lactobacillus acidophilus

(139, 140). Multiple clinical studies on breast cancer patients reveal

differences in therapy outcome depending on the microbial

diversity in the gut. Interestingly, correlation between gut

microbial diversity and response to neoadjuvant chemotherapy in

23 normal range BMI patients with invasive breast cancer (141)

showed that the non-responders appeared to have lower abundance

and lower diversity of butyrate- and indole-3-propionate-

producing bacteria. In general, the non-responders had lower

levels of Firmicutes while levels of Bacteroidetes were higher

compared to the responders. Also, differences in T cell infiltration

between responders and non-responders were observed, and gut

microbial diversity as a prognostic marker to predict neoadjuvant

chemotherapy outcome was suggested (141). Fecal metabolite

profiling on 8 ER+PR+ breast cancer patients, before and during
FIGURE 2

Gut microbiome in obese breast cancer: Lean breast cancer patients generally represent a state of eubiosis within the gut. Dysbiosis in obese breast
cancer patients is marked by lower microbial diversity and abundance. Beneficial bacteria such as Bacteroides are lower while Firmicutes are higher
in obese breast cancer patients. Gut microbial dysbiosis promotes cancer progression by altering physiological processes such as cell proliferation,
apoptosis, hormonal signaling, immune modulation, metabolism, induction of mutagenesis, metastasis and therapy resistance.
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three cycles of neoadjuvant chemotherapy (142) revealed a

significant increase in the levels of butyrate, propionate and

acetate after second cycle of the treatment, suggesting that

chemotherapy may favor enrichment of gut microbes producing

these short chain fatty acids (SCFAs). SCFAs exert physiological

effects by inhibiting histone deacetylases (HDACs) and activating

G-protein-coupled receptors (GPCRs) such as GPR109A and

GPR43 (143, 144). These processes trigger proinflammatory

pathways through mechanisms such as suppressing NF-kB
activation or inducing lipolysis to release free fatty acids that

interact with toll-like receptors (TLRs) Supplementation with

butyrate in diet-induced obese mice is also shown to reduce

leptin levels, an adipokine that is known to promote tamoxifen

resistance (55, 145). Additionally, the good responders had elevated

levels of several amino acids compared to poor responders (142).

Another study investigated the role of fecal microbiota in

determining the efficacy of neoadjuvant trastuzumab-based

chemotherapy efficacy in HER2+ breast cancer patients (146).

Trastuzumab is a recombinant monoclonal antibody (mAb) that

specifically binds to HER2 receptor and represents the first line of

treatment for HER2 enriched breast cancer. Gut microbial diversity

among 24 patients treated with trastuzumab-based chemotherapy

was compared between patients that showed a pathologic complete

response vs those that did not (146). The non-responders displayed

lower alpha diversity characterized by lower abundance of

Firmicutes f_Lachnospiraceae and f_Turicibacteraceae ,

Bacteroidetes f_Prevotellaceae, Actinobacteria f_Bifidobacteriaceae,

and Proteobacteria g_Desulfovibrio. Additionally, the authors also

provided experimental evidence by demonstrating that fecal

microbiota transplant from responders to mice resulted in

superior Trastuzumab efficacy over those transplanted with fecal

microbiota from non-responders, thereby suggesting a potential

involvement of the altered microbial population in mediating mAb

signaling (146). An in vitro study exploring the effects of the SCFA

butyrate on HER2 overexpressing SKBR3 breast cancer cell line

found that anticancer effects of butyrate were significantly enhanced

in combination with trastuzumab via increased p27Kip1 (147).

Terrisse et al. reported a favorable transition in gut microbial

diversity in early breast cancer patients following chemotherapy

(148). While the abundance of microbial signatures associated with

healthy volunteers was increased, the over-representation of

microbes relevant to poor prognosis was reduced upon

chemotherapy treatment. This included reduction in the

abundance of Clostridium sp, Bacteroides sp and Veillonella sp.

