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Background: The prognostic value and immune significance of T-cell

proliferation regulators (TCRs) in hepatocellular carcinoma (HCC) have not

been previously reported. This study aimed to develop a new prognostic

model based on TCRs in patients with HCC.

Method: This study used The Cancer Genome Atlas-Liver Hepatocellular

Carcinoma (TCGA-LIHC) and International Cancer Genome Consortium-Liver

Cancer-Riken, Japan (ICGC-LIRI-JP) datasets along with TCRs. Differentially

expressed TCRs (DE-TCRs) were identified by intersecting TCRs and

differentially expressed genes between HCC and non-cancerous samples.

Prognostic genes were determined using Cox regression analysis and were

used to construct a risk model for HCC. Kaplan-Meier survival analysis was

performed to assess the difference in survival between high-risk and low-risk

groups. Receiver operating characteristic curve was used to assess the validity of

risk model, as well as for testing in the ICGC-LIRI-JP dataset. Additionally,

independent prognostic factors were identified using multivariate Cox

regression analysis and proportional hazards assumption, and they were used

to construct a nomogram model. TCGA-LIHC dataset was subjected to tumor

microenvironment analysis, drug sensitivity analysis, gene set variation analysis,

and immune correlation analysis. The prognostic genes were analyzed using

consensus clustering analysis, mutation analysis, copy number variation analysis,

gene set enrichment analysis, and molecular prediction analysis.

Results: Among the 18 DE-TCRs, six genes (DCLRE1B, RAN, HOMER1, ADA,

CDK1, and IL1RN) could predict the prognosis of HCC. A risk model that can

accurately predict HCC prognosis was established based on these genes. An

efficient nomogram model was also developed using clinical traits and risk

scores. Immune-related analyses revealed that 39 immune checkpoints

exhibited differential expression between the high-risk and low-risk groups.

The rate of immunotherapy response was low in patients belonging to the

high-risk group. Patients with HCC were further divided into cluster 1 and

cluster 2 based on prognostic genes. Mutation analysis revealed that HOMER1

and CDK1 harbored missense mutations. DCLRE1B exhibited an increased copy
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number, whereas RAN exhibited a decreased copy number. The prognostic

genes were significantly enriched in tryptophan metabolism pathways.

Conclusions: This bioinformatics analysis identified six TCR genes associated

with HCC prognosis that can serve as diagnostic markers and therapeutic targets

for HCC.
KEYWORDS

T-cell proliferation regulators, hepatocellular carcinoma, bioinformatic, GEO,
prognostic model
1 Introduction

Hepatocellular carcinoma (HCC), a major health issue, is the

sixth most common malignancy and the third most common cause

of cancer-related mortality (1). The incidence and mortality rates of

HCC are high in Asian and African populations, which account for

approximately 75% of new HCC cases worldwide. The annual

incidence of new HCC cases is approximately 780,000, with

approximately 600,000 deaths worldwide. China accounts for 55%

of the global HCC incidence (2). The high HCC incidence in China

is closely linked to various factors, such as viral hepatitis, chronic

alcohol abuse, obesity, and diabetes (3). As the symptoms are not

prominent in the early stages, 70%–80% of patients are diagnosed

with advanced-stage HCC (4). Currently, the therapeutic modalities

for HCC include liver transplantation, surgical resection,

radiofrequency ablation, transarterial chemoembolization

(TACE), and targeted drug therapy. The 5-year overall survival

(OS) rate of patients with early-stage HCC after radical surgery can

be as high as 80%. However, the survival rate of patients with

advanced-stage HCC is less than 20% (5–9). Recently,

immunotherapy, especially T-cell-related therapies involving

immune checkpoint inhibitors (ICIs), has revolutionized the

treatment landscape for advanced HCC. However, the overall

objective response rate of patients undergoing ICI therapy is low

(10, 11), which can be because the role of the immune

microenvironment in HCC pathogenesis has not been elucidated.

T cells, including cytotoxic T cells, T helper cells, and T

regulatory (Treg) cells, play a crucial role in the tumor

microenvironment (12). Expression of inhibitory molecules, such

as programmed death ligand 1 (PD-L1), promotes the malignant

proliferation of HCC cells. The binding of PD-L1 to its receptor

(PD-1) suppresses T-cell activation and proliferation, impedes the

ability of immune cells to attack tumors, and promotes malignant

growth (13). ICIs, which are a type of immunotherapeutic agents,

target the PD-1/PD-L1 pathway in the immune microenvironment

and can potentiate anti-tumor effects by boosting the immune

response of T cells (14). Systemic therapies, including ICIs, have

significantly improved the OS rate and quality of life of patients

with HCC. However, the tumor microenvironment and the
02
immune escape mechanism confer HCC with primary or adaptive

resistance to these systemic therapies (14, 15). Only 10%–35% of

patients experience sustained clinical benefits from these therapies

(16). Currently, the 5-year survival rate of patients with advanced

and intermediate HCC is less than 20% (11). Therefore, targeting

the immune microenvironment of HCC, especially the activation

and inhibition of T cells in this microenvironment, can significantly

impact HCC therapy response and improve the prognosis

of patients.

