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Ion channels in acinar cells in
acute pancreatitis: crosstalk of
calcium, iron, and copper signals
Hanli Wang1†, Jianhua Gao1†, Lingling Wen2,3†, Kejun Huang1,
Huixian Liu1, Linsheng Zeng1, Zhongyi Zeng1,
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Guangdong, China, 2Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic
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Guangdong, China, 3University of Chinese Academy of Sciences, Beijing, China
The initial stages of acute pancreatitis (AP) are characterized by a significant

event - acinar ductal metaplasia (ADM). This process is a crucial feature of both

acute and chronic pancreatitis, serving as the first step in the development of

pancreatic cancer. Ion channels are integral transmembrane proteins that play a

pivotal role in numerous biological processes by modulating ion flux. In many

diseases, the expression and activity of ion channels are often dysregulated.

Metal ions, including calcium ions (Ca2+), ferrous ions (Fe2+), and Copper ions

(Cu2+), assume a distinctive role in cellular metabolism. These ions possess

specific biological properties relevant to cellular function. However, the

interactions among these ions exacerbate the imbalance within the

intracellular environment, resulting in cellular damage and influencing the

progression of AP. A more in-depth investigation into the mechanisms by

which these ions interact with acinar cells is essential for elucidating AP’s

pathogenesis and identifying novel therapeutic strategies. Currently, treatment

for AP primarily focuses on pain relief, complications prevention, and prognosis

improvement. There are limited specific treatments targeting acinous cell

dedifferentiation or ion imbalance. This study aims to investigate potential

therapeutic strategies by examining ion crosstalk within acinar cells in the

context of acute pancreatitis.
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1 Introduction

AP is an inflammatory condition that affects the pancreas and is a common

gastrointestinal disorder, with an annual incidence of approximately 34 cases per

100,000 individuals (1). It is important to note that about 20-30% of people with AP will

develop chronic pancreatitis (2). Acute and chronic pancreatitis is a common underlying
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disease in clinical practice (3). ADM is a prominent characteristic of

both acute and chronic pancreatitis and may even serve as the initial

trigger for the development of pancreatic cancer. Acinar cells

undergo dedifferentiation and transition into a duct-like

phenotype, referred to as ADM, as a protective response to stress

in the pancreas. The mechanism enables acinar cells to survive even

after losing their differentiation phenotype (3). This process occurs

due to the high plasticity of acinar cells, which play a crucial role in

pancreatic regeneration following mild damage (3, 4).

While the etiology of pancreatitis may be diverse, the immune

response to cellular injury remains consistent. In the early stages of

AP, aseptic inflammation of the pancreas leads to systemic

inflammatory response syndrome (SIRS), which can vary widely

in severity. Apart from providing supportive treatment until the

inflammation subsides, no specific therapies are available to

mitigate or prevent the condition (5). In recent years, as research

on the pathogenesis of pancreatitis has advanced, potential

intervention targets have been identified. For instance, the

severity of SIRS is mitigated through the inhibition of

inflammatory mediators released due to pancreatitis (6).

Furthermore, specific immunomodulators have been identified to

regulate the immune response and alleviate the systemic impact of

pancreatitis (7).

Cellular ion signaling is crucial in numerous physiological

processes, remarkably immune response to infections. An

effective immune response relies on complex interactions of

coordinated transcellular and intracellular signaling cascades. It

identifies pathogen-associated molecular patterns (PAMPs) and

injury-associated molecular patterns (DAMPs). It ultimately

reaches its goal of establishing protective immunity and immune

memory. In this process, various metal cations, such as Ca2+, Fe2+,

and Cu2+, play a pivotal role in transmitting diverse signals (8). Ion

signaling serves as a crucial mechanism for information transfer in

acinar cells. Although these treatments remain in the research

phase, they are potential future therapeutic options for AP.
2 Acinar cell remodeling in
acute pancreatitis

Acinar cells are the primary cell type in the pancreas, accounting

for 90% of all cells. Acinar cells typically secrete digestive enzymes

such as amylase, trypsinogen, elastase, and carboxypeptidase A (9).

Acinar cells have various inherent mechanisms to detect, mitigate,

and regulate the microenvironment. This is essential for controlling

the autolytic digestion of the numerous enzymes. These processes are

critical to mitigating tissue damage and facilitating regeneration (10).