Interestingly, the study also reported a shift in beta diversity toward

effectuating neurological side effects and overt weight gain post

chemotherapy (148). Involvement of gut microbial signatures with

chemotherapy-dependent weight gain was also suggested by

another group (149). Fecal microbiota of patients that gained

weight following treatment was significantly different in beta

diversity from the no-weight gain patients, analyzed before the

treatment began (149). Due to the significant impact of gut

microbiome in regulating metabolic processes, Juan et al.

a t tempted to use probiot ic supplements to counter

chemotherapy-induced weight gain (150). Breast cancer patients

receiving probiotic supplements containing Bifidobacterium
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longum, Lactobacillus acidophilus and Enterococcus faecalis

displayed smaller differences in docetaxel-induced body weight

gain (150). In conclusion, there appears to be an interplay

between gut microbiota composition and chemotherapeutic drug

action. The ability of microbes to alter not only the efficacy of

chemotherapeutic regimens, but also the associated side effects and

metabolic changes, warrants in depth investigation. Further

characterization of the specific microbial species and processes

involved will be crucial in improving therapy outcomes.
5 Would obese state associated
sustained low-grade inflammation
improve response to immunotherapy?

Immune checkpoint blockade (ICB) therapy has revolutionized

modern treatment approaches for cancer patients, especially in the

case of cancers such as lung cancer and melanoma (151, 152). As

the name suggests, ICB utilizes specific mAbs developed against

immunosuppressive proteins, such as cytotoxic T-lymphocyte

associated protein 4 (CTLA4) or programmed cell death-1 (PD-1)

expressed on T cells or programmed cell death ligand-1 (PD-L1)

expressed on cancer cells which help them escape the immune

surveillance by cytotoxic T cells (152). However, this therapy is not

as effective in targeting tumors that are immunologically “cold”

characterized by modest immune cell infiltration (151). In case of

breast cancers, ICB is only used, either alone or in combination with

chemotherapy, in the treatment of advanced TNBC and HER2+

breast cancer cases, where T cell infiltration is markedly higher

compared to ER+PR+ luminal A and luminal B subtypes (151, 153).

Hence, endocrine therapy and adjuvant chemotherapy continue to

be the treatment of choice for early and ER+PR+ breast cancer cases

(151, 153). However, cancer in obese state bring in a different set of

conditions marked by a chronic inflammatory TME that is rich in

immune cells. Consequently, obese cancer patients have shown

better response to ICB with improved overall survival (OS) and/or

progression free survival (PFS) in some cancers other than breast

cancer (7, 154–156). Although clinical studies investigating

immunotherapy approaches in breast cancer patients with high

BMI are still lacking, insights drawn from preclinical studies and

clinical studies in other cancers could prove instrumental in

identifying targetable components and improving ICB efficacy. A

retrospective investigation encompassing 976 patients diagnosed

with melanoma, non-small cell lung cancer (NSCLC), or renal cell

carcinoma (RCC), and treated with ICB uncovered that overweight

and obese patients displayed a higher response rate in contrast to

lean counterparts (157). Kichenadasse et al. also made similar

observations in their clinical study focused on 2110 NSCLC

patients, where they noted improved overall survival associated

with a BMI of ≥ 30 kg/m2 following ICB treatment, an effect that

was absent in patients undergoing docetaxel chemotherapy (158).

Additionally, using mouse tumor models and clinical patient data,

Wang et al. demonstrated that obesity led to accelerated immune

aging, tumor advancement, and impaired T cell function mediated

by PD-1, driven largely by leptin, while also enhancing the
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effectiveness of PD-1/PD-L1 blockade in both in vivo models and

cancer patients (155). In essence, obesity exacerbates immune

dysfunction and tumor development while simultaneously

enhancing ICB efficacy and survival.
6 Obese state, gut dysbiosis and
immunotherapy efficacy-upcoming
evidences and inferences

Growing evidences suggest a role of the gut microbiota in

modulating immunotherapy efficacy (159–161). Some of the

earliest studies linking intestinal microbiota with immunotherapy

were conducted by Sivan et al. and Vetizou et al, who compared

tumor growth in germ-free mice upon treatment with anti-PD-L1

and anti-CTLA4, respectively (160, 161). Sivan and colleagues

noted improved control of tumor growth in a combination

treatment involving anti-PD-L1 therapy and oral administration

of the commensal bacteria Bifidobacterium (160). Similarly, using

antibiotic-treated and germ-free mice tumor models, Vetizou et al.

