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Education), Chongqing Medical University, Chongqing, China, 4Department of Oncology, The
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Objective: The involvement of immune cells in colorectal cancer (CRC) and their

interplay with metabolic disorders are yet to be fully elucidated. This study

examines how peripheral immune cells, inferred genetically, affect CRC and

investigates the intermediary roles of metabolites.

Methods: We employed a two-sample bidirectional Mendelian randomization

(MR) approach to assess the causal influence of immune cells on CRC. Additionally,

a two-step MR strategy was utilized to pinpoint potential metabolites that mediate

this effect. Our analysis incorporated data from genome-wide association studies

(GWAS), involving 731 immune cell types, 1,400 metabolites, and CRC outcomes.

The primary method of analysis was randomized inverse variance weighting (IVW),

supported by MR-Egger, weighted median, simple mode, and weighted mode

analyses. Sensitivity checks were conducted using Cochran’s Q test, MR-PRESSO

test, MR-Egger regression intercept, and leave-one-out analysis.

Results: The study identified 23 immune cell types and 17 metabolites that are

causally linked to CRC. Our mediation analysis highlighted that nine metabolites

act as intermediaries in the relationship between nine specific immune cells and

CRC risk. Notably, The ratios of Adenosine 5’-monophosphate (AMP) to aspartate

and Retinol (Vitamin A) to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) were

found to concurrently mediate the promoting effects of Myeloid DC %DC and

BAFF-R on B cells in colorectal cancer (CRC). Moreover, iminodiacetate (IDA) was

found to mediate the protective effect of CD14+ CD16- monocytes on CRC,

contributing 11.8% to this mediation. In contrast, IDA was also seen to decrease

the protective effect of IgD+ CD38br %B cells on CRC risk, with amediation effect

proportion of -10.4%.
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Conclusion: This study delineates a complex network involving immune cells,

metabolites, and CRC, suggesting a multifaceted pathophysiological interaction.

The identified causal links and mediation pathways underscore potential

therapeutic targets, providing a foundation for interventions aimed at

modulating immune responses to manage CRC.
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1 Introduction

CRC is one of the most common malignancies of the digestive

system, consistently showing high incidence rates in recent years. In

2022, there were over 1.92 million new cases and more than 900,000

deaths worldwide, with a 5-year survival rate of 65% (1, 2). The etiology

of CRC is multifaceted, involving both genetic predispositions—such as

Lynch syndrome (3) and inflammatory bowel disease (4)—and

environmental influences, including lifestyle factors like smoking (5),

excessive alcohol consumption (6), obesity (7), and gut microbiota

composition (8). Immune cells are integral to the pathogenesis of CRC.

Research has specifically implicated macrophages (9), dendritic cells

(10), T cells (11), and NK cells (12) in the initiation and progression of

CRC, with their precise mechanisms still needing clarification.

Multiple studies have reported that metabolic reprogramming

within immune cells plays a critical role in tumor malignancy,

influencing the effectiveness of anti-tumor responses (13). For

example, inhibiting glycolysis in CD8+ T cells not only enhances

their memory function but also boosts their anti-tumor activity (14).

Similarly, alterations in amino acid metabolism, particularly involving

arginine and glutamine, significantly affect T cell viability and

functionality, thereby modulating their capacity to combat tumors

(15, 16). Curtailing cholesterol metabolism in CD8+ T cells has also

been shown to enhance their anti-tumor capabilities (17). However, a

reduction in glycolysis in NK cells has been linked to accelerated lung

cancer progression (18). These findings underscore the central role of

immune cell metabolism in anti-tumor immunity. Moreover,

additional studies suggest that targeting specific metabolic pathways,

such as fatty acid metabolism in myeloid-derived suppressor cells (19),

ketone metabolism in macrophages (20), and cholesterol efflux in

macrophages (21), could profoundly influence tumor dynamics. These

studies provide evidence from animal experiments and mechanistic

insights into howmetabolic reprogramming of immune cells influences

tumor progression; however, evidence from large-scale human studies

remains limited.

Mendelian randomization uses genetic variants as instrumental

variables to assess causal relationships between exposures and

outcomes, effectively simulating the conditions of a controlled

experiment. This approach offers distinct advantages over both

observational studies and randomized controlled trials (RCTs).
02
Unlike observational studies, which are often plagued by

confounding and reverse causation, Mendelian randomization

leverages naturally occurring genetic variations that are randomly

assigned and independent of the outcome, significantly reducing

these biases. Compared to RCTs, which may be impractical due to

ethical or economic limitations, Mendelian randomization provides a

viable and efficient alternative for exploring causal relationships

without the need for direct intervention (22).