The proenzymes, or zymogens, characteristic of the duodenum, are

released to counteract the effects of the many enzymes secreted by

acinar cells. Simultaneously, many enzymes are secreted along with

trypsin inhibitors to prevent premature trypsinogen activation.

Trypsinogen is only activated in the small intestine and activates

other precursor digestive enzymes (11). Ultimately, acinar cells

develop the capacity to undergo ADM.

ADM is a phenotypic transition from acinar cells to ductal cells

that protect damaged cells or tissues from self-digestion (Figure 1)
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(12). During ADM, acinar cells undergo morphological changes

and lose their original function, accompanied by alterations in gene

expression related to cell differentiation, proliferation, and survival.

This process is defined by the substitution of one cell type for

another and is reversible. It can be triggered by various stimuli,

including chronic inflammation or cellular damage (12, 13). This

transformation leads to the adoption of duct-like cellular

morphology and transcriptional alterations, mirroring the

characteristics of embryonic progenitor cells (14, 15). It is crucial

to note that ADM cannot simply be classified as a trans-

differentiation event from acinar cells to ductal cells. This is

because acinar cells undergo dedifferentiation into embryonic

progenitor cell-like phenotypes before differentiating into ductal

cells. The terminology surrounding metaplasia, transdifferentiation,

and dedifferentiation remains controversial (16). ADM is believed

to function as a protective mechanism that temporarily mitigates

widespread tissue damage caused by excessive secretion of digestive

enzymes. If the stimulating factor for metaplasia is removed, the

damaged tissue may revert to its normal state. However, if the

persistent stimuli promoting metaplasia exploit the plasticity of

acinar cells, processes such as metaplasia, dedifferentiation, and

transdifferentiation may lead to tumor development (17).

The hallmark pathological alteration in AP is the damage to

pancreatic acinar cells, which results in the inappropriate activation

of trypsinogen within these cells, ultimately initiating the

autodigestion of pancreatic parenchyma (18). Research has shown

that deceased and injured pancreatic acinar cells can release

damage-associated molecular patterns (DAMPs), such as histones,

DNA, and heat shock proteins. The accumulation of these pro-

inflammatory DAMPs can subsequently activate the inflammatory

response and release inflammatory factors. This process has the

potential to worsen pancreatic damage and contribute to systemic

inflammatory response syndrome (SIRS) and multi-organ failure

(19). Concurrently, inflammatory cells are infiltrated, with

macrophages and neutrophils being the first responders in the

pancreas and contributing to tissue injury (20). The initial

immune response is characterized by the secretion of pro-

inflammatory cytokines, which can result in SIRS (21). Excessive

inflammation at this time often leads to a condition associated with

immunosuppression and potential secondary pancreatic necrosis

called compensatory anti-inflammatory response syndrome

(CARS) (22).

Despite the loss of some acinar cells due to necrosis and

apoptosis during AP, others undergo ADM (17). Numerous

observations provide compelling evidence for the existence of

ADM. For example, experiments have shown that human

pancreatic acinar cells can differentiate into ductal cells.

Pancreatic ductal adenocarcinoma (PDAC) accounts for 95% of

pancreatic tumors and primarily arises from pancreatic

intraepithelial neoplasia (PanIN) (23). The formation of PanINs

is attributed to the transdifferentiation of acinar cells (24).

Introducing the Kirsten rat sarcoma viral oncogene homolog into

murine acinar cells has induced significant ADM, progressing to

PanIN and leading to PDAC (25). AP significantly contributes to

chronic pancreatic disease; both conditions exhibit notable

similarities while closely linked with the transformation of acinar
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cells into ADM. In summary, inhibiting the conversion process

from acinar cells to ADM represents a crucial mechanism for

managing the pathogenesis of acute pancreatitis and is also vital

in preventing pancreatic cancer.
3 Calcium

The influx of Ca2+ is essential for advancing of the cell cycle and

is pivotal in every phase of immune cell proliferation (26). In AP,

the dysregulation of intracellular calcium ion signaling has emerged

as a hallmark of the disease, leading to heightened generation of

reactive oxygen species (ROS), impairment of mitochondrial

function, activation of digestive enzymes within acinar cells, and

cell death (27). As a result, preventing cellular Ca2+ overload and

reducing its toxic effects has become one of the most promising

therapeutic strategies (28).
3.1 The physiological function of Ca2+

Ca2+ signaling is pivotal in regulating pancreatic exocrine

function, ensuring the appropriate secretion of digestive enzymes

and fluids (29). The digestive enzyme prozyme is stored in apical

granules of pancreatic acinar cells (PACs). It is synthesized through

the polarization of the Golgi apparatus and condensing vacuoles (30).
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In this process, the endoplasmic reticulum and mitochondria act as

critical regulators of Ca2+, responding to calcium signaling triggered

by the release of endoplasmic reticulum storage in apical regions of

cells. They enhance the production of adenosine triphosphate (ATP)

required for secretion processes. Additionally, mitochondria buffer

and regulate cytoplasmic calcium concentration by storing it in the

matrix and controlling its slow release (29).

The Inositol 1,4,5-trisphosphate receptors (IP3R) function as an

intracellular messenger that links the activation of G protein-

coupled receptors with the release of Ca2+ (31). The findings

indicate that the mobilization of intracellular Ca2+ is crucial for

the exocytosis of digestive enzymes (32). This process is sensitive to

changes in physiologically relevant concentrations, such as

acetylcholine and cholecystokinin, produced in the endoplasmic

reticulum at the apex of the cell. The connection between the apical

Endoplasmic reticulum (ER) and the basal ER makes the latter an

essential reservoir for repeated secretion of Ca2+ (33). Ca2+ peaks

mediate the secretion bursts, and the wave-like changes are

associated with the variations in IP3R receptor subtypes across

different cellular regions. The apical region contains subtypes that

exhibit sensitivity to low concentrations of IP3R and preferentially

release Ca2+ (34). Simultaneously, the mitochondria of acinar cells,

situated between the zymogenic granular region and the nucleus,

respond to Ca2+ by activating complexes that enhance nicotinamide

adenine dinucleotide (NADH) levels, drive ATP production, and

support exocytosis as well as digestive enzyme secretion (35).
FIGURE 1

ADM in AP (By Figdraw). Acinar cells are the primary cell type of the pancreas. They exhibit high plasticity and can undergo a trans-differentiation
process to form a progenitor cell-like cell type with ductal characteristics called acinar to ductal metaplasia (ADM). ADM is essential for pancreatic
regeneration after injury and can be reversed once the damage has subsided. ADM may cause pancreatic intraepithelial neoplasia (PanIN), which is a
typical precancerous lesion before pancreatic cancer. Understanding the intermediate state of ADM and the critical molecules that regulate ADM
formation may help develop new prevention strategies that can not only target people with acute pancreatitis but also benefit those at high risk for
pancreatic cancer.
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Inhibition of ATP-dependent plasma membrane Ca2+ ATPase has

been demonstrated to protect AP acinar cells by preventing

cytotoxic Ca2+ overload (36).
3.2 The disturbance of Ca2+ metabolism
in AP

Experimental observations of AP have demonstrated that

increased Ca2+ concentration triggers a significant release of Ca2+

from the endoplasmic reticulum, resulting in a more pronounced and

sustained elevation of Ca2+ levels (37–39). Importantly, deep

discharge of endoplasmic reticulum (ER) storage leads to depletion

of ER Ca2+, resulting in the activation of store-operated Ca2+ entry

(SOCE) channels by the plasma membrane. This subsequently causes

the release of Ca2+ into the cytoplasm through the termination of the

IP3R signal (40, 41). In addition to pancreatic agonists, Ca2+ elevation

can also be induced by bile salts and ethanol metabolites, leading to

subsequent mitochondrial Ca2+ overload, acinar cell death, and other

symptoms of pancreatitis (42–44). The calcium in the plasma

membrane can activate the calcium-releasing protein 1 (Orai1),

endoplasmic calcium sensor, and matrix interaction molecule 1

(STIM1). These proteins work together to regulate the influx of

various cell types, including pancreatic acinar cells (45). Orai1 is a

gene responsible for encoding the calcium release-activating calcium

(CRAC) channel protein. When the levels of Ca2+ in the endoplasmic

reticulum decrease, STIM1, located near the plasma membrane,

undergoes polymerization and binds to Orai1 to open channels
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that allow Ca2+ to enter the cell (46). Piezo1, a calcium-ion

intracellular pathway, has been discovered in pancreatic acinar cells

(47). This channel is activated by prolonged mechanical stress on the

cell, resulting in a sustained increase in Ca2+ levels, which leads to

mitochondrial depolarization and, ultimately, cell death.