demonstrated significance of Bacteroides fragilis specific T cell

responses in determining anti-CTLA4 efficacy (161). Other

groups analyzing fecal microbiota from melanoma patients,

identified enrichment of Ruminococcaceae family (24),

Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus

faecium (25) in patients responsive to anti-PD-1 therapy. The gut

microbiome from lung and kidney cancer pateints nonresponsive to

PD-1 blockade was found to have lower abundance of Akkermansia

muciniphila (26). Meanwhile, a few studies have reported

unfavorable microbial signatures associated with toxicity resulting

from ICB therapy, classified as immune-related adverse events

(irAEs) (159, 162). For instance, elevated levels of Firmicutes like

Faecalibacterium prausnitzii were associated with increased

incidence of colitis in metastatic melanoma patients treated with

Ipilimumab targeting CTLA4 (163). A meta-analysis of anti-PD-L1

treated melanoma patients linked enrichement of Lachnospiraceae

sp. with favorable clinical response while that of Streptococcaceae sp.

with unfavorable response and irAEs (164).
6.1 Implicating gut microbiota in breast
cancer immunotherapy in obese state

Using obese breast cancer preclinical models, Pingili and

colleagues demonstrated that although tumors in obese group

advanced rapidly, treatment with anti-PD-1 reshaped the local

and peripheral TME to increase cytotoxic CD8+ T cell infiltration

and proinflammatory M1 macrophages, and decrease

immunosuppressive populations like myeloid-derived suppresor

cells (MDSCs) (165). The authors also identified the fecal

microbiota signature associated with anti-PD-1 treatment marked

by an increased abundance of microbes that included Lactobacillus,

Bifidobacterium, Akkermansia and Rikenella, and reduced

abundance of Bacteroides, Paenibacillus, Cellulosimicrobium, and

Enterobacteriaceae (165). Mechanistic evidence for Lactobacillus-
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mediated improvemnet in anti-PD-1 efficacy was recently reported

(166). Using breast, melanoma and colorectal cancer mouse models,

the authors showed that Lactobacillus strain L. johnsonii or its

metabolite indole-3-propionic acid (IPA) enhance CD8+ T cell

stemness and improve ICB response (166). At the molecular level,

IPA induced the formation of progenitor exhausted CD8+ T cells

(Tpex) by increasing H3K27 acetylation in the super-enhancer

region of Tcf7 that eventually resulted in higher T effector cell

numbers thereby boosting anti-PD-1 response. It is also noteworthy

that Bifidobacterium and Akkermansia have been reported to be

elevated in other anti-PD-1 trials as well (25, 26). Marge et al.

provided mechanistic insights into how Bifidobacterium enhances

the response to immunotherapy. They demonstrated that B.

pseudolongum produces inosine, which activates Th1-specific

immune responses by binding to the adenosine A2A receptor

(A2AR) on T cells. This interaction improved the efficacy of anti-

CTLA4 treatment in mouse models of colorectal, melanoma, and

bladder cancer (30). The authors also found that Akkermansia.

muciniphila utilizes a similar inosine-A2AR interaction to activate T

cells. Beneficial effects of A.muciniphila in the management of

obesity and metabolic disorders have been well documented (27).

A. muciniphila has been shown to enhance the anti-PD1 immune

checkpoint blockade response in lung and kidney cancers by

promoting the recruitment of CCR9+CXCR3+CD4+ T

lymphocytes in an interleukin-12-dependent manner (26).

Besides, A. muciniphila is also known to produce SCFAs such as

propionate and acetate that have anti-breast cancer properties (167,

168). Comparing the relative abundance of Ruminococcus and

Bacteriodales in intestinal microbiota from obese mice, Pingili

et al. also highlight the importance of Ruminococcus/Bacteroidales

ratio in determining ICB efficacy; a higher abundance of

Ruminococcus was associated with increased efficacy (165). Some

of the bacteria that have been documented to influence T cell

funct ion fo l low common mechanisms. For instance ,

Bifidobacterium and Akkermansia produce a metabolite Inosine

that binds to adenosine receptors on T cells and induce CD4+ Th1-

specific immune responses. Others such as Lactobacillus, appear to

rely on the tryptophan metabolite IPA to modulate cytotoxic CD8+

T cell activity. Thus, it appears that the type of response, whether

CD4-specific or CD8-specific, is a function of the metabolite that is

mediating these effects.
6.2 Involvement of gut microbiota in
cancer immunotherapy in obese state-
learning from other cancers

Fecal microbiota analysis from metastatic melanoma patients

showed higher response rates to ICB in Ruminococcaceae-enriched

patients compared to those enriched for Bacteroidaceae (169),

corroborating the findings in breast cancer models (165). Thus,

there appears to be an inverse corelation between Ruminococcaceae

and Bacteroidaceae distribution in determining disease prognosis.