T cell proliferation regulators (TCRs), which are a diverse group

of molecules, including proteins, enzymes, receptors, and signaling

molecules, are involved in T-cell development, differentiation,

proliferation, and function (17). In the tumor immune

environment, the Expression and function of TCRs may be

dysregulated, which can impair the ability of T cells to recognize

and clear tumor cells. For example, CDK1 can influence tumor

immunity by regulating the migration of immune cells into the

bladder cancer microenvironment. CDK1 is also associated with

tumor mutational burden (TMB) and microsatellite instability (18).

CXCL12 is highly enriched in fibroblasts and can promote the

proliferation of T cells in bladder cancer microenvironment.

CXCL12 specifically interacts with CXCR4 expressed on the

surface of T cells and macrophages (19). Cell cycle suppressor

proteins, such as p27 and p21, play a major role in T-cell

proliferation (20). The Expression of immune checkpoint

molecules (such as PD-1 and CTLA-4) also affects the function of

TCRs, which subsequently influence the anti-tumor activity of T

cells (21). Therefore, targeting or modulating specific TCRs can

potentially enhance the anti-tumor activity of T cells or improve the

efficacy of immunotherapy. For example, inhibiting negative

regulators in the tumor microenvironment or enhancing the

Expression of positive regulators improves the cytotoxic effects of

T cells against tumors. Additionally, TCRs serve as a marker for

tumors to predict prognosis and guide treatment. In clear cell renal

cell carcinoma (ccRCC), T-cell proliferation-related regulatory

genes (TPRGs) are used to predict prognosis, identify tumor

types (such as hot and cold tumors), and guide treatment (22).

Previously, we analyzed the expression characteristics of 35 TPRGs

and their somatic mutations in TPRG-associated subtypes, OS,
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biological pathways, and immunity in lung adenocarcinoma

(LUAD) and developed a TPRG-associated risk model based on

six genes. This model could accurately predict TPRG prognosis and

immunotherapy response (23). However, the specific mechanism of

TCRs in the tumor microenvironment and their roles in the

immunotherapy response and prognosis of HCC have not

been elucidated.

This study examined the role of TCRs in HCC using The

Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-

LIHC) and International Cancer Genome Consortium-Liver

Cancer-Riken, Japan (ICGC-LIRI-JP) datasets. The intersection of

TCRs and differentially expressed genes (DEGs) between HCC and

non-cancerous samples provided differentially expressed TCRs

(DE-TCRs). Prognostic genes were identified using Cox

regression analysis to establish an HCC risk model. The roles of

these prognostic genes in HCC and their impact on prognosis were

analyzed. Additionally, the mutational spectrum, immune cell

infiltration, immunotherapy efficacy, and chemotherapy efficacy

were examined. This study aimed to elucidate the effects of TCRs

on the progression and prognosis of HCC and offer novel insights

into HCC treatment strategies.
2 Materials and methods

2.1 Origins of the data

The RNA-sequencing data (HTSeq-Counts and HTSeq-FPKM)

and clinical characteristics of the TCGA-LIHC cohort were

extracted from the UCSC Xena database (http://xena.ucsc.edu/).

TCGA-LIHC dataset, comprising the data of 50 non-cancerous and

365 HCC samples, served as the training set. The RNA-sequencing

data and clinical information of the ICGC-LIRI-JP cohort were

obtained from the ICGC database. The ICGC-LIRI-JP dataset,

comprising the survival and gene expression data of 232 patients

with HCC, served as the testing set. This study retrieved 35 TCRs

from previous studies (19, 24). The immunophenoscore (IPS) and

tumor immune dysfunction and exclusion (TIDE) scores of patients

with HCC were obtained from The Cancer Imaging Archive and

TIDE databases, respectively.
2.2 Differential expression and
enrichment analyses

DEGs between non-cancerous and HCC samples in TCGA-

LIHC datasets were identified using the R package DEseq2 (p < 0.05

and |log2 fold-change (FC)| > 0.5) (25). These DEGs were then

overlapped with TCRs using the R package ggvenn (26) to obtain

differentially expressed TCRs (DE-TCRs). The DE-TCRs were

subjected to Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) using the clusterProfiler package

with a significance threshold set at p < 0.05 (27).
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2.3 Establishment of risk model