Conversely, an excessive influx of Ca2+ through the Orai1 and

Piezo1 Ca2+ channels results in mitochondrial dysfunction,

ultimately leading to cellular apoptosis (48). Prolonged excessive

release of Ca2+ leads to increased permeability of the mitochondrial

inner membrane and results in cell death through both apoptosis

and necrosis. The failure of mitochondria is caused by the sustained

opening of the mitochondrial permeability transition pore (MPTP)

induced by drugs (49). Inhibition of CypD through gene

manipulation or drug intervention can effectively prevent the

opening of the MPTP, which is the drug-induced mitochondrial

permeability transition pore. This action plays a crucial role in

preserving mitochondrial function and mitigating pancreatitis (50)

(Figure 2). In the model of AP, it has been demonstrated that the

inhibition of MPTP can maintain mitochondrial function.
4 Iron

The pancreas serves as the primary reservoir for iron storage,

and there appears to be a significant correlation between iron-

mediated cellular apoptosis and inflammation in the pathogenesis

of AP. Injury to pancreatic tissue initiates an inflammatory cascade

that increases ROS release and heightened lipid peroxidation. These
FIGURE 2

Ca2+ mediated mitochondrial dysfunction and cell death in AP (By Figdraw). Ca2+ release from the endoplasmic reticulum in acinar cells is mediated
by the IP3R, triggered by multiple factors. Subsequently, the opening of Orai leads to an increase in overall calcium concentration. This elevation of
calcium levels results in mitochondrial dysfunction and necrosis through the opening of the MPTP. The resulting ATP depletion compromises ATP-
dependent mechanisms to reduce cytoplasmic calcium and exacerbates pathological calcium toxicity. Also, pathological calcium elevation activates
other cytotoxic pathways, such as autophagy. Furthermore, activation of the PIEZO 1 mechanoreceptor promotes extracellular Ca2+ entry into acinar
cells through its cationic channel properties.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1444272
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1444272
mechanisms subsequently induce intracellular ferroptosis, which

may further provoke additional inflammatory responses. This

feedback loop can potentially exacerbate pancreatic tissue

damage, thereby worsening the condition of AP.
4.1 The physiological function of iron

The majority of iron is obtained through food absorption and

body circulation processes. Transferrin (TF) is a significant mode of

iron transport, and TF is synthesized by the liver and released into

serum globulins with strong Fe3+ binding capacity (51). In serum, Fe3+

binds to TF and is recognized by transferrin receptor 1 (TFR1) on the

cell membrane, which promotes the transfer of transferrin into the

endosome. Subsequently, in low-pH acidic endosomes, Fe3+ is released

from the TFR1 complex and reduced to Fe2+ by six prostatic three

transmembrane epithelial antigens (STEAP3) (52) (Figure 3). Finally,

the bivalent metal ion transporter 1 (DMT1, SLC11A2) mediates the

release of the endosome into the cytoplasm of the unstable iron pool

(LIP) (53); thus, LIP and ferritin are intracellular storage forms. LIP

induces oxidative stress-related toxicity and controls the cellular

oxidative stress response element system by regulating the system

balance (54). There is evidence that excess hinge accumulation in the

LIP is one of the primary triggers of the Fenton reaction and can

accelerate ferroptosis (55).

The study revealed elevated levels of pancreatic iron in mice

induced by L-arginine, a conditionally essential amino acid,
Frontiers in Immunology 05
indicating that pancreatic iron overload may play a significant role

in pancreatic damage (56). Moreover, an animal study revealed that a

high-iron diet or the conditional knockout of glutathione Peroxidase

4 (GPX4) in the pancreas promoted experimental pancreatitis. In

contrast, a ferroptosis inhibitor reversed this type of pancreatic

inflammatory damage, suggesting a causative role for ferroptosis

(57–59). Furthermore, increasing evidence indicates a reciprocal

relationship between the exocrine pancreas and iron metabolism.

The excessive iron accumulation during AP generates ROS, which

induces dysfunction of pancreatic b cells and insulin resistance—

ultimately leading to new-onset diabetes. In contrast, pancreatic b
cells regulate iron levels through hepcidin secretion, and insulin

controls iron absorption (60–62).
4.2 Ferroptosis in AP

The coping strategies of pancreatic acinar cells involve

leveraging their plasticity and dedifferentiation capabilities. ROS

is an inducer for the dedifferentiation of acinar cells (63, 64). In the

initial stages of dedifferentiation, intracellular levels of ROS increase

due to the upregulation of System xc− cystine/glutamate antiporter

(xCT, SLC7A11). However, as dedifferentiation progresses and xCT

begins to decline, ROS levels remain elevated (65). The relationship

between xCT and iron-induced cell death has been extensively

researched in the context of cancer cells, including PDAC cells. The

studies above have further elucidated the functional role of the
FIGURE 3

Iron metabolism (By Figdraw). The process of iron metabolism is that Fe3+ binds to TFR and then binds to TFR1 on the cell membrane to enter the
cell. In the endosome, the iron oxidoreductase STEAP3 reduces Fe3+ to Fe2+, which is subsequently released by DMT1 into the LIP (ferritin stores
stable iron, and the LIP stores unstable iron), creating a Fenton reaction that affects ROS levels and produces Ferroptosis. The Ferroptosis process
depends on metabolite ROS and the transition metal iron. Intracellular and intercellular signaling events and environmental stresses can affect
Ferroptosis by regulating cellular metabolism and ROS levels. The typical Ferroptosis control axis requires a cystine-glutamate antitransporter,
specifying the system xc−, glutathione (GSH), which is a cofactor in the catalytic cycle of GPX4, which has a negative regulatory effect
on Ferroptosis.
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cystine/glutamate reverse transporter system, xCT, which is

typically upregulated in acinar cells and thus inhibits iron-

induced cell death. While most research on pancreatic xCT has

focused on suppressing tumor growth, this study offers insights into

the pivotal role of xCT in non-cancerous tissue homeostasis and

specifically in protecting pancreatic vesicle cells during stress, such

as (experimental) pancreatitis.

The GSH/GPX4 pathway is known to suppress ferroptosis. It

was demonstrated that treatment of cells with the ferroptosis

inducer RSL-3 led to a significant increase in levels of

inflammatory cytokines, including tumor necrosis factor (TNF)

and interleukin-1 beta (IL-1b) (66). The expression and activity of

GPX4 in cancer cells have been demonstrated to be regulated by

TNF and IL-1b (67). Treatment of cells with TNF results in

prolonged suppression of GPX4 and may also induce ferroptosis

(68). It is well established that damaged acinar cells and activated

immune cells in pancreatic tissue release reactive oxygen species,

leading to an increase in malondialdehyde (MDA) and a decrease in

superoxide dismutase (SOD) and GSH, all of which may further

contribute to ferroptosis (69).

Without GSH, intracellular iron triggers lipid peroxidation,

leading to cellular necrosis (70). Another study utilizing a mouse

acinar cell line demonstrated that trypsin, a serine protease typically

secreted by acinar cells, enhances cellular susceptibility to iron-

induced damage. In animal models of azure-induced pancreatitis,

mice with specific pancreatic GPX4 knockouts exhibited more

severe symptoms (71).
5 Copper

Copper (Cu) is crucial in targeting and incorporating copper

metalloenzymes (72). The uptake, transportation, and storage of

copper in mammals are strictly regulated (73). Cuproptosis is a

discovered form of regulated cell death triggered by excess Cu2+.

Recent research has challenged the traditional understanding of

copper-related signaling pathways, transcription factors, and

biological processes (74). Therefore, removing copper could

become a new strategy (75–77).
5.1 Cu metabolism and cuproptosis

Cu is widely recognized as a static cofactor, necessitating burial

and protection within the enzyme’s active site. This traditional

function of Cu exploits the redox potential of this transition metal

to enhance enzyme activity in various processes such as energy

maintenance, metabolism, and compound synthesis (78).

Additionally, superoxide dismutase (SOD1) and its cofactor Cu

chaperone for superoxide dismutase (CCS) contribute to cellular

defense against oxidative stress to a certain extent. Cu also plays a

role in the enzymatic synthesis of biological compounds (79). For

example, ATOX1 is an antioxidant that transports Cu to ATPase. In

the secretory pathway, the copper transport protein alpha or beta

(ATP7A/B) binds copper to the newly folded protein (78). In the

investigation of Cu, it was discovered that Cu functions as a
Frontiers in Immunology 06
dynamic signaling molecule. The protein kinase regulated by Cu

was initially identified as MEK1/2, followed by other kinases such as

ULK1/2. These two kinases are commonly upregulated in cancer

cells. Cu’s regulation of these kinases suggests the potential use of

chelation therapy to target MEK1/2 and inhibit MAPK activity, as

well as ULK1/2 to inhibit autophagy signaling (Figure 4) (80).

Furthermore, it has been discovered that Cu plays a crucial role

in inhibiting the dynamic action of phosphodiesterase (PDE) in

degrading cyclic AMP. This discovery is essential for regulating the

CAMP-dependent lipolysis process (81). Recent research has

demonstrated that the H3-H4 proteins can catalyze the reduction

of Cu2+ to Cu during their interaction, which holds significant

implications (82). The REDOX activity of H3-H4 tetramers exerts a

crucial influence on numerous Cu-dependent processes, including

SOD1 function, and is thus indispensable for maintaining

intracellular Cu homeostasis (82). While further characterization

of the diverse roles of Cu in biology is still required, we have gained

some insight into its involvement in dynamic processes (74).

Interestingly, Cu levels are increased in inflamed and malignant

tissues (83). Inflammatory cytokines such as IL-17 promote cellular

uptake of Cu by inducing the metal STEAP4. Following Cu

absorption, E3 ligase XIAP is activated to enhance IL-17-

mediated NF-kB activation while inhibiting caspase three activity.

This also establishes a solid foundation for further research on Cu in

AP (83).

In 1978, Chan demonstrated that elevated Cu concentrations

result in cellular apoptosis (84). Disruption of Cu2+ homeostasis

triggers cytotoxicity and induces cell death through various

pathways, including accumulation of ROS, proteasome inhibition,

and mitochondrial dysfunction. During mitochondrial respiration,

Cu2+ binds to fatty acylated proteins in the tricarboxylic acid cycle,

leading to fatty acylation modifications (85). The aggregation of

iron-sulfur tuft in protein results in the downregulation of iron-

sulfur tuft in expression, leading to the induction of protein-toxic

stress and ultimately culminating in cell death (85). However,

further exploration of the Cu-induced cell death phenotype and

its signaling cascade’s regulatory mechanism is required.

There is no direct evidence linking Cu or cuproptosis to ADM

in AP. However, the involvement of iron metabolism is well-

established, and interactions between iron and copper have been

documented. This discussion will elaborate on the theoretical

implications of the interplay between copper and iron in AP

while speculating on the role of copper metabolism to pave the

way for future research.
6 Ion channel crosstalk

6.1 Crosstalk of calcium metabolism and
iron metabolism

Disruption of calcium homeostasis can lead to cell death, such

as ferroptosis. The influx of extracellular Ca2+ is primarily

attributed to the depletion of intracellular glutathione, the

generation of reactive oxygen species within the cytoplasm, and

mitochondrial dysfunction (86). In a study, Ca2+-mediated cell
frontiersin.org
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death was inhibited by the cystine/glutamate reverse transport

system xc- (87). This oxidative glutamate or oxygen poisoning is

known as ferroptosis (88). Iron chelating agents can effectively

inhibit iron-mediated death and glutamate oxidation toxicity.

Ferrostatin 1 can inhibit glutamate-induced oxidative toxicity

(89). Maher discovered that specific compounds could mitigate

oxidative glutamate toxicity by inhibiting mitochondrial ROS

production or attenuating Ca2+ influx, thereby protecting against

cell death induced by erastin or sulfamyridine (88). There was a

time-dependent decrease in glutathione levels after the extracellular

addition of glutamate to inhibit system xc- (90). The levels of ROS

increase exponentially, leading to a surge in the activation of the

signaling pathway that results in a CGMP-dependent influx of Ca2+

and subsequent cell death (91). The consensus is that the influx of

Ca2+ plays a pivotal role in cellular apoptosis. The mechanism of

calcium-induced oxidative toxicity of glutamate was investigated.

Calcium sensitivity in glutamate-resistant was analyzed, and the

difference was attributed to the downregulation of the Ca2+ channel

Orai1 rather than the Ca2+ sensor STIM1 or STIM2. This regulation

led to a significant reduction in Ca2+ entry into SOCE for storage

operations (92) (Figure 5).
6.2 The crosstalk between iron metabolism
and copper metabolism

One study found that Cu2+ also triggers ferroptosis (93).

Elesclomol-induced Cu chelation enhances ferroptosis (94) (Figure
Frontiers in Immunology 07
6). The Cu chelating agent Elesclomol alone induces the degradation

of ATP7A, which is responsible for facilitating Cu efflux (94).

Excessive copper retention can cause the Fenton reaction,

generating ROS and triggering ferroptosis (95). Conversely, ATP7A

plays a protective role in preventing the degradation of SLC7A11. The

loss of ATP7A mediated by Elesclomol results in the downregulation

of SLC7A11 and an insufficient supply of cystine in cells. As a result,

GPX4 is unable to inhibit oxidative stress effectively and may further

induce ferroptosis (94).

Furthermore, Qian discovered that Cu2+ directly interacts with

the cysteine residues C107 and C148 of the GPX4 protein, leading

to the aggregation of GPX4. These aggregates are then recognized

by the autophagy receptor and degraded through the autophagy

pathway. Subsequently, autophagy induces ferroptosis (94).
7 Therapeutic strategies of calcium,
iron and copper metabolism in AP

Currently, the predominant therapeutic strategy for AP primarily

focuses on symptomatic management. Immediate intravenous fluid

resuscitation is critical for AP patients to prevent organ dysfunction

in cases of mild to moderate AP (96). Some studies suggest that

lactated Ringer’s solution may offer advantages over normal saline in

fluid therapy, but more extensive validation through larger clinical

trials is required (97). Analgesic treatment, particularly with opioids,

is also recommended for managing pain in AP patients (98).

Nutritional support plays a crucial role in treating AP, with early
FIGURE 4

Cu metabolism (By Figdraw). Cu2+ is reduced to Cu by reductase outside the cell, subsequently entering the cell through SLC31A1. Inside the cell, it
binds to Cu chaperones CCS and SOD, allowing for its distribution to specific cellular compartments such as the trans-Golgi network (TGN) and
mitochondria. ATOX1 functions as an antioxidant that facilitates Cu transport to ATPases. Within the TGN, Cu-transporting ATPases ATP7A and
ATP7B mediate the transfer of Cu from the cytoplasm into the TGN lumen, activating Cu-dependent enzymes in the secretory pathway. When
intracellular levels of Cu are elevated, ATP7A and ATP7B exit from the TGN to promote Cu efflux.
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FIGURE 5

Crosstalk between Ca2+ and Fe2+ (By Figdraw). The endoplasmic reticulum calcium receptor STIM1 interacts with Orai1 to facilitate the SOCE
mechanism for enhanced calcium influx. The transporter microcontrollers facilitate the transfer of cytoplasmic calcium into and out of mitochondria
through the mitochondrial sodium-calcium exchanger Na+/Ca2+ Exchangers (NCX). Extracellular Ca2+ influx triggers the opening of permeable
pores in the mitochondrial double membrane, leading to mitochondrial swelling and rupture. Ultimately, releasing Ca2+ from the mitochondrial
intermembrane pool can overwhelm cytoplasmic levels and lead to cell death due to reactive oxygen species accumulation.
FIGURE 6

Crosstalk between ferroptosis and cuproptosis (By Figdraw). Cu chelating agent can induce the degradation of ATP7A, which promotes the efflux of
Cu2+. Excessive Cu2+ can cause the Fenton reaction, ROS accumulation, then ferroptosis. Deletion of ATP7A leads to downregulation of SLC7A11.
GPX4 cannot effectively inhibit oxidative stress and may further induce ferroptosis. The reduction of GSH due to GPX4 may further
induce cuproptosis.
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initiation of enteral nutrition being preferred if tolerated by the

patient, supplemented by parenteral nutrition when necessary to

meet caloric demands (99). Close monitoring and timely intervention

targeting pulmonary, cardiac, and renal involvement are vital during

clinical diagnosis and treatment of AP (100). Antibiotic therapy may

not be requisite as it does not diminish the risk of infectious

pancreatic necrosis; empirical coverage should encompass gram-

negative and anaerobic bacteria when deemed appropriate (101).

Traditional Chinese medicine has been effectively employed in Asia

for several decades as an adjunctive treatment for acute pancreatitis,

with numerous studies substantiating its efficacy in alleviating

symptoms, managing complications, and reducing mortality rates

(102–104). According to bibliometric analysis, Dachengqi Decoction

emerges as the most extensively researched TCM formulation within

this domain—a promising avenue for future research (105).

The ongoing investigation into ion crosstalk in AP provides a

novel perspective on its therapeutic approach. The inhibition of

altered Ca2+ kinetics presents significant therapeutic potential for

AP management. Preclinical studies utilizing experimental models

have demonstrated that the blockade of Orai1 function, which

preserves normal Ca2+ dynamics in acinar cells, effectively

prevents mitochondrial dysfunction and the onset of pancreatitis

(106). The specific agent CM4620, also referred to as Auxora, is

currently undergoing clinical trials, underscoring its considerable

significance (45). As a subsequent step, the company is actively

conducting a Phase II trial—an open-label dose-response study—to

evaluate the safety and efficacy of CM4620-IE in patients with acute

pancreatitis accompanied by SIRS (107).

The activation of TRPM2 enhances the influx of extracellular

Ca2+ in acinar cells triggered by bile acid, resulting in necrosis both

in vitro and in vivo. In a biliary acute pancreatitis model, the

knockout of the TRPM2 gene mitigated disease severity and

conferred protection to acinar cells (108). Fourgeaud identified

that JNJ-28583113, a potent inhibitor of TRPM2, offers cellular

protection against oxidative stress and pro-inflammatory stimuli

(109). However, its application in vivo is limited by drug

metabolism. Additionally, TRPM2 represents a promising drug

target for central nervous system disorders, with expectations for

the identification of further inhibitors.

Targeting iron pathways may offer new opportunities for

treating acute pancreatitis, such as Artesunate (110, 111) and

Gemcitabine (112), which exert their effects on PDAC through

the induction of ferroptosis induction. A significant challenge

remains in developing pharmacological agents capable of

modulating the iron sag pathway—either as monotherapies or in

combination regimens—while minimizing adverse side effects and

ensuring precise targeting. Under treatment selection pressure,

resistance to therapy may develop, underscoring the necessity to

elucidate the relationship between molecular characteristics and

specific drug responses. Although clinical trials investigating iron

death-dependent therapeutic strategies are currently lacking,

preclinical studies remain indispensable.

Several strategies have been developed to modulate intracellular

Cu and iron levels based on the significance of these metals in

disease. One of the primary objectives of these interventions is to

innovate new anti-cancer therapies, as iron and Cu play crucial
Frontiers in Immunology 09
roles in tumorigenesis and cancer progression. Specifically, cancer

cells exhibit a heightened demand for iron compared to normal

cells, often described as “iron addiction” (113). The treatment can

be achieved through two diametrically opposite approaches: one

involves the deprivation of iron and Cu from cells, while the other

intentionally induces an excess of iron and Cu in cancer cells,

leading to the generation of ROS and subsequent induction of cell

death (114). Both mechanisms specifically target cancer cells,

suggesting that consumption and supplementation of iron/Cu

may be viable treatments. Furthermore, these treatment strategies

also apply to a wide range of diseases.

Targeting strategies for iron and Cu have been extensively

utilized, such as the widespread use of classic iron chelators for

treating iron overload disorder, including delarolex, deferiprone,

deferrable, deferoxamine, and tropine (115). The toxicity levels

and therapeutic efficacy of these substances vary; however they

are limited in their therapeutic effects (116). A potential

countermeasure could involve the utilization of iron- and Cu-

binding proteins in conjunction with chemotherapy drugs to

enhance the specificity of drug delivery (117). Nanomedicines

are an emerging and precise anticancer strategy for regulating iron

and Cu levels. Furthermore, combining these methods may offer a

more practical approach to treating patients and mitigating the

toxic effects of iron and Cu. For instance, the utilization of

curcumin in facilitating intracellular copper transport has been

identified (118). Nanotechnology enhances the efficiency of

curcumin nanoparticles by increasing their water solubility and

specificity (119).
8 Conclusion

AP is associated with high morbidity and mortality in clinical

practice. Currently, the most effective interventions for AP include

symptomatic treatment and nutritional support. However, recent

studies have identified calcium as a crucial factor in the pathogenesis

of AP, making it a potential therapeutic target. Calcium metabolism

also plays a significant role in AP and is closely linked to iron and

copper metabolism. Acinar dedifferentiation is a critical pathological

process in the progression of AP, and effective intervention can

help delay its advancement. Interventions targeting ion-related

signaling pathways are considered essential for preventing acinar

differentiation. Nevertheless, gaps in our understanding of iron and

copper metabolism still require further investigation. By addressing

these scientific questions, we aim to gain a more comprehensive

understanding of AP’s physiological and pathological mechanisms,

thereby creating new translational opportunities for optimizing

prevention, diagnosis, and treatment strategies that will ultimately

improve the survival and quality of life for patients with AP.
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