Although recent Mendelian analyses have shown that metabolite-

related SNPs canmodulate the role of immune cells in the development

of various cancers, including breast, pancreatic, and hepatocellular

carcinoma (23–25), these studies have not fully addressed the

complexities of immune cell involvement in colorectal cancer.

Moreover, prior research about immune cells and colorectal cancer

has primarily focused on mechanistic insights, lacking the perspective

of large-scale genetic variation, which limits their ability to draw robust

causal conclusions. Furthermore, while one Mendelian randomization

study has explored the relationship between peripheral blood cell

counts and colorectal cancer risk, identifying eosinophils and

lymphocytes as potential contributors, this study examined only five

leukocyte counts without delving into the specific roles of immune cell

subtypes (26). Consequently, there still remains a gap in understanding

the contribution of immune cells to colorectal cancer risk, particularly

regarding the mediating role of metabolites.

In contrast, our study addresses these limitations by

investigating the contribution of immune cells to colorectal

cancer risk through a novel approach that integrates large-scale

genetic variation and examines the mediating role of metabolites.

This approach not only broadens the understanding of immune cell

involvement in colorectal cancer but also provides new insights into

the complex interplay between metabolites and immune cells,

thereby filling a critical gap in the existing literature.
2 Methods

2.1 Study design

Our study aims to clarify the causal connections between

immune cells and the risk of CRC through a detailed Mendelian
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randomization analysis. Initially, we screened 731 immune cell traits

for causal associations with CRC using a two-sample MR approach.

Specific immune cells were then selected for further analysis,

employing reverse MR to explore their potential mediation effects.

To investigate the role of metabolites as mediators, a two-step MR

strategy was utilized (27). Multiple sensitivity analyses were

conducted to verify the robustness of our findings, as depicted in

the study’s design and progression in Figure 1.
2.2 Data sources of exposures, mediators,
and outcomes

The data on exposures, mediators, and outcomes were obtained

from GWAS, predominantly involving individuals of European

ancestry. Immune cell data were derived from the dataset by Orrù V

et al. (28), encompassing 731 immune cell traits from 3757 participants.

The GWAS Catalog provided statistical summaries (accession

numbers: GCST90001391-90002121, Supplementary Table 1).

Metabolite data, including 1,091 metabolites and 309 metabolite

ratios, organized into eight recognized pathways such as lipids,

amino acids, and more, were also sourced from the GWAS Catalog

(accession numbers: GCST90199621-90201020, Supplementary

Table 2) (28). CRC data originated from a meta-analysis by Sakaue S

et al. (29), which included 470,002 European participants, comprising

6,581 cases and 463,421 controls (GWAS Catalog accession

number: GCST90018808).
2.3 SNP selection

For Mendelian randomization studies to be valid, the single

nucleotide polymorphisms (SNPs) serving as instrumental variables

(IVs) must meet three crucial criteria (Figure 2): (1) SNPs must be
Frontiers in Immunology 03
correlate with the exposure, (2) SNPs should have no association

with confounding elements like age, sex, or lifestyle, and (3) SNPs

must exclusively affect the outcome via the exposure. The first

assumption can be tested by selecting genetic variants significantly

associated with risk factors in GWAS. The validity of the second

assumption can be assessed by examining whether genetic variants

are associated with competing risk factors. The third assumption

cannot be directly assessed but must be supported by biological

knowledge (30). SNPs were chosen based on their association with

immune cell traits at a genome-wide significance threshold of P < 1

× 10-5 (31, 32), the criteria used for selecting significant SNPs in the

reverse Mendelian randomization analysis were P < 5 × 10-8;

independence was verified by assessing linkage disequilibrium,

selecting IVs with no linkage effects (r2 < 0.001 within a 10,000

kb distance) (33). IVs were then screened from the CRC dataset to

exclude any associated directly with the outcome and to remove

palindromic SNPs. The strength of individual SNPs was determined

by calculating the F-statistic, retaining those with an F-statistic

greater than 10 (34). SNPs for immune cells and metabolites are

listed in Supplementary Tables 3, 4.
2.4 Mendelian randomization and
statistical analysis