This relationship is perhaps further highlighted in the induction of

thermogenesis and alleviation of obesity by Ruminococcus torques

through the production of deoxycholic acid, a process that is
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inhibited by Bacteroides vulgatus (170). In addition, the abundance

of Ruminococcaceae family member, Faecalibacterium sp. was

reduced in a Chinese cohort of breast cancer patients and F.

prausnitzii inhibited IL6 secretion by MCF7 cells (171). Although

a direct metabolite mediating these effects was not identified, it is

important to recall IL6 involvement in obesity-associated

inflammation (60) and recent findings where IL6 signaling was

reported to render resistance to ICB therapy (172). These studies

bring Ruminococcaceae to the forefront of host-microbiota

interactome and call for additional studies focusing on their role

in regulating the obesity-breast cancer-ICB therapy interplay.

Blautia is another interesting gut microbial species that appears

to be of importance in obesity and breast cancer. In comparison to

lean breast cancer patients, the abundance of Blautia sp. is

significantly reduced in microbiota of obese breast cancer patients

(128). A recent study also identified an inverse relationship between

Blautia sp. abundance and obesity in gut microbiota of Japanese

adults. Moreover, oral administration of Blautia wexlerae in mice

decreased high fat diet-induced obesity through metabolic

reprogramming and anti-inflammatory signaling, effects that were

likely mediated through production of succinate, lactate, and acetate

(173). It is also noteworthy that abunance of Blautia sp. in fecal

samples from NSCLC patients undergoing ICB therapy positively

correlated with response to therapy along with longer progression

free survival (174). Thus, the beneficial effects of Blautia in
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managing obesity and improving ICB efficacy could potentially

hold promise for immunotherapy approaches in obese breast cancer

patients, warranting further investigation. Extrapolation of

observations made in patients, with triple negative breast cancer

(TNBC), undergoing immunotherapy could also provide likely

targets worth investigating for breast cancer therapy in obese

state. For instance, a recent study reported that TNBC tumors in

patients responsive to immunotherapy were abundant in

Clostridiales and their metabolite trimethylamine N-oxide

(TMAO) (175). Higher plasma levels of TMAO correlated with

active tumor immune microenvironment. Though the source of

TMAO in TNBC tumors was speculated to be tumor associated

Clostridiales, it is noteworthy that HFD-induced obese mice model

showed higher Escherichia coli-induced choline catabolism leading

to elevated circulating levels of TMAO (176). Thus, it will be

interesting to investigate choline metabolism and TMAO levels,

and their effects on T cell function, in obese breast cancer patients.

Table 1 summarizes gut microbial signatures associated with

immunotherapy response and their role in obesity and breast

cancer. In conclusion, microbiome-associated interactions with

host immune system appear to play vital roles in determining

ICB efficacy. Precisely designed clinical studies examining the

relevance of this axis in obese breast cancer patients could

improve the promise of ICB therapy in obese state, and also

provide insights for overall improvement of ICB efficacy (Figure 3).
TABLE 1 Gut microbes associated with immunotherapy and their involvement in obesity/breast cancer.

Ref Study Family/
Genus/
Species

Model/
Cancer

Therapy Outcome Implications/evidence in obesity/obese
breast cancer/breast cancer

165 Pingili
et al.,

Akkermansia C57B6/J
HFD-fed vs
LFD-fed.
E0771 murine
mammary
carcinoma

Anti-PD-1 Increased abundance of
Akkermansia. Lower
abundance of
Bacteroides. Lower
tumor burden. Improved
immune function.

A. muciniphila produced propionate and acetate have anti-
breast cancer properties [167, 168]. Beneficial in obesity
management [27]

166 Jia et al., Lactobacillus C57BL6/J
Mc38 mouse
colon cancer

Anti-PD-1 Enhanced efficacy with
L. johnsonii or its
metabolite indole-3-
propionic acid (IPA)
enhances
immunotherapy.