A risk model for HCC was developed using TCGA-LIHC and

ICGC-LIRI-JP datasets. TCGA-LIHC dataset was subjected to

univariate Cox regression analysis to identify DE-TCRs using the

coxph function in the R package “survival” (27). Prognosis-related

genes were screened based on the following conditions: hazard ratio

(HR) ≠ 1, p < 0.05. Subsequently, the least absolute shrinkage and

selection operator (LASSO) algorithm was employed to identify

prognostic genes (family = “cox,” nfold = 10) (28). A risk model was

established using TCGA-LIHC dataset. The risk score was

calculated as follows: risk   score =on
i=1(Coef (i)� expr(i)). The

HCC samples were divided into high-risk and low-risk groups

based on the median risk score, and Kaplan-Meier (K-M) survival

analysis was performed to assess the difference in survival between

the two groups. Additionally, to further verify the validity of the risk

model, we plotted receiver operating characteristic (ROC) curve

and calculated the area under the curve (AUC) of the model to

assess its accuracy. Meanwhile, validation was performed with the

ICGC-LIRI-JP dataset. Finally, the significance of differential

prognostic gene expression levels between HCC and non-

cancerous samples in the TCGA-LIHC dataset was analyzed using

the Wilcoxon test.
2.4 Constructing and evaluating
nomogram models

Univariate and multivariate Cox regression analyses and

proportional hazards assumption were used to identify

independent prognostic factors. The clinicopathological factors

(N-stage, risk score, gender, T-stage, race, age, M-stage, and

grade) of the HCC cohort (TCGA-LIHC) were systematically

analyzed (29). A nomogram model was constructed using these

independent prognostic factors with the R package rms (30). ROC,

calibration, and decision curve analysis (DCA) curves were

generated to further verify the validity of the model.
2.5 Enrichment analysis

To investigate the biological pathways of prognostic genes, the

KEGG background gene set (c2.cp.kegg.v2023.1.Hs.symbols.gmt),

which was extracted from the Molecular Signature Database

(MSigDB), was subjected to gene set variation analysis (GSVA)

(p < 0.05) (27). The background gene set h.all.v2023.1.

Hs.symbols.gmt was downloaded from the MSigDB to examine

differential regulatory pathways between the high-risk and low-

risk groups in TCGA-LIHC cohort (27). All genes in the risk

groups were subjected to GSVA using the R package GSVA (31)

and differential analysis using the R package limma (32).
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2.6 Immunological analysis of HCC

To evaluate the association between the risk score and immune

cell infiltration in patients with HCC, six types of immune cells were

analyzed using the Tumor Immune Estimation Resource algorithm

in the R package IOBR (33). To further assess differences in

immune status among patients with HCC, immune-related

pathways, and immune cell infiltration were analyzed using the

single-sample gene set enrichment analysis (ssGSEA) algorithm

within the R package ‘GSVA’ (significance threshold: p < 0.05) (31).

The correlations between the risk score and immune cells, as well as

between prognostic genes and differential immune checkpoints,

were determined using Spearman’s rank correlation analysis.
2.7 Immunotherapy effect prediction and
drug sensitivity analysis

Patient response to immunotherapy was assessed using the IPS

and TIDE scores. Immunotherapy responses in the high-risk and

low-risk groups in the TCGA-LIHC dataset were evaluated based

on outcomes predicted by the TIDE algorithm. Additionally, the

half-maximal inhibitory concentration (IC50) values of 138 drugs

against HCC were evaluated using the R package pRRophetic (34)

to determine the sensitivity of patients with HCC to these drugs.
2.8 Identification and analysis of molecular
subtypes based on prognostic genes

To identify molecular subtypes based on prognostic genes in

HCC samples from TCGA-LIHC dataset, consensus clustering was

performed using the R package ‘ConsensusClusterPlus’ (35). The K-

M curve was plotted using the R package survminer (36) to evaluate

the differential OS between patients with different subtypes (p < 0.05).

Additionally, differential immune cell infiltration statuses between

these subtypes were analyzed (p < 0.05).
2.9 Mutation and copy number
variation analyses

The data on the single nucleotide polymorphism mutation site

of patients with HCC were extracted from the TCGA database. The

R package maftools was used to analyze the mutation data of high-

risk, low-risk, and prognostic genes (37). To elucidate the

relationship between TMB and prognostic genes, the TMB of

patients with HCC was calculated using the R package survminer

(36). Based on the median risk score and the median TMB, patients

with HCC in TCGA-LIHC dataset were grouped as follows to

examine survival differences: H_TMB-H_risk, H_TMB-L_risk,

L_TMB-H_risk, and L_TMB-L_risk. Additionally, somatic gene
Frontiers in Immunology 04
copy number data of TCGA-LIHC dataset were downloaded from

the UCSC database (https://genome.ucsc.edu/). The R package

OmicCircos (27) was used to analyze the chromosomal location

of CNV in prognostic genes.
2.10 Molecular regulatory
network construction

miRNAs targeting prognostic genes were predicted using the

miRDB database (https://mirdb.org/). Subsequently, microRNAs

(miRNAs) targeting long non-coding RNAs (lncRNAs) were

predicted using the miRNet database (https://www.mirnet.ca/) to

establish the mRNA-miRNA-lncRNA regulatory network.

Transcription factors (TFs) regulating the prognostic genes were

predicted using the Transcriptional Regulatory Relationships

Unraveled by Sentence-based Text mining database. The mRNA-

miRNA-lncRNA and miRNA/TF-gene regulatory networks were

visualized using Cytoscape software.
2.11 Quantitative real-time polymerase
chain reaction

Five pairs of non-cancerous and HCC samples were collected

from the General Hospital of Ningxia Medical University. Informed

consent was obtained from all participants. This study was

approved by the Ethics Committee of the General Hospital of

Ningxia Medical University (approval number: KYLL-2021-229).

Total RNA was extracted using the TRIzol reagent (Invitrogen,

USA), following the manufacturer’s instructions. The isolated RNA

was reverse-transcribed into complementary DNA (cDNA) using

the SureScript First-strand cDNA Synthesis kit (Servicebio, China).

The qRT-PCR analysis was performed with CFX Connect Thermal

Cycler (Bio-Rad, USA). The relative expression levels of mRNAs

were calculated using the 2−DDCt method. The sequences of all

primers are shown in Supplementary Table 1.
2.12 Statistical analysis

Bioinformatics analyses were performed using R language (v.

4.2.2). The relationship between two variables was assessed using

Spearman correlation analysis. Cox regression analysis was

performed to determine the factors influencing the survival status.

LASSO regression analysis was performed to reduce model

complexity and avoid overfitting. K-M curves were plotted to

determine the differential survival between the high-risk and low-

risk groups. The significant differences between the survival curves

were determined using the Log-rank test. ROC curves were plotted

to assess the validity of the risk model. Data from different groups

were compared using the Wilcoxon test (P < 0.05).
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3 Results

3.1 Identification and functional
enrichment analysis of DE-TCRs

In total, 8,525 DEGs were identified between HCC and non-

cancerous samples (5,853 upregulated genes and 2,672 downregulated

genes) (Figures 1A, B). The DEGs were intersected with TCRs to obtain

18 DE-TCRs (Figure 1C). DE-TCRs were enriched in various GO

terms, including telomeric region, chromosome, positive regulation of

protein localization to the nucleus, and amyloid-beta binding

(Figure 1D). Additionally, DE-TCRs were enriched in several KEGG

pathways, such as amphetamine addiction, alcoholism, and cytokine-

cytokine receptor interaction (Figure 1E).
3.2 Prognostic genes screening
and analysis

Univariate Cox regression analysis of 18 DE-TCRs revealed the

following 10 prognosis-related genes (HR ≠ 1 and p < 0.05):

DCLRE1B, RAN, HOMER1, ADA, CDK1, IL1RN, CLIC1, BATF,
Frontiers in Immunology 05
LIG3, and CYP27A1 (Figure 2A). LASSO Cox regression analysis

identified the following six prognostic genes: DCLRE1B, RAN,

HOMER1, ADA, CDK1, and IL1RN (Figure 2B). GSEA revealed

that the prognostic genes were significantly enriched in pathways

related to primary bile acid biosynthesis (Figure 2C). All prognostic

genes, except IL1RN, were upregulated in HCC (Figure 2D).
3.3 Prognostic gene-based risk model can
predict HCC prognosis

Figure 3A shows the distribution of HCC samples in the two

risk groups in TCGA-LIHC cohort. DCLRE1B, RAN, HOMER1,

ADA, and CDK1 were upregulated, whereas IL1RN was

downregulated in the high-risk group (Figure 3B). K-M survival

curve analysis indicated that patients in the high-risk group

exhibited decreased survival probabilities (Figure 3C). Time-

dependent ROC validation confirmed the efficacy of the model

(area under the curve (AUC) values for predicting 1-year, 2-year,

and 3-year survival were 0.75, 0.68, and 0.66, respectively)

(Figure 3D). The findings of the ICGC-LIRI-JP dataset analysis

were consistent with those of TCGA-LIHC dataset analysis
FIGURE 1

Identification and functional enrichment analysis of differentially expressed T-cell proliferation regulators (DE-TCRs). (A) The heatmap of differentially
expressed genes. In the middle annotation bar, non-cancerous and HCC samples are indicated in blue and red colors, respectively. The intensity of
the color in the heatmap signifies gene expression density per sample, with darker colors indicating higher density. The y-axis of the lower heatmap
represents genes (red and blue colors indicate upregulation and downregulation, respectively). (B) Volcano plot of differentially expressed genes. The
x-axis shows the log2 fold-change (FC) values, while the y-axis shows the −log10 (adjusted p-values). Each point represents a gene. The horizontal
reference line represents −log10 (0.05) = 1.3, while the vertical reference line represents log2 (FC) = ± 0.5. Divided by the reference line, upper right
genes are upregulated genes (red), and upper left genes are downregulated genes (blue). Gray represents genes with non-significant differences in
expression levels. The top 10 upregulated genes and the top 10 downregulated genes with the largest log2 (FC) values are marked. (C) Venn diagram
for DE-TCR identification. Pink and blue represent genes unique to the differentially expressed gene set and the TCR set, respectively. (D) Gene
Ontology (GO) enrichment (Top 5). Each column represents a GO term. The color of the column represents different GO categories. The length
represents the number of genes enriched in the term. (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. The color transition from
red (high) to blue (low) indicates log2 (FC) values of the genes. Each pathway is represented by a distinct color.
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FIGURE 2

Prognostic gene screening and analysis. (A) Forest plot of Cox univariate analysis results. The leftmost side lists the prognostic genes. The three
columns of numbers on the right represent the hazard ratio (HR) values corresponding to the gene, the 95% confidence interval of the HR value, and
the p-value. (B) Least absolute shrinkage and selection operator (LASSO) analysis. The left figure demonstrates cross-validation with the middle line
marking the minimum error. The optimal log (lambda) value is determined. Key genes and their coefficients are then identified in the right figure
based on the lambda value. (C) Gene set enrichment analysis (GSEA) (Top 5) of characteristic genes. The figure has three sections. The top section
displays the enrichment score calculated for each gene, linked into a line graph. The middle section visualizes the rank of each gene within the set.
The bottom section depicts the overall rank distribution of all genes. (D) Analysis of the Expression of characteristic genes in hepatocellular
carcinoma (HCC) versus control samples.
FIGURE 3

Predictive performance of the risk model. (A, E) Risk curve and survival status distribution of hepatocellular carcinoma (HCC) samples in the training
and validation sets. The x-axis represents the risk score, increasing from left to right. In the upper part, red and blue points indicate high-risk and
low-risk patients, respectively. In the lower part, red and blue dots denote deceased and surviving patients, respectively. (B, F) Characteristic gene
expression analysis in the training and validation sets. The y-axis lists six characteristic genes. Red and blue colors indicate upregulation and
downregulation, respectively. High-risk and low-risk groups are shown in red and blue colors, respectively. (C, G) Kaplan-Meier survival curves of
patients in the training and validation sets. Red and blue represent high-risk and low-risk groups, respectively. (D, H) Receiver operating
characteristic (ROC) curve of the training and validation sets.
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(Figures 3E–G). The AUC values for predicting 1-year, 2-year, and

3-year survival in the ICGC-LIRI-JP dataset were 0.71, 0.77, and

0.80, respectively (Figure 3H).
3.4 Application of the nomogram model
for HCC diagnosis

Cox regression analysis identified the risk score and T-stage were

independent prognostic factors (Figure 4A). A nomogrammodel was

constructed based on these independent prognostic factors

(Figure 4B). The calibration curves for 1-year, 2-year, and 3-year

survival revealed that the predicted outcomes were consistent with

the actual outcomes, indicating that the model can accurately predict

HCC prognosis (Figure 4C). The AUC values of the nomogram for

predicting 1-year, 2-year, and 3-year survival were more than 0.6.

Thus, the predictive accuracy of the nomogram was higher than that

of the risk score or T-stage alone (Figure 4D). In the high-risk group,

14 pathways were activated, including those related to immunization,

such as HALLMARK_NOTCH_SIGNALING and HALLMARK_

WNT_BETA_CATENIN_SIGNALING. In contrast, 21 pathways

were inhibited in the high-risk group, including HALLMARK_

COAGULATION and HALLMARK_ XENOBIOTIC_

METABOLISM (Figure 4E).
Frontiers in Immunology 07
3.5 Immune cell infiltration was
upregulated in high-risk patients with HCC

The development of tumors is closely linked to the immune

microenvironment. Immune cell infiltration was positively

correlated with the risk score in patients with HCC. The

infiltration levels of six immune cell types were upregulated in the

high-risk group (Figure 5A). Meanwhile, the infiltration levels of 11

immune cell types, including eosinophil, varied between the high-

risk and low-risk groups. The infiltration levels of most of these 11

immune cell types were upregulated in the high-risk group

(Figure 5B). Additionally, the levels of five immune-related

pathways, including the type II IFN response, varied between the

high-risk and low-risk groups (Figure 5C).
3.6 Prognostic genes affect the
immunotherapeutic response of HCC

Immune checkpoints play a crucial role in mitigating

autoimmune effects. In TCGA-LIHC cohort, 39 immune

checkpoints were differentially expressed between the high-risk and

low-risk groups (Figure 6A). The expression levels of most prognostic

genes were positively correlated with those of 39 immune

checkpoints. ADA exhibited the strongest positive correlation with
FIGURE 4

Application of the nomogram model for clinical hepatocellular carcinoma (HCC) cases. (A) Results of univariate and multivariate Cox regression
analysis: The leftmost column shows the risk score and clinical characteristics, while the two right columns show the corresponding p-values and
hazard ratio (HR) values. (B) Nomogram. (C) Nomogram calibration curves for predicting 1-year, 2-year, and 3-year survival rates. The x-axis shows
the predicted event rate, while the y-axis shows the observed event rate (both ranging from 0 to 1). (D) The receiver operating characteristic (ROC)
curves for predicting the 1-year, 2-year, and 3-year survival rates. (E) The upper panel shows the pathways activated and inhibited in the high-risk
and low-risk groups (Top 5). The horizontal axis represents the samples (pink and blue colors indicate the high-risk and low-risk groups,
respectively). The vertical axis represents the pathway (red and blue colors indicate the enriched and suppressed pathways, respectively). The lower
panel shows the gene set variant analysis (GSVA) results.
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TNFRSF18 (cor = 0.58), whereas IL1RN exhibited the strongest

negative correlation with NRP1 (cor = −0.23) (Figure 6B). The

levels of CTLA4-negative response and PD-1-negative response

(ips_ctla4_neg_pd1_neg) and CTLA4-positive and PD-1-negative

response (ips_ctla4_pos_pd1_neg) were downregulated in the high-

risk group (Figure 6C). Furthermore, the high-risk group exhibited

increased exclusion scores and decreased dysfunction scores,

indicating that immune escape in this group was predominantly

due to immune exclusion, which contributes to decreased responses

to immunotherapy (Figures 6D, E).
3.7 Differential survival rates of HCC
subtypes classified according to
prognostic genes

HCC samples were categorized into the following two subtypes

via consensus clustering: cluster 1, comprising 156 samples; and

cluster 2, comprising 209 samples. The t-distributed stochastic

neighbor embedding (tSNE) dimensionality reduction analysis

distinguished the two subtypes, revealing variations in prognostic

gene expression (Figure 7A). The K-M curve analysis revealed that

the OS significantly varied between cluster 1 and cluster 2 with

cluster 1 exhibiting poor survival (Figures 7B, C). Additionally, the

infiltration levels of 11 immune cell types, including eosinophils,

varied between cluster 1 and cluster 2 (Figure 7D).
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3.8 Drug sensitivity and mutation profiles
varied between two risk groups

Chemotherapy is a common treatment for malignant tumors.

Analysis of 138 anti-cancer drugs revealed that the IC50 values of

108 drugs varied between the high-risk and low-risk groups.

Figure 8A shows the 10 drugs (including A.443654, BI.2536, and

BIRB.0796) with the most marked differences in IC50 values

(Figure 8A). The frequency of mutations, predominantly missense

mutations, in genes, such as TP53, TTN, and CTNNB1, varied

between the high-risk and low-risk groups (Figure 8B).

Additionally, the two prognostic genes CDK1 and HOMER1 also

exhibited mutations. The frequency of transition (Ti) mutations

was higher than that of transversion (Tv) and missense mutations

(Figure 8C). CNV analysis revealed that the most frequent copy

number increase was observed in DCLRE1B, whereas the most

frequent copy number decrease was observed in RAN (Figure 8D).
3.9 Six prognostic genes were connected
to several molecular regulatory systems

The lncRNA-miRNA-mRNA regulatory network comprised

350 nodes and 838 edges. The nodes included five prognostic

genes (RAN, HOMER1, IL1RN, DCLRE1B, and CDK1), 21

miRNAs (such as hsa-miR-181a-5p and hsa-miR-122-5p), and

324 lncRNAs. This network featured competing endogenous RNA
FIGURE 5

Correlation between risk scores and the tumor microenvironment of hepatocellular carcinoma (HCC). (A) The Tumor Immune Estimation Resource
(TIMER) algorithm assesses the relationship between the risk score and immune cell infiltration. Yellow and blue represent the high-risk and low-risk
groups, respectively. Each image is divided into two parts: correlation analysis (left) and differential analysis (right). (B) Analysis of differential immune
cell infiltration levels using the single-sample gene set enrichment analysis (ssGSEA) algorithm. (C) Analysis of differential immune-related pathways
using the ssGSEA algorithm. * p< 0.05, ** p< 0.01, *** p< 0.001, **** p< 0.0001.
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(ceRNA) interactions, such as DCLRE1B-hsa-miR-101-3p-XIST

and IL1RN-hsa-miR-122-5p-ASB16-AS1 interac t ions

(Supplementary Figure 1A). The miRNA/TF-prognostic gene

regulatory network graph comprised 224 nodes and 227 edges.

The nodes included three prognostic genes (ADA, CDK1, and

IL1RN), 15 TFs (such as SP1 and RB1), and 206 miRNAs.

Examples of the miRNA/TF-gene interactions were ADA-SP1 and

CDK1-hsa-miR-374c-5p interactions (Supplementary Figure 1B).
3.10 HOMER1, ADA, and CDK1 were
upregulated in patients with HCC

qRT-PCR analysis indicated that the mRNA expression levels of

HOMER1, ADA, and CDK1 in HCC samples were significantly

higher than those in non-cancerous samples. However, the mRNA

expression levels of IL1RN and DCLRE1B were not significantly

different between HCC and non-cancerous samples (Figure 9). The

expression patterns of HOMER1, ADA, and CDK1 determined

using qRT-PCR analysis were consistent with those determined

using bioinformatic analysis.
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4 Discussion

HCC is the predominant form of primary liver cancer,

accounting for more than 90% of primary liver cancer cases.

Globally, HCC is the sixth most common cancer and the third

leading cause of cancer-related deaths (38). The poor prognosis of

HCC is because patients with early-stage HCC do not exhibit

prominent symptoms. Thus, HCC is mostly diagnosed at an

advanced stage, which is associated with resistance to

conventional chemotherapy and radiotherapy. The survival rates

of patients with HCC are low due to the development of treatment

resistance and disease recurrence (39). The emergence of cancer

immunotherapy, which stimulates the immune system, especially T

cells, to target and kill tumor cells, has revolutionized HCC

treatment, offering new hope to patients with HCC (40, 41). The

proliferation of T cells, which aggregate and cluster in the tumor

microenvironment, serves as a marker of tumor reactivity and is

positively correlated with the outcomes of ICI therapy (42–44).

However, T-cell proliferation is not an infallible measure of tumor

reactivity and outcomes (45–50). Recently, Legut et al., who were

the first to identify TPRGs (24), identified several TPRGs that
FIGURE 6

Prognostic genes can affect the immunotherapy efficacy in patients with hepatocellular carcinoma (HCC). (A) Expression of immune checkpoints in
the high-risk and low-risk groups. (B) Correlation between characteristic genes and differential immune checkpoints (Dot size represents
significance; red and blue colors indicate positive and negative correlations, respectively; darker shades indicate stronger correlations).
(C) Immunephenoscore (IPS) of the high-risk and low-risk groups (red and green colors indicate high-risk and low-risk, respectively). Each image
features a density plot at the top and a scatter plot with a box plot at the bottom. (D) Tumor immune dysfunction and exclusion (TIDE) scores of the
high-risk and low-risk groups (yellow and blue colors indicate the high-risk and low-risk groups, respectively). (E) Immune response ratio of patients
in the high-risk and low-risk groups. * p< 0.05, ** p< 0.01, *** p< 0.001, **** p< 0.0001.
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enhance T-cell function. The understanding of the role of TCRs in

HCC immunotherapy response can aid in guiding the selection of

immunotherapy regimens for patients with HCC.

This study systematically investigated the Expression of TCRs

and their relationship with OS in HCC. In total, 8,525 DEGs were

identified between HCC and non-cancerous samples (5,853

upregulated genes and 2,672 downregulated genes) in TCGA-

LIHC dataset. Based on the filtering criteria for TCRs, 18 DE-

TCRs were selected. Next, a novel prognostic model comprising six

prognostic genes (DCLRE1B, RAN, HOMER1, ADA, CDK1, and

IL1RN) was established using LASSO regression analysis.

DCLRE1B, a 5’-3’ exonuclease belonging to the metallo-b-
lactamase superfamily, is one of the evolutionarily conserved

genes and is involved in DNA interstrand cross-linking (ICL)

repair (51). DNA ICL induces tumor cell death (52). Lee et al.

reported that the Oldenlandia diffusa extract promotes cell death in

cisplatin-resistant ovarian cancer cells by regulating DCLRE1B.

Additionally, the upregulated Expression of DCLRE1B in the

liver, kidney, and pancreatic cancers is associated with poor

prognosis (53). Li et al. reported that DCLRE1B expression was

significantly correlated with immune cells in various cancers. The

authors reported that DCLRE1B expression was associated with

immune checkpoint gene expression and immune therapy

sensitivity (54). In vitro experiments demonstrated that DCLRE1B

facilitates the proliferation and migration of pancreatic cancer cells.

The upregulated Expression of DCLRE1B in human cancers
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promotes cancer initiation and progression by modulating

processes, such as immune cell infiltration (54). Recent studies

have confirmed the role of DCLRE1B in immune regulation and

tumor immunotherapy response (53). In this study, DCLRE1B was

upregulated in HCC and regulated HCC occurrence and

progression by modulating T cells, which was consistent with the

findings of recent studies.

HOMER1, a member of the Homer family of dendritic proteins,

is a scaffold protein that regulates glutamatergic synapses and spine

morphogenesis (55). In this study, HOMER1 was upregulated in

HCC and was negatively correlated with OS. This finding was

consistent with that of Yang et al. (23), who demonstrated that

HOMER1 is a T-cell proliferation-related regulatory gene in LUAD.

Experimental validation in LUAD cells revealed that HOMER1 can

inhibit tumor cell proliferation, migration, and invasion (23).

RAN, a small GTP-binding protein of the RAS superfamily, is

crucial for protein transport through the nuclear pore complex (56).

Elsalahaty et al. revealed that the RAN*rs14035 variant may be an

independent risk factor for HCC and that RAN is involved in

miRNA synthesis and promoting the development of various

cancers, including HCC (57). In this study, RAN was upregulated

in HCC and regulated tumor development and progression by

influenc ing T lymphocy t e r e sponse s in the tumor

microenvironment. CDK1, a serine/threonine protein kinase,

plays a crucial role in the G1/S and G2/M phase transitions of the

cell cycle (58, 59). The upregulated Expression of CDK1 in HCC is
FIGURE 7

Differential characteristics of different subtypes of hepatocellular carcinoma (HCC). (A, B) Consistent clustering of characteristic genes in patients
with HCC. (C) Kaplan-Meier (K-M) curves of HCC subtypes. The x-axis represents overall survival time in days, while the y-axis shows survival
probability. Different colors represent different HCC subtypes. (D) Differential immune cell infiltration levels in HCC subtypes. * p< 0.05, ** p< 0.01,
**** p< 0.0001.
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associated with poor prognosis. The downregulation or the

inhibition of CDK1 overexpression can improve survival

outcomes (60–62). Chen et al. reported that IRF-1 can regulate

the transcription of CDK1, playing a crucial role in both

pathological and physiological phenomena, such as viral infection,

carcinogenesis, pro-inflammatory damage, and immune system

development (63). In this study, CDK1 was upregulated in HCC,

serving as a risk gene. CDK1 was upregulated in patients with high-

risk scores and was significantly associated with poor prognosis.

ADA, which is critical for purine nucleoside and DNAmetabolism,

plays key roles in the immune and vascular systems (64). The activity of

ADA is reported to be upregulated in patients with cancer. The

upregulated ADA activity is associated with the staging of gastric,

bladder, breast, colorectal, and renal cancers (65–73). In liver cancer,

elevated ADA is correlated with serum atezolizumab concentrations

and impaired functions of CD8-positive T cells, including suppressed

secretion of interferon-g and tumor necrosis factor-a. This suggests that
high ADA levels may decrease atezolizumab exposure, potentially

reducing its anti-cancer efficacy (74). Immune cell death and DNA

damage response play significant roles in cancer progression and

prognosis (75). Zhang et al. identified ADA as a prognostic gene

associated with immune cell death and DNA damage response and
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that ADA is upregulated in HCC and contributes to the anti-tumor

immune response in liver cancer (76). IL1RN, which serves as a natural

interleukin-1 receptor antagonist (77), is negatively correlated with the

proliferation of bladder cancer cells (78). Zhang et al. demonstrated that

the upregulation of IL1RN-201/203 and anakinra treatment in KRAS-

mutant intrahepatic cholangiocarcinoma mice significantly enhanced

the anti-tumor immune response by altering neutrophil recruitment

and phenotype. The upregulation of IL1RN-201/203 levels was

associated with a favorable response to anti-PD-1 immunotherapy

(79). Additionally, one study examining genes related to metabolic

risk factors in non-alcoholic fatty liver disease and HCC reported that

IL1RN is a protective prognostic gene for HCC. However, the biological

function of IL1RN in HCC has not been elucidated (80, 81). In this

study, IL1RN was downregulated in HCC, indicating its role as a

protective gene. The Expression of IL1RN was downregulated in

high-risk patients. These results are consistent with those of

previous studies.

These findings indicated that TCRs play crucial roles in various

processes, including T-cell proliferation and tumor immunotherapy

response, highlighting the validity of the prognosis model developed

in this study. To further validate the bioinformatics analysis results,

the mRNA levels of five genes were examined in HCC tissues and
FIGURE 8

Differential drug sensitivity and mutation profiles between the high-risk and low-risk groups. (A) The half-maximal inhibitory concentration (IC50)
values of the top 10 drugs in patients belonging to the high-risk and low-risk groups (Top 10). (B) Mutation profiles of the high-risk and low-risk
groups (the top and bottom sections represent the low-risk and high-risk groups, respectively). (C) Analysis of characteristic gene mutations and
Kaplan-Meier (K-M) curves based on tumor mutational burden (TMB) and risk score. (D) Copy number variation of characteristic genes (red and blue
represent amplification and deletion, respectively). **** p< 0.0001.
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adjacent tissues. The expression trends of HOMER1, ADA, and

CDK1 were consistent between qRT-PCR and bioinformatics

analyses. However, the IL1RN and DCLRE1B mRNA levels were

not significantly different between HCC and non-cancerous

samples, which can be attributed to sample heterogeneity. Thus,

the experimental results were consistent with the bioinformatics

analysis results, indicating the reliability of the model.

GSVA revealed that the DNA replication and repair pathways

were significantly enriched in high-risk patients, suggesting

increased genomic alterations. Genomic mutation analysis

revealed an increased frequency of mutations, including TP53,

TTN, and CTNNB1 mutations, in high-risk cases, indicating

increased genomic instability. Somatic mutations in TP53, which

are the most common alterations in human cancers, are associated

with poor prognosis (82, 83). The increased frequency of these

mutations in the high-risk group suggests decreased survival

duration. Previous studies have suggested that TP53 mutations

affect the progression and prognosis of HCC and are associated

with the immune microenvironment of HCC (84, 85). Therefore,

CTNNB1 mutations can serve as biomarkers for evaluating the

effectiveness of immunotherapy in HCC (86–88). Huo et al.

demonstrated that CTNNB