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Liquid-liquid phase separation (LLPS) is integral to various biological processes,

facilitating signal transduction by creating a condensed, membrane-less

environment that plays crucial roles in diverse physiological and pathological

processes. Recent evidence has underscored the significance of LLPS in human

health and disease. However, its implications in respiratory diseases remain

poorly understood. This review explores current insights into the mechanisms

and biological roles of LLPS, focusing particularly on its relevance to respiratory

diseases, aiming to deepen our understanding and propose a new paradigm for

studying phase separation in this context.
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1 Introduction

Liquid-liquid phase separation (LLPS) is a fundamental biophysical phenomenon in

cellular biology where biomolecules, such as proteins and RNA, spontaneously aggregate

into distinct regions within the cytoplasm or nucleus. These regions exhibit unique physical

and chemical properties compared to their surroundings (1, 2). Analogous to the

separation of oil and water, LLPS results in the formation of two distinct liquid phases.

Facilitated by dynamic and reversible interactions among proteins and nucleic acids, LLPS

enables the creation of membrane-less intracellular compartments, giving rise to organelles

that lack traditional lipid bilayers (Figure 1A) (3, 4). These structures are crucial for

organizing cellular components spatially, thereby regulating diverse cellular functions

effectively (5).

LLPS facilitates the formation of membrane-less organelles such as nucleoli, stress

granules (SGs), Cajal bodies, and P-bodies. These structures compartmentalize cellular

components without lipid bilayers, thereby establishing specialized biochemical

environments (5–7) (Figure 1B). This spatial segregation markedly enhances the
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efficiency and precision of biochemical reactions within the

complex cellular milieu (8–10). Moreover, LLPS is crucial for

cellular organization and regulation, affecting a variety of essential

cellular processes (Figure 1C). Firstly, LLPS regulates gene

expression and RNA processing by forming transcriptional hubs

that localize transcription factors and regulatory molecules near

specific genes (11, 12). This localization can modulate gene

expression, either enhancing or repressing it as needed. In RNA

processing and translation, LLPS facilitates the formation and

regulation of ribonucleoprotein complexes essential for RNA

splicing, transport, stabilization, and translation regulation (13).

Similarly, in signal transduction and stress response, LLPS assumes

distinctive roles (13). It modulates signal transduction pathways by

localizing signaling molecules within phase-separated domains,

which enhances or diminishes signal transmission (14). This

concentration of signaling molecules enables efficient signal

integration and modulation within the cell. During stress

conditions, cells utilize LLPS to create SGs that sequester and

protect RNA and proteins vital for cellular survival in hostile

environments. For instance, in response to heat shock or

oxidative stress, cells form SGs via LLPS to shield essential

molecular components (15). Furthermore, LLPS is instrumental

in protein sequestration and degradation. It aids in creating

proteasome-rich compartments for targeted protein degradation

and serves as a mechanism for protein storage (16). LLPS has been

implicated in controlling cell cycle regulation. Phase-separated

compartments concentrate cell cycle regulators, ensuring orderly

progression through the cell cycle phases. Beyond these functions,

LLPS regulates the spatial and temporal regulation of proteins and
Frontiers in Immunology 02
RNAs, which are vital for cell differentiation and organ

development (17). Lastly, the dynamic nature of LLPS,

characterized by the formation and resolution of compartments

in response to cellular needs, underscores its essential role in

maintaining cellular homeostasis and adapting to environmental

changes (18).

Notably, the dysregulation of LLPS is associated with various

diseases, such as cancer and neurodegenerative disorders (5, 19–21).

Aberrant LLPS in cellular contexts manifests in several forms,

including loss, excessive condensation, and abnormal phase

transitions, all of which significantly impact cellular organization

and function (Figure 2). Beginning with the loss of LLPS, a decrease

in this process disrupts the normal formation of membrane-less

organelles such as nucleoli, SGs, and P-bodies (22). This deficiency

results in the mislocalization of proteins and RNA, undermining

essential cellular functions, particularly notable in diseases such as

muscular dystrophies and certain cancers, where RNA-binding

proteins affected by LLPS loss play a critical role (8, 14, 23). For

instance, mutations impairing MeCP2’s LLPS capacity are

associated with Rett syndrome, impacting chromosome integrity

and transcriptional silence (24–26). Conversely, excessive LLPS

leads to the formation of overly stable or large biomolecular

condensates (BMCs), trapping essential cellular components and

disrupting normal cellular processes. In neurodegenerative diseases

such as ALS and frontotemporal dementia, proteins like TDP-43

and FUS undergo excessive LLPS, forming cytotoxic aggregates

(27). Similarly, in Ewing sarcoma, the EWS-FLI1 fusion protein

utilizes LLPS to form super-enhancers that drive oncogenic gene

expression (28–32). Abnormal phase transitions within phase-
FIGURE 1

Liquid-liquid phase separation. (A) Biomacromolecules undergo LLPS to form liquid droplets, which contributes to the formation of membrane-less
organelles. (B) Examples of membrane-less organelles include those found distributed throughout the nucleus, nuclear membrane, cytoplasm, and
plasma membranes of eukaryotic cells. (C) Physiological function of LLPS.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1444253
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1444253
separated compartments indicate pathological LLPS, transitioning

from a dynamic, liquid-like state to a more solid, gel-like

consistency (33). These transitions, characterized by irreversible

hydrogel formation and involving proteins like FUS and SOD1, are

particularly prominent in neurodegenerative disorders such as

Alzheimer’s disease (33–37). These changes disrupt cellular

functions by impeding molecular mobility, affecting proteostasis,

and activating stress responses, thereby highlighting the extensive

implications of LLPS dysregulation in disease contexts (37).
2 Potential roles of LLPS in
respiratory diseases