IPA supplementation improved anti-PD-1 response and
survival in 4T1 and MMTV-PyMT breast cancer mice [166].
Lactobacillus enriched in anti-PD1 therapy responder obese
E0771 murine mammary cancer mice [165]

160 Sivan
et al.,

Bifidobacterium C57BL/6 -
B16
mouse
melanoma

Combination
treatment {Anti-
PD-L1 +
oral
Bifidobacteria}

Improved efficacy
with Bifidobacteria

Lower alpha diversity of Bifidobacteriaceae in HER2+ breast
cancer patients treated with Trastuzumab [146]. • Probiotic
supplements containing Bifidobacterium longum prevented
docetaxel-induced weight gain in breast cancer patients [150].
•Bifidobacterium enriched in anti-PD-1 treated obese breast
cancer mice [165].

25 Matson
et al.,

Bifidobacterium
longum

Metastatic
melanoma
patients,
samples
collcted
pretreatment

Anti-PD-1 Enriched in responders

169 Simpson
et al.,

Ruminococcaceae Melanoma
patients,
samples

Combination
treatment {Anti-
PD-1+anti-

Enriched in responders Lower abundance of Ruminococcaceae g_Faecalibacterium in
breast cancer patients [171]. • Ruminococcus torques
produced deoxycholic acid induces thermogenesis, alviates

(Continued)
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7 Concluding remarks and
future perspectives
Obesity is a major risk factor for developing breast cancer, and a

persistent state of chronic low-grade inflammation as well as the

presence of immunosuppressive factors that mark obese TME,

appears to favor tumor progression. Although immunotherapy

interventions in other solid tumors have shown good prognosis in

obese cancer patients, such studies are still lacking in breast cancer. In
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general, ICB has predominantly been effective for the most aggressive

TNBC patients. The inflammatory TME and relatively increased

immune cell infiltration associated with obese state imparts distinct

tumor intrinsic features that may be exploited to improve ICB efficacy

in obese breast cancer patients. However, it is also imperative to

develop additional strategies to achieve effective immune activation in

such tumors. Gut microbiota represents a fairly new and relatively

unexplored element of cancer immunotherapy. The past decade has

unraveled multitude of host-microbiota interactions that critically

regulate physiological processes, including tumor progression at sites
FIGURE 3

Beneficial gut microbiota improves ICB response in obesity-associated tumors: Evidence suggests that gut microbes such as Bifidobacterium,
Akkermansia, Rumminococcus and Blautia exert beneficial effects through their metabolites. Signaling from the gut improves systemic immune
landscape by increasing immune surveillance and immune infiltration in tumors. Consequently, predominantly exhausted T cell phenotype in
obesity-associated tumors is transformed into an activated T cells phenotype, with revamped tumor cell targeting and response to immunotherapy.
TABLE 1 Continued

Ref Study Family/
Genus/
Species

Model/
Cancer

Therapy Outcome Implications/evidence in obesity/obese
breast cancer/breast cancer

collected
pretreatment

CTLA4} or
Anti-PD-1

obesity [170]. Improved anti-PD-1 efficacy in Rumminococcus
enriched obese breast cancer mice [165].

174 Shijo
et al.,

Blautia spp Locally
advanced/
unresectable
or
postoperative
recurrent
NSCLC
patients

Anti-PD-1,
Anti-PD-L1,
either alone or
in combination
with platinum-
based therapy

Enriched in responders Lower abundance in obese breast cancer patients [128]. •
Inverse relationship with obesity in Japanese cohort, oral
administration of B. wexlerae decreased HFD-induced
obesity [173].

175 Wang
et al.,

Clostridiales TNBC *tumor
samples (not
fecal),
plasma
samples

Anti-PD-1(only
patients from
whom plasma
samples
were collected)

Clostridiales enriched in
tumor samples
responders. High plasma
levels of trimethylamine
N-oxide in anti-PD-1
treated patients.

Escherichia coli-induced choline catabolism in HFD-induced
obese mice led to elevated circulating levels of trimethylamine
N-oxide [176].
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physically distant from the gut. Gut microbial dysbiosis in obesity and

breast cancer represents a plausible connection that warrants further

investigation with meticulously designed preclinical and clinical

studies to identify microbiota components with immune-related

functions. Insights gained from studies in other cancers will also be

vital in designing hypothesis-driven studies to decipher the obesity–

breast cancer-microbiome-immunotherapy axis.
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