A bidirectional two-sample MR analysis was performed using R

(version 4.3.1) and the “TwoSampleMR” package to evaluate the

link between immune cells and CRC. The impact on CRC risk was

quantified as odds ratios (OR) with 95% confidence intervals (CI),

considering a P-value < 0.05 as indicative of a significant causal

connection. The main method employed was a random-effects

inverse variance weighted (IVW) analysis, enhanced with MR-

Egger, weighted median, simple mode, and weighted mode

approaches to ensure result consistency.
FIGURE 1

Flow chart of the Mendelian randomization analysis.
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2.5 Sensitivity analysis

The primary assessment of the impact of immune cells on CRC

employed the random-effects IVW method (35). Up to four MR

methods, each with different assumptions regarding pleiotropy,

were applied to generate effect estimates. Significant heterogeneity

was identified through Cochran’s Q test, with a P-value below 0.05

indicating its significance. Pleiotropy was assessed using the MR-

PRESSO test and MR-Egger regression intercept, with P-values

above 0.05 suggesting no pleiotropy. The robustness of our findings

was further confirmed by a leave-one-out analysis, which assessed

the impact of individual SNPs on the MR analysis.
2.6 Mediation analysis

A two-step MR approach was executed to investigate if an

intermediate risk factor mediates the link between immune cells

and CRC. First, we used bidirectional Mendelian randomization to

identify 23 immune cells with a causal relationship to CRC out of

731 immune cells. The criteria for SNP selection included a

significance threshold of P < 1 × 10-5, exclusion of SNPs in

linkage disequilibrium (r2 < 0.001 within a 10,000 kb distance),

and removal of weak instruments (F < 10). Next, we applied the

same criteria to identify 17 metabolites out of 1,400 with a causal

relationship to CRC. We then used the 23 immune cell traits as

exposure factors to identify significant mediators among the 17

metabolites, using the same SNP selection criteria. We employed

the Inverse-Variance Weighted (IVW) method as the primary

approach to estimate the effect of immune cells on metabolites

(b1). The most significant metabolites associated with immune cell

traits were then analyzed as mediators in the causal relationship

with CRC. Ultimately, we identified the role of nine immune cell

types in colorectal cancer risk, along with the mediating effects of

nine metabolites. The direct effects b1 from immune cell traits to
Frontiers in Immunology 04
metabolites, b2 from metabolites to CRC, and the total effect b3
from immune cell traits to CRC were calculated. The mediating

effect was defined as b = b1 * b2, and its proportion relative to the

total effect was expressed as R = (b/b3) * 100% (36, 37).
3 Results

3.1 Two-sample Mendelian randomization
analysis between immune cells and CRC

We assessed the causal relationships between 28 types of immune

cells and CRC using a two-sample MR approach (Figure 3;

Supplementary Table 5). Our analysis distinguished 14 immune

cell types as protective and 14 as risk factors for CRC. Notably,

immune cells such as IgD+ CD24+ %B cell, CD14 on CD14+ CD16-

monocytes, and IgD- CD38br AC exhibited odds ratios (ORs) of

0.932 (95% CI: 0.881-0.986), 0.943 (95% CI: 0.900-0.988), and 0.946

(95% CI: 0.918-0.975), respectively, indicating their protective roles

against CRC. Conversely, SSC-A on B cells, CD8 on CD28- CD8br,

and CCR2 on CD62L+ myeloid DC were identified as risk factors,

with ORs of 1.073 (95% CI: 1.020-1.130), 1.054 (95% CI: 1.002-

1.109), and 1.052 (95% CI: 1.007-1.100), respectively. Our analyses

for heterogeneity and pleiotropy showed no significant findings,

confirming the robustness of our results (Supplementary Table 6).

Further validation through reverse Mendelian randomization

analysis on these 28 immune cell types revealed no significant

findings for 23 of these types (Supplementary Table 7), which were

subsequently analyzed for potential mediating effects.
3.2 Effect of metabolites on CRC

In our mediation analysis, we explored the effects of 1,400

metabolites on CRC using the IVW method. We identified eight
FIGURE 2

Mendelian randomization assumptions.
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metabolites that demonstrated protective effects against CRC.

Notably, IDA, an amino acid derivative, had a significant OR of

0.879 (95% CI: 0.797-0.969). Additionally, the ratio of retinol

(Vitamin A) to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4)

showed a protective effect with an OR of 0.903 (95% CI: 0.857-

0.951). Conversely, nine metabolites were identified as risk factors for

CRC, including 3-carboxy-4-methyl-5-propyl-2-furanpropanoate

(CMPF) and 1,2-dipalmitoyl-gpc (16:0/16:0), with ORs of 1.146

(95% CI: 1.039-1.264) and 1.133 (95% CI: 1.073-1.197),

respectively (Figure 4; Supplementary Table 8). These findings

highlight the complex relationship between specific metabolites

and CRC and provide a basis for further mediation analysis.

Analyses for heterogeneity and pleiotropy also indicated robustness

(Supplementary Table 9).
Frontiers in Immunology 05
3.3 Effect of immune cell traits
on metabolites

Building on the previous identification of relationships between

23 immune cell traits and CRC, we examined the causal influence of

these immune cell traits on 17 metabolites. Our analysis identified

significant causal relationships for nine immune cells affecting nine

metabolites (Figure 5; Supplementary Table 10). Notably, traits

such as IgD- CD38dim %lymphocyte for Isovalerylcarnitine (C5),

CD28 on secreting Treg for Glutarylcarnitine (c5-dc), and CD14 on

CD14+ CD16- monocytes for Iminodiacetate (IDA) had ORs of

1.035 (95% CI: 1.004-1.067), 1.040 (95% CI: 1.008-1.073), and 1.055

(95% CI: 1.001-1.112), respectively. The remaining immune cell

traits exhibited protective effects on specific metabolites. Our
FIGURE 3

Mendelian randomization analysis between immune cells and CRC. This plot visualizes the association between immune cell and CRC. Each point denotes
the Odds Ratio (OR) for the exposure. Horizontal lines represent the 95% confidence intervals. The vertical dashed line at OR=1 serves as a reference for no
effect. OR > 1 indicates that immune cells are a risk factor for CRC, while OR < 1 indicates that immune cells are a protective factor for CRC.
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analyses confirmed no significant pleiotropy or heterogeneity,

reinforcing the reliability of these results (Supplementary Table 11).
3.4 Mediation analysis of immune cell
traits, metabolites, and colorectal cancer

After identifying key mediators affecting CRC and the effects of

immune cell traits on these mediators, we quantified the proportion

of mediating effects. Comprehensive results can be found in

Figure 6, Supplementary Table 12, leave-one-out plot was

presented in Supplementary Figure 1. Notably, IgD+ CD38br %B

cell and CD14 on CD14+ CD16- monocyte mediated their effects on

CRC through IDA levels, with mediation proportions of -10.4% and

11.8%, respectively. Additionally, IgD- CD38dim% lymphocyte and

CD62L- monocyte %monocyte mediated their effects through

isovalerylcarnitine (C5) levels, with mediation proportions of

-6.86% and -14.7%, respectively. Furthermore, IgD+ CD38br %B

cell and BAFF-R on B cell mediated their effects through the Retinol

(Vitamin A) to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) ratio,

with mediation proportions of -8.84% and 11.4%, respectively.
4 Discussion

In this MR study examining the association between immune

cells and CRC risk, we identified 23 immune cell types linked to
Frontiers in Immunology 06
CRC, with specific blood metabolites potentially acting as

mediators. For example, The ratios of Adenosine 5 ’-

monophosphate (AMP) to aspartate and Retinol (Vitamin A) to

linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) were found to

concurrently mediate the promoting effects of Myeloid DC %DC

and BAFF-R on B cells in colorectal cancer (CRC). IDA mediates

the protective effect of CD14+ CD16- monocytes on CRC risk with a

mediation effect proportion of 11.8%. Conversely, IDA was also

seen to decrease the protective effect of IgD+ CD38br %B cells on

CRC risk, with a mediation effect proportion of -10.4%.

Additionally, CD39+ resting Treg cells increase CRC risk through

metabolites such as imidazole lactate, glutarylcarnitine (C5-DC),

and 1-oleoyl-2-linoleoyl-GPE (18:1/18:2), with mediation

proportions of 5.68%, 6.53%, and 7.07%, respectively. These

results underscore the intricate interactions between specific

immune cells, their associated metabolites, and their cumulative

impact on CRC, highlighting the importance of understanding both

direct and indirect effects of immune cell traits on CRC to develop

targeted therapeutic strategies.

Immune cells hold significant prognostic value in colorectal

cancer (CRC), with their plasticity within the tumor

microenvironment (TME) leading to the expression of various

phenotypes that either promote or inhibit tumor progression. Our

study identifies four dendritic cell (DC) subsets associated with

CRC development: Myeloid DC %DC and CCR2 on CD62L+

myeloid DC are risk factors for CRC, while CD86+ plasmacytoid

DC %DC and CD62L- monocyte %monocyte serve as protective
FIGURE 4

Forest plot of metabolites associated with CRC risk. This plot visualizes the association between metabolites and CRC. Each point denotes the Odds
Ratio (OR) for the exposure. Horizontal lines represent the 95% confidence intervals. The vertical dashed line at OR=1 serves as a reference for no
effect. OR > 1 indicates that metabolites are a risk factor for CRC, while OR < 1 indicates that metabolites are a protective factor for CRC.
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factors. This aligns with findings by Gulubova MV, who reported

that higher infiltration of CD83+ DCs correlates with better

prognosis in CRC patients (38). Conversely, Sandel MH observed

that CD208-positive and CD1a-positive infiltrating dendritic cells

are associated with shortened survival in CRC patients (39). Further

mediation analysis in our study reveals that the ratios of Adenosine

5’-monophosphate (AMP) to aspartate and Retinol (Vitamin A) to

linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) mediate the

promoting effects of Myeloid DC %DC on CRC. Additionally,
Frontiers in Immunology 07
Isovalerylcarnitine (C5) levels diminish the protective role of

CD62L- monocyte %monocyte against CRC, suggesting that

retinol metabolism, lipid metabolism, and leucine metabolism in

DC cells impact CRC progression. Previous studies have

highlighted the critical role of metabolic regulation in DC

function. Alterations in cholesterol metabolism and mevalonate

(MVA) signaling can affect DC function and consequently the

immune response of CRC (40). The accumulation of lipid

droplets can impede calreticulin exposure, thus preventing DC
FIGURE 6

Mediation analysis of metabolites between immune cells and CRC. This figure shows the proportion of the mediation effect of each metabolite on the
impact of various immune cells on CRC. A positive value indicates that the metabolite and immune cells have a consistent effect on CRC, while a negative
value indicates that the metabolite and immune cells have opposite effects on CRC. The length of the bar represents the magnitude of the mediation effect.
FIGURE 5

Mendelian randomization analysis between immune cells and metabolites. This plot visualizes the association between immune cells and
metabolites. Each point denotes the Odds Ratio (OR) for the exposure. Horizontal lines represent the 95% confidence intervals. The vertical dashed
line at OR=1 serves as a reference for no effect. OR > 1 indicates that immune cells are a risk factor for metabolites, while OR < 1 indicates that
immune cells are a protective factor for metabolites.
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maturation, delaying DC activation, and promoting CRC

progression (41). However, reports on the impact of vitamin A

and leucine metabolism in DC cells on CRC are lacking.

Our study also reveals differential impacts of B cell phenotypes on

CRC. IgD+ CD24+ %B cells, IgD- CD38br AC, and IgD+ CD38br %B

cells act as protective factors against CRC, while IgD- CD38dim %

lymphocyte, BAFF-R on IgD+ CD24-, BAFF-R on naive-mature B cell,

BAFF-R on IgD+, BAFF-R on B cell, and SSC-A on B cell are identified

as risk factors. Mediation analysis further shows that Iminodiacetate

(IDA) levels and Retinol (Vitamin A) to linoleoyl-arachidonoyl-

glycerol (18:2 to 20:4) ratio attenuate the protective effect of IgD+

CD38br %B cells on CRC, whereas Isovalerylcarnitine (C5) levels

diminish the promoting effect of IgD- CD38dim %lymphocyte.

Besides, the ratios of Adenosine 5’-monophosphate (AMP) to

aspartate and Retinol (Vitamin A) to linoleoyl-arachidonoyl-glycerol

(18:2 to 20:4) mediate the promoting effects of BAFF-R on B cells in

CRC. Our findings suggest that most B cells contribute to immune

escape in CRC, consistent with previous reports indicating that certain

regulatory B cell subsets, which preferentially metabolize leucine, can

promote CRC progression (42). Lipid metabolites such as

acylcarnitine enhance B cell-mediated anti-tumor immunity by

promoting mitochondrial oxidative phosphorylation (43).

Fundamental research indicates that inhibiting the conversion of B

cells to IgA+ cells may suppress CRC growth (44). In contrast,

previous Mendelian randomization studies showed that IgD+CD24+

B cells are risk factors for glioblastoma (45), suggesting differences

across tumor types and necessitating further experimental research to

elucidate the roles of various immune cell phenotypes in CRC

development and progression.

Moreover, we identified CD39+ resting Treg cells and CD28 on

secreting Treg cells as risk factors for CRC, consistent with previous

findings that increased accumulation of Treg cells is often

associated with CRC progression, metastasis, immune therapy

failure, and poor prognosis (46–49). Additionally, our study

found that Imidazole lactate levels, Glutarylcarnitine (C5-DC)

levels, and 1-oleoyl-2-linoleoyl-GPE (18:1/18:2) levels mediate the

promoting effect of CD39+ resting Treg cells on CRC, while

Glutarylcarnitine (C5-DC) levels and 1-stearoyl-2-arachidonoyl-

GPE (18:0/20:4) levels attenuate the promoting effect of CD28 on

secreting Treg cells. This suggests that amino acid metabolism and

fatty acid oxidation may play roles in regulating Treg cells’ impact

on CRC. Previous research has shown that kynurenine can enhance

tumor aggressiveness by upregulating PD-L1 expression on Treg

cells, thus contributing to immune escape in CRC (50).

Additionally, TI-Treg cells use lipid metabolism-driven oxidative

phosphorylation (OXPHOS) to meet their energy needs and

immune suppressive functions (51). Furthermore, high IDO

expression in CRC cells and tryptophan depletion in the TME are

associated with tumor immune escape and increased Treg

infiltration in CRC (52). The above findings suggest that targeting

amino acid and fatty acid metabolites of different Treg cell subtypes

could offer a potential strategy for immune regulation in CRC.
Frontiers in Immunology 08
Substantial evidence suggests that blood metabolites are closely

linked to tumor malignancy. For instance, ketogenic diets rich in b-
hydroxybutyrate can inhibit CRC cell growth (53), and a-
ketoglutarate in the TME suppresses tumor growth (54). Beyond

direct effects on tumor cells, metabolites like indole-3-propionic acid

(IPA) regulate CD8+ T cell stemness and enhance anti-PD-1

immunotherapy efficacy (55). Lactate in the TME also boosts CD8+

T cell stemness and anti-tumor immunity (56), while gut microbiota-

derived butyrate enhances chemotherapy efficacy by modulating

CD8+ T cell function (57), and indole-3-carboxylic acid (ICA)

augments CD8+ T cell functionality by inhibiting regulatory T cell

differentiation (58). We identified 17 metabolites associated with

CRC risk, with eight reducing and nine increasing CRC risk. Yet,

there is no experimental evidence directly linking IDA, CMPF, or 1,2-

dipalmitoyl-glycerophosphocholine to tumorigenesis.

This study leverages large-scale GWAS data to conduct two-

sample, two-step, and mediation MR analyses, emphasizing the

methodological rigor and efficiency of our approach. Our

conclusions, founded on genetic instrumental variables and

supported by extensive pleiotropy analyses, are reliable and

minimally affected by horizontal pleiotropy or other confounding

factors. However, the study has limitations, First, The MR-Egger

and weighted median MR approaches might have lacked sufficient

power to identify directional pleiotropy in the genetic instruments,

if it existed (59). Second, Although MR can mitigate confounding

effects from environmental and behavioral factors, residual

confounding remains unavoidable. Third, notably the focus on

European populations, which may limit the generalizability of the

findings. Fourth, our reliance on summary-level data precludes

detailed causal relationship analyses within specific subgroups, such

as gender or cancer subtype. Despite these limitations, our

comprehensive insights provide a solid foundation for

understanding the complex dynamics at play and the potential for

developing targeted therapeutic strategies based on these findings.
5 Conclusion

In conclusion, this study provides a comprehensive evaluation

of the roles of circulating immune cells and blood metabolites in the

development of CRC, uncovering significant abnormalities in the

immune-metabolic network associated with this disease. Our

findings open new avenues for understanding the pathogenesis of

CRC and highlight the critical role of blood metabolites in

mediating the relationship between immune cells and CRC. This

enhanced understanding of CRC’s pathological processes not only

deepens our knowledge of the disease but also lays a theoretical

foundation for the development of novel immunotherapeutic and

metabolite-targeted interventions. These insights are pivotal for

advancing CRC treatment strategies, emphasizing the necessity of

further research to explore these complex biological interactions

and their potential therapeutic applications.
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