Respiratory diseases cover a wide spectrum of pathologies

affecting the airways, lungs, pleura, and related clinical

syndromes. Clinical presentations vary widely, ranging from

slight symptoms such as cough, chest pain, and mild dyspnea, to

severe manifestations including respiratory distress, hypoxia, and

potentially fatal respiratory failure (38). These diseases are broadly

categorized based on lesion location and characteristics into

obstructive, restrictive, pulmonary vascular, infectious lung

diseases, and malignancies (38). Factors such as global air

pollution, smoking, and aging populations significantly increase

the incidence and mortality rates of chronic obstructive pulmonary

disease, asthma, lung cancer, interstitial lung fibrosis, and
Frontiers in Immunology 03
pulmonary infections worldwide (39). Respiratory diseases have

emerged as major causes of global morbidity and mortality (40).

Despite this, substantial knowledge gaps persist in understanding

the mechanisms and treatments of these diseases, highlighting the

need for urgent and comprehensive research efforts. LLPS

encompasses diverse physiological functions and is associated

with a wide range of biological activities. Aberrant LLPS is

implicated in multiple diseases, indicating that LLPS-induced

aberrant biological activities may contribute to the pathogenesis

of respiratory diseases (41). Recent studies have demonstrated that

LLPS is involved in various respiratory diseases, including lung

cancer, viral or fungal infections, as well as lung injury (42, 43).
2.1 LLPS in lung cancer

Lung cancer, characterized by uncontrolled proliferation and

growth of cells, remains the leading cause of cancer-related

mortality globally, accounting for approximately 18% of all cancer

deaths. The etiology and pathogenesis of lung cancer are complex,

involving mutations in oncogenes, inactivation of tumor suppressor

proteins, and dysregulation of signaling pathways (44). Recent

advancements in elucidating the molecular mechanisms

underlying lung cancer have underscored the critical role of LLPS

in tumorigenesis (42) (Table 1). Biomolecules undergo phase

transitions to form membrane-less organelles or condensates.
FIGURE 2

Aberrant LLPS encompasses loss, excessive condensation, and abnormal phase transitions. Biomacromolecules undergo LLPS to form droplets,
initially reversible but over time transitioning to more solid-like states such as fibers or hydrogels.
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These condensates influence various cellular processes, and their

dysregulation is increasingly recognized as a crucial factor in lung

cancer development.

To begin with, lung cancer frequently involves mutations in

oncogenic genes that are crucial for both initiating and advancing

the disease. Notably, Anaplastic Lymphoma Kinase (ALK) fusions,

particularly the EML4-ALK fusion, are integral to the oncogenic

landscape of specific non-small cell lung cancer (NSCLC) (56–58).

Research by Qin et al. has demonstrated that EML4-ALK variant 1

can form liquid-like condensates in the cytoplasm. The EML4

region of the fusion protein is crucial for this process. The EML4-

N fragment alone can induce phase separation, in contrast to the

dispersed nature of the ALK-C fragment (45). Mutations in

aromatic residues within the EML4 region significantly disrupt

phase separation, underscoring the importance of these residues.

Similarly, rearranged during transfection (RET) is another

important driver gene for NSCLC (59). The Coiled-coil domain

containing 6 (CCDC6)-RET fusion gene undergoes LLPS in the

cytoplasm independently of ligands or associated proteins (46).

Studies of CCDC6-RET LLPS have revealed the simultaneous

recruitment of GRB2 and SHC1, thereby establishing a

membrane-less signaling microdomain that facilitates Ras/MAPK

signaling transduction. Additionally, long non-coding RNAs

(lncRNAs) play a crucial role in lung cancer, especially in the

formation of macromolecular condensates. The oncogenic lncRNA

MELTF-AS1 is upregulated in NSCLC and correlates with advanced

TNM stages, larger tumor size, and poorer survival rates (53).

MELTF-AS1 directly interacts with YBX1, an RNA-binding protein

involved in tumorigenesis, promoting its phase separation and

consequently activating ANXA8 transcription, which drives

NSCLC progression (Figure 3A). Another lncRNA MNX1

antisense RNA 1 (MNX1-AS1) is also upregulated in NSCLC due

to copy-number gain and c-Myc-mediated transcriptional

activation, and is associated with poor clinical outcomes. MNX1-

AS1 induces phase separation of IGF2BP1, enhancing its

interaction with the 3’- untranslated region of c-Myc and E2F1
Frontiers in Immunology 04
mRNAs, thereby stabilizing these mRNAs and accelerating cell-

cycle progression and proliferation in NSCLC (55).

In addition to mutations in oncogenic genes, the pathogenesis

of lung cancer is intricately associated with defects in tumor

suppressors. p53 is a pivotal tumor suppressor essential for

inhibiting cancer development. Mutations in p53 can result in the

loss of its tumor-suppressive function, thereby promoting cell

proliferation and inhibiting apoptosis in cancer cells (60). In lung

cancer tissues, mutant p53 protein is significantly overexpressed,

which correlates with a poorer prognosis in patients harboring p53

mutations (61). Recent reports indicate that p53 can also perform

its functions by participating in the formation of liquid-like

condensates. Firstly, p53 contributes to the formation of PML and

Cajal bodies under stress response conditions (62, 63).

Furthermore, p53 undergoes LLPS in response to DNA damage,

forming liquid droplets that recruit and activate downstream

effectors of the DNA damage response (Figure 3B). However,

mutations in p53 can disrupt the formation of these droplets,

resulting in impaired DNA repair and increased genomic

instability (64). Studies have also identified the amyloid formation

of p53 protein in human cancer tissues. Cancer-associated

mutations in p53 accelerate protein aggregation and amyloid

formation by disrupting the folding of the p53 core domain (50).

Mutant p53 tends to form aggregates with amyloid properties in

H1299 cells, especially amyloid oligomers inside the nucleus, which

are believed to cause oncogenic gain-of-function. The pathway of

mutant p53 from liquid droplets to gel-like and solid-like (amyloid)

species may be a suitable target for anticancer therapy (65).

Additionally, p53-binding protein 1 (53BP1), a crucial mediator

of the DNA damage response and an interactor with p53, recruits

other DNA repair proteins, drives transcription of p53 target genes,

and affects cellular oncogenicity. Research has shown that 53BP1

undergoes phase separation to form droplet-like compartments

near DNA breaks (Figure 3C) (52, 66). The phase-separated

53BP1 serves as a scaffold for recruiting p53 molecules and

activating factors, thereby amplifying signaling and maintaining
TABLE 1 Main mechanisms of LLPS in lung cancer.

Cancer Protein or RNA Mechanism Reference

NSCLC EML4–ALK EML4-ALK condensate hyperactivates the oncogenic signaling (45)

Lung adenocarcinoma CCDC6-RET CCDC6-RET condensate increases RAS signaling and MAPK signaling (46)

Lung cancer KAT8 KAT8 undergoes phase separation and forms a condensate with IRF1, which enhances PD-L1
expression and promotes tumor immune evasion

(47)

NSCLC YAP/TAZ Undergo LLPS and enhance oncogenic gene transcription (48, 49)

NSCLC p53 p53 mutants undergo phase separation and lead to inactivation of p53
Disruption of 53BP1 phase separation impairs p53 enrichment and compromises
genomic stability

(50–52)

NSCLC MELTF-AS1 MELTF-AS1 could directly bind and drive the phase separation of YBX1, activating ANXA8
transcription and promoting tumorigenesis of NSCLC

(53)

Lung cancer EZH2/STAT3 Myristoylation-mediated LLPS of EZH2 compartmentalizes its non-canonical substrate, STAT3,
and activates STAT3 signaling, accelerates lung cancer cell growth

(54)

Lung cancer MNX1-AS MNX1-AS1 promotes phase separation of IGF2BP1 to drive c-Myc–Mediated cell cycle
progression and proliferation in lung cancer

(55)
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genomic integrity. Disruption of 53BP1 phase separation impairs

p53 enrichment and compromises genomic stability.

Last but not least, abnormal activation of signaling pathways in

lung cancer promotes the proliferation, survival, and metastasis of

cancer cells. As previously discussed, LLPS serves as a pivotal hub in

regulating signal transduction and modulating cellular activities.

Aberrant LLPS, which disrupts signaling pathways can drive

tumorigenesis and cancer progression. Dysregulation of the

Hippo signaling pathway, particularly through the activation of

its downstream effectors, Yes-associated protein (YAP) and

transcriptional coactivator with PDZ-binding motif (TAZ), is a

critical factor in the development and progression of NSCLC (67).

Recent studies have shown that both YAP and TAZ undergo LLPS,
Frontiers in Immunology 05
forming condensates that enhance gene transcription by interacting

with super enhancers (48, 49). The nuclear factor NONO promotes

TAZ LLPS and facilitates its role in oncogenic transcription.

Additionally, YAP undergoes LLPS to form nuclear condensates

under hyperosmotic stress, which compartmentalize factors like

TEAD1 and TAZ, thereby enhancing YAP-specific gene

transcription (68). The small nucleolar RNA host gene 9

(SNHG9) drives LATS1 LLPS and inhibits YAP phosphorylation

by LATS1 (69–71). This complex interplay highlights the potential

of targeting YAP/TAZ in NSCLC, although research in this area

remains ongoing. Furthermore, enhancer of zeste homolog 2

(EZH2) binds to and methylates STAT3, leading to STAT3

signaling activity by increased tyrosine phosphorylation of
FIGURE 3

Schematic representation of LLPS in respiratory diseases. (A) MELTF-AS1 directly binds to YBX1, inducing its phase separation, which activates ANXA8
transcription and promotes NSCLC tumorigenesis. (B) P53 forms phase-separated condensates. (C) Phase-separated 53BP1 regulates p53 activity
and maintains genomic stability. (D) KAT8 acetylates IRF1, forming condensates with PD-L1 and transcriptional machinery to enhance PD-L1
expression and facilitate immune evasion by cancer cells. (E) The SARS-CoV-2 N protein undergoes phase separation to form droplets. It interacts
with G3BP1, leading to stress granule disassembly. Additionally, the virus forms liquid compartments through LLPS, which aids in viral replication and
packaging. (F) CO2 induces the formation of phase-separated droplets of PP2Cs in C albicans. (G) Sufu inhibits TRAF6 droplet formation through
phase separation, preventing NF-kB activation in response to LPS stimulation.
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STAT3, and is a significant target for anticancer therapies. Recent

studies have shown that myristoylation enables EZH2 to form

phase-separated droplets in vitro and liquid-like nuclear puncta in

lung cancer cells. STAT3 is observed to co-localize with EZH2 in

these puncta. The interaction between EZH2 and STAT3 is further

amplified by EZH2 myristoylation, leading to the activation of

STAT3 signaling and the promotion of lung cancer cell growth

(54). These findings provide a rationale for targeting EZH2

myristoylation, disrupting EZH2-STAT3 interactions within the

condensates, or modulating the properties of EZH2 condensates. In

addition to Hippo and STAT3 signaling pathway, the programmed

death-1 (PD-1)/PD-ligand (L) 1 axis is also closely related to lung

cancer development. Activation of the PD-1/PD-L1 pathway

contributes to tumor immune escape (72). Wu et al. (47) reported

that exposure to interferon-g (IFNg) induces phase separation of

KAT8 and IRF1 in the A549 lung cancer cells, resulting in the

formation of BMCs that enhance PD-L1 expression (Figure 3D). By

exploiting the mechanism of KAT8–IRF1 condensate formation,

the study identified the 2142–R8 blocking peptide, which disrupts

the assembly of these condensates, thereby inhibiting PD-L1

expression and enhancing antitumor immune responses both in

vitro and in vivo. These findings underscore the crucial role of

KAT8–IRF1 condensates in regulating PD-L1 and propose a

competitive peptide strategy to improve antitumor immunity.

Lung cancer is characterized by significant heterogeneity and

complexity. Its etiology is diverse, encompassing mutations in

oncogenes such as ALK and RET, inactivation of the tumor

suppressor protein p53, and dysregulation of various signaling

pathways. LLPS plays a crucial role in lung cancer by influencing

multiple molecules and signaling pathways. Recent advancements

in understanding the biophysical properties of the cancer cell

microenvironment and the mechanisms of LLPS in lung cancer
Frontiers in Immunology 06
have created new opportunities for innovative therapeutic

strategies. LLPS-based therapies involve manipulating RNA or

protein interactions that govern the formation of liquid droplets

within cells, including YAP, TAZ, p53, and lncRNAs. Targeting

these interactions can disrupt the formation of liquid droplets that

are essential for cancer cell survival. Moreover, targeting oncogenic

signaling pathways, including Hippo, STAT3, and PD-L1, has been

a key focus of LLPS-based therapies. Although LLPS-based

therapies are still in the early stages of development, their

potential for personalized cancer treatment is considerable. With

ongoing research, LLPS-based targeted therapies could emerge as a

cornerstone of lung cancer treatment.
2.2 LLPS in viral infection

Recent research has highlighted a significant link between LLPS

and various non-communicable diseases, with this connection now

extended to infectious diseases, particularly viral infections (73).

LLPS plays a crucial role at multiple stages of the viral lifecycle,

including protein synthesis, genome assembly, virus assembly, and

the processes of budding and release (Table 2) (74). Notably, LLPS

can function as both a host defense mechanism against pathogens

and a tool for pathogens to enhance their invasiveness in viral

infections. This dual role illustrates its complex involvement in the

dynamics of viral diseases (43).

The nucleocapsid (N) protein plays a crucial role in viral

replication, the packaging of viral genomic RNA into new virions,

and the modulation of the host cell’s response to infection. The

emergence of SARS-CoV-2 has led to a global health crisis known as

COVID-19, presenting significant challenges to public health systems

worldwide (90). Studies have indicated that the nucleocapsid (N)
TABLE 2 Mechanism of LLPS in viral infections.

Virus Protein Mechanism Reference

Severe Acute respiratory syndrome coronavirus
2 (SARS-CoV-2)

N N protein condensate recruits polymerase and RNA to promote viral RNA
transcription and replication.

(75, 76)

Influenza A virus (IAV) Ribonucleoproteins IBs concentrate viral ribonucleoprotein and RNA and promote the assembly
of virion.

(77, 78)

Human respiratory syncytial virus (RSV) N, P IBs compartmentalize N, P protein for RNA replication (79–81)

Measles virus (MeV) N, P Both viral N protein and P protein trigger the formation of IBs containing
the cellular protein WDR5

(82, 83)

Vesicular stomatitis virus (VSV) N, P, and L Viroplasm formation involves the assembly of a liquid compartment driven
by the N, P, and L proteins

(84)

Infectious Bronchitis Virus (IBV) nsp15 Endonuclease nsp15 inhibits the formation of host anti-viral SGs to ensure
efficient replication

(85)

Human adenoviruses (HAdV) DNA-binding
protein (DBP)

DBP is a major component of replication compartments and exhibits the
properties of a biomolecular condensate

(86)

Herpes simplex virus type 1 (HSV1) ICP4, UL11 ICP4 regulates protein condensation and LLPS through its intrinsically
disordered regions (IDRs)
Membrane protein UL11 is an intrinsically disordered, conformationally
dynamic protein that regulates LLPS by binding multiple chaperone proteins

(87, 88)

Human Metapneumovirus (HMPV) P IBs possess the properties of liquid organelles, and the purified P protein
phase separates independently in vitro

(89)
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protein of SARS-CoV-2 undergoes LLPS, forming condensates that

are rich in RNA and polymerase (Figure 3E) (43, 91). The N protein

comprises two globular domains: the RNA-binding domain and the

C-terminal dimerization domain, flanked by intrinsically disordered

regions (IDRs) (92). This structure facilitates LLPS in the presence of

RNA, with the process being modulated by the concentrations of

RNA and proteins (93). Phase separation generates spherical droplets

that are observable under fluorescence microscopy. These droplets

undergo material transformations over time, potentially indicating

the initial stages of nucleocapsid assembly. Moreover, the N protein is

associated with SGs, cytoplasmic structures formed through LLPS,

and plays a crucial role in viral replication efficiency. In cells, the N

protein colocalizes with G3BP1, a marker protein for SGs.

Fluorescence recovery after photobleaching (FRAP) analysis reveals

distinct populations of the N protein within SGs, suggesting diverse

sub-structural localizations and functions. Researchers have

identified that the N protein can be recruited into SGs, where it

interferes with the interaction between G3BP1 and other core SGs

components, leading to SGs disassembly (Figure 3E) (94). Guseva

et al. (82) demonstrated that purified N protein and phosphoprotein

(P) from measles virus (MeV) formed liquid-like, membrane-less

organelles upon in vitro mixing. They identified weak interactions

involving the intrinsically disordered domains of the N and P

proteins, which are essential for phase separation. RNA colocalized

with droplets, initiating the assembly of N protein protomers into

nucleocapsid-like particles that encapsulated the RNA. The rate of

encapsidation within droplets was enhanced compared to the dilute

phase, revealing a significant role of LLPS in MeV replication.

During viral infection, the replication and assembly of

numerous viruses take place within specialized intracellular

compartments. These structures are known as viral factories,

replication compartments (RCs), inclusion bodies (IBs), SGs,

Negri bodies (NBs), and cytoplasmic virion assembly

compartments (cVACs). These compartments concentrate viral

proteins, nucleic acids, and cellular factors, facilitating the

essential steps of viral replication and concurrently shielding the

viral genome from cellular defenses. LLPS may contribute to the

formation and maintenance of these compartments. Influenza A

virus (IAV) infections represent a significant threat to human

health, resulting in annual epidemics and occasional pandemics

(95). Alenquer et al. demonstrated that during viral assembly, IAV

forms cytosolic inclusions comprising viral ribonucleoproteins.

Their study revealed that these viral inclusions possess

characteristics akin to liquid organelles, segregating from the

cytosol without a defining membrane, dynamically exchanging

material, and rapidly adapting to environmental changes (77).

Evidence was provided that viral inclusions localize near

endoplasmic reticulum (ER) exit sites, rely on continuous ER-

Golgi vesicular cycling, and do not provoke an interferon

response (Figure 3E). Additionally, the study proposes that viral

inclusions isolate ribonucleoproteins from the cytosol and enable

specific RNA-RNA interactions within a liquid environment. The

RCs of vesicular stomatitis virus (VSV) also display liquid-like

properties resulting from LLPS. Analysis of the expression of

individual viral components involved in replication has revealed

that three key viral proteins, namely the N, P protein and the
Frontiers in Immunology 07
multifunctional large protein (L), are essential for replication and

can induce LLPS within the cytoplasm (Figure 3E) (84). Human

adenoviruses (HAdV) are prevalent pathogens responsible for acute

respiratory tract infections and have recently shown an increased

prevalence, often leading to pneumonia (96, 97). Hidalgo et al. (86)

investigated the biophysical properties of intranuclear RCs formed

during HAdV infection. They identified the viral DNA-binding

protein (DBP) as a major component of RCs, which contains

intrinsically disordered and proline-rich regions—features also

found in proteins involved in phase transitions. Through FRAP

and time-lapse studies in living HAdV-infected cells, they observed

that DBP-positive RCs display characteristics similar to liquid

BMCs, including fusion and division, eventually forming an

intranuclear mesh with diminished fluid-like properties.

Additionally, the transient expression of DBP replicates the

assembly and liquid-like properties of RCs in HAdV-infected

cells. These findings indicate that DBP may act as a scaffold

protein in the assembly of HAdV-RCs, thereby guiding future

research into the role of BMCs in virus-host interactions.

Respiratory syncytial virus (RSV), a major cause of acute

respiratory infections in young children and a significant concern

for the elderly and immunocompromised, has also been studied in

this context (98). Research has shown that cytoplasmic IBs, which

are essential for viral replication and transcription, depend on LLPS

mediated by interactions between the N and P proteins (Figure 3E)

(74, 79, 98). In addition to RSV, Boggs et al. (89) showed that

Human metapneumovirus (HMPV) IBs in infected or transfected

cells display properties characteristic of liquid organelles, including

fusion and fission. Purified HMPV P protein was found to form

liquid droplets independently, differentiating it from IBs in other

viral systems. In vitro experiments demonstrated that the HMPV P

protein recruits monomeric N (N0-P) and N-RNA to form droplets.

This observation suggests that the P protein functions as a scaffold,

facilitating multivalent interactions with both monomeric and

oligomeric N protein and RNA, thereby promoting phase

separation of IBs. Moreover, recent studies provided evidence that

the endoribonuclease nsp15 of Infectious Bronchitis Virus (IBV)

interferes with the formation of host antiviral SGs by regulating the

accumulation of viral dsRNA and by antagonizing the activation of

protein kinase R, eventually ensuring productive virus replication.

LLPS is also critical for herpesvirus replication and transcription.

For example, the herpes simplex virus type 1 (HSV-1) immediate-

early protein ICP4, which is intrinsically disordered, induces the

formation of nuclear condensates via LLPS (73). The role of ICP4 in

viral replication, along with its localization within replication

compartments, suggests that LLPS may contribute to the formation

of these compartments (88, 99). Additionally, HSV-1 tegument

protein UL11, which contains IDRs, also undergoes LLPS in vitro

(87, 100). The presence of IDRs in several HSV-1 tegument proteins

suggests a potential role in tegument assembly through LLPS (87).

The significance of LLPS in viral processes associated with

respiratory infections, such as adsorption, replication, assembly,

and release, has become increasingly clear (73, 74). LLPS promotes

the formation of BMCs, which concentrate viral replication

machinery, enhance viral gene transcription and expression, and

modulate innate immune responses by sequestering host sensors
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within IBs (43). This mechanistic insight into phase separation

provides a deeper understanding of the viral life cycle within host

cells and suggests potential strategies for developing targeted

treatments for viral infections (101).
2.3 LLPS in fungi infection

Candida albicans, commonly known as a yeast species, typically

has a symbiotic relationship with the human body under normal

conditions, but in cases of weakened immune systems, it can

proliferate uncontrollably, leading to candidiasis pneumonia (102).

This condition is often characterized by respiratory distress,

coughing, chest pain, and fever (103). Zhang et al. (104) discovered

that elevated CO2 levels induce the formation of IDR-containing

PP2Cs in Candida albicans. The Ser/Thr-rich sequences within the

IDRs are essential for driving the phase transitions of PP2Cs under

high CO2 conditions. Their findings suggest that interactions

between Ser/Thr residues and CO2 may enhance the cohesive

forces required for phase separation. This phase separation

activates the phosphatase activity of PP2Cs, thereby initiating

various CO2-responsive biological processes (Figure 3F). Their data

demonstrated that the functionally conserved, yet sequence-diverse,

disordered regions of PP2C phosphatases can act as CO2 sensors.
2.4 LLPS in lung injury

Sepsis is marked by severe organ dysfunction, especially in the

lungs, due to a dysregulated immune response to infections (103).

Recent studies have shown decreased expression of Suppressor of

Fused (Sufu) during the early stages of lipopolysaccharide (LPS)-

induced acute inflammation in murine lung and peritoneal

macrophages. The absence of Sufu worsens lung injury and

increases mortality in mice subjected to LPS and cecal ligation and

puncture (CLP) challenges (105). Moreover, Sufu deficiency amplifies

LPS-induced proinflammatory gene expression in cultured

macrophages (105). This research underscores Sufu’s critical role as

a negative regulator in the Toll-Like Receptor (TLR)-mediated

inflammatory response. Sufu directly interacts with TNF Receptor

Associated Factor 6 (TRAF6), inhibiting its oligomerization and

autoubiquitination. During LPS-induced inflammation, TRAF6

undergoes phase separation, a crucial step in the activation of

ubiquitination and NF-kB signaling (Figure 3G). Sufu effectively

prevents the formation of phase-separated TRAF6 droplets, thereby

suppressing NF-kB activation in response to LPS. In a septic shock

model, TRAF6 depletion alleviated the exacerbated inflammatory

phenotype in mice with myeloid cell-specific Sufu deletion.
3 LLPS as a novel
therapeutic mechanism

The significance of LLPS in respiratory diseases highlights its

potential as a therapeutic target. Indeed, various drugs or molecules

can modify the formation rate, composition, stability, and physical
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properties of LLPS, thus presenting significant opportunities for

drug discovery (Figure 4). As previously mentioned, LLPS plays a

crucial role in viral infections, indicating that targeting the phase

separation process could pave the way for new antiviral drug

development. he SARS-CoV-2 N protein interacts with SGs

proteins G3BP1/2 and CSNK2B/CSNK2A2, which are subunits of

casein kinase 2 (CK2), leading to the disassembly or inhibition of

SGs formation. Consequently, CK2 inhibitors such as GO289 and

silmitasertib, which disrupt protein-protein interactions between

the N protein and SG-associated proteins, could serve as potential

chemical probes or antivirals targeting SGs (Figure 4A) (106, 107).

Additionally, NF-kB represents a potential therapeutic target for

infectious diseases. The compound 1,6-hexanediol, known to

inhibit LLPS, suppresses N protein phase separation, thus limiting

its role in NF-kB activation (Figure 4A) (108, 109). However, 1,6-

hexanediol exhibits high cytotoxicity and inhibits phosphatase and

kinase activities. Propylene glycol, in contrast, offers a non-toxic

alternative for disrupting viral replication (110) (–).-Gallocatechin

gallate (GCG), a green tea polyphenol, disrupts N protein LLPS and

inhibits SARS-CoV-2 replication, potentially treating COVID-19 by

targeting N-RNA condensation (Figure 4A) (91). Recent studies

have shown that the aminoglycoside kanamycin disrupts LLPS in

SARS-CoV-2-infected mammalian cells (93). Kanamycin binds to

nucleic acids through electrostatic interactions, thereby preventing

RNA-protein interactions. The addition of kanamycin to droplets

resulted in a reduction in condensate size, a decreased protein/RNA

ratio in assays, and the relocalization of the N protein to the nucleus

(93). Small-molecule modulators of host kinases or phosphatases

could regulate LLPS and act as antiviral agents. Activators of SR

protein kinase 1 (SRPK1) are potential antivirals, as they

phosphorylate the N protein SR region to attenuate RNA-induced

LLPS and viral RNA transcription (111). RSV replication occurs

within IBs. The steroidal alkaloid cyclopamine and its chemical

analogue A3E inhibit RSV replication by disrupting and solidifying

IB condensates (Figures 4A, C) (98). Furthermore, cyclopamine and

A3E demonstrate dose-dependent inhibition of RSV replication in

mouse models, highlighting their therapeutic potential.

In addition to direct interventions targeting LLPS formation,

modifying environmental conditions can regulate the LLPS states of

target proteins. SGs are particularly sensitive to oxidative, osmotic,

and heat shock stresses. Temperature variations may thus affect

translation mechanisms within SGs under stress (112).

Furthermore, SARS-CoV-2 N protein condenses with specific

RNA genomic elements under physiological buffer conditions and

condensation is enhanced at human body temperatures (33°C and

37°C) and reduced at room temperature (22°C) (113). Roden et al.

also observed that N protein can condense in the absence of RNA at

high temperatures, but addition of RNA lowers the temperature at

which droplets emerge (114). These findings highlight the potential

of environmental modulation, such as temperature adjustment, as a

strategy to disrupt LLPS and inhibit viral replication, suggesting it

could be a promising adjunctive systemic therapy (Figure 4A).

As our understanding of the role of LLPS in various biological

processes advances, its potential to modulate tumor-associated

proteins and their associated upstream and downstream signaling

pathways is increasingly recognized, thereby improving therapeutic
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strategies for lung cancer. Although anti-PD-1/PD-L1 therapy has

shown efficacy in lung cancer, drug resistance remains a significant

challenge. Recent studies have shown that YAP interacts with

histone acetyltransferase EP300, transcription factor TEAD4, and

mediator 1 to form phase-separated transcriptional condensates,

which enhance the transcription of target genes (115). Disrupting

YAP’s LLPS capacity inhibits cancer cell growth, enhances the

immune response, and increases the sensitivity of tumor cells to

anti-PD-1 therapy. Another study found that SRC-1 co-expresses

with YAP in NSCLC and is essential for lung cancer growth. SRC-1

interacts with YAP/TEAD to enhance YAP transcriptional activity

through the formation of compartmentalized SRC-1/YAP/TEAD

condensates. The anti-HIV drug elvitegravir (EVG) specifically

disrupts SRC-1 condensate formation in cells, thereby efficiently

inhibiting YAP oncogenic transcriptional activity and constraining

YAP-dependent cancer cell growth (Figure 4A) (116).

Recent studies indicate that antitumordrugsaccumulate in specific

condensates within cancer cells, with their distribution profoundly

affecting drug efficacy (Figure 4B). Furthermore, modifications to the

properties of phase-separation condensates can further influence drug

concentrations and effectiveness (Figure 4C). Cisplatin is a potent

chemotherapeutic agent used to treat lung cancer through its ability to
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induce DNA damage and cell apoptosis. Studies have demonstrated

that, in vitro, reconstituted condensates can concentrate various

anticancer drugs, including cisplatin, mitoxantrone, tamoxifen,

THZ1, and JQ1, all of which interact with DNA (117). These drugs

showed high enrichment within the condensates of the transcription

regulator MED1, which are formed by super-enhancers and large

enhancer clusters associated with oncogenesis and gene activation

(117, 118). Co-incubation of DNA with cisplatin in reconstituted

MED1 condensates led to substantial DNA modification through

platination (119). In cancer cells, plastinated DNA frequently

co-localizes with MED1 condensates, suggesting that the partitioning

of cisplatin into these condensates enhances drug activity (117, 119).

Notably, reconstituted MED1 condensates gradually dissolved in the

presence of cisplatin, and prolonged cisplatin exposure led to MED1

depletion from super-enhancers in cancer cells (117, 119). These

findings suggest that the selective partitioning and concentration of

antineoplastic drugs within condensates play a critical role in drug

pharmacodynamics. Further investigation of this phenomenon could

advance therapeutic approaches for diseases.

Modulating the assembly and dynamics of LLPS condensates

enables precise control over cellular processes. This approach offers

a unique opportunity to restore normal cellular functions and
FIGURE 4

Therapies Targeting LLPS. (A) Drugs such as GO289, 1,6-hexanediol, GCG, A3E, and EVG, as well as environmental adjustments, can disrupt or
prevent the formation of specific biomacromolecules into droplets. (B) Drugs, including cisplatin, can accumulate within condensates. (C) The
steroidal alkaloid cyclopamine and A3E can solidify condensates. Conversely, other drugs may stabilize these liquid droplets, thus preventing their
dissolution or transition into fibrous or solid phases.
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mitigate disease progression. LLPS-based therapies have shown

considerable promise in treating respiratory diseases. However,

several challenges must be addressed before these therapies can be

transitioned into clinical practice. A major obstacle is the limited

understanding of the specific mechanisms of LLPS in respiratory

diseases and the complex signaling pathways involved. Another

significant challenge involves developing efficient and precise LLPS

inhibitors, as well as evaluating their safety and toxicity. Moreover,

most studies have been conducted from a monocellular perspective,

limiting observations to narrow contexts and overlooking complex

intercellular interactions and the intricate body system.

Transitioning from in vitro to in vivo models, as well as from

cellular to animal models, is crucial for elucidating the role of phase

separation in biochemical reactions. This advancement could

significantly enhance drug targeting strategies that focus on phase

separation. Addressing these challenges requires future research to

further unravel the mechanisms of LLPS in respiratory diseases and

identify novel LLPS regulators and therapeutic targets.
4 Perspectives

LLPS orchestrates the formation of various biomacromolecular

condensates, which are crucial for numerous cellular processes,

such as subcellular compartmentalization, cell cycle regulation,

signal transduction, gene expression modulation, and protein

quality control. Dysregulated phase separation, resulting from

mutations in phase-separated proteins, compromised quality

control systems, or environmental changes, has been implicated

in the pathogenesis of various respiratory diseases. Consequently,

identifying molecules that modulate phase separation represents a

promising strategy for drug development and therapeutic

interventions targeting diseases associated with abnormal LLPS.

Interest in the role of LLPS in respiratorydiseases, particularly lung

cancer and respiratory viral infections, is growing, as abnormal LLPS

emerges as a crucial pathophysiological factor. Research into

therapeutic strategies and medications targeting LLPS in these

diseases is also expanding. Nevertheless, research connecting LLPS

to lung injury and fungal infections remains limited and warrants

further investigation. Although direct evidence linking LLPS to other

respiratory diseases, such as chronic obstructive pulmonary disease

(COPD), pulmonary fibrosis, and asthma, is scarce, emerging data

suggest plausible associations. For instance, lncRNAs, functioning as

architectural RNAs, recruit proteins that influence disease progression

in the respiratory system.Studies have confirmed that certain lncRNAs

are involved in regulating LLPS (120, 121). Future research should

explorehowLLPS interactswith these lncRNAsduring theprogression

of respiratory disease. Aberrant protein expression, misfolding, and

functional dysregulation are implicated in the initiation and

progression of respiratory diseases. Recent studies have identified

many proteins capable of LLPS, including N protein and p53, which

are involved in disease pathogenesis (37, 122). Databases such as

DrLLPS and LLPSDB compile extensive datasets of over 400,000

known and potential LLPS-related proteins, thereby providing

crucial support for advancing LLPS research (123, 124). Investigating

theultrastructure and functional consequencesof previouslyunknown
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proteins through these databases is of significant value. Further

research will elucidate the precise roles of additional abnormal LLPS

proteins in the pathogenesis of respiratory diseases. Additionally, SGs

are membrane-less organelles formed through LLPS in response to

various stress stimuli, have been identified in diseases such as asthma,

COPD, and lung cancer (125).

Future research should prioritize the development and

optimization of LLPS-modulating agents, focusing on their safety

and efficacy in clinical settings. Exploring the broader implications

of LLPS in various respiratory diseases, as well as combinatorial

therapies involving LLPS modulators, may lead to innovative

treatments. A thorough understanding of LLPS mechanisms in

pathogenesis will be essential for designing targeted interventions.

Additionally, modulating the environment, particularly through

temperature control, shows promise for disrupting LLPS and

potentially inhibiting viral replication, thereby complementing

other therapeutic strategies. In oncology, targeting LLPS

mechanisms in cancer cells, particularly those involving tumor-

associated proteins and signaling pathways, may enhance

therapeutic strategies, address drug resistance, and improve

outcomes for patients with lung cancer. The accumulation and

partitioning of antitumor drugs within specific cellular condensates

offer a promising avenue for refining cancer therapy. Advancing our

knowledge in these areas will enable the development of more

effective treatment strategies and the optimization of therapeutic

outcomes. Addressing the challenges related to LLPS mechanisms

and translating findings from monocellular models to in vivo

systems will be crucial for advancing LLPS-based therapies.

Continued research into LLPS holds the potential to significantly

impact the treatment of both respiratory diseases and lung cancer.

Overall, research into the relationship between respiratory

diseases and liquid-phase separation is still in its early stages but

is beginning to demonstrate significant potential. As technology and

research advance, this field is anticipated to offer valuable insights

and methods for the early diagnosis and personalized treatment of

respiratory diseases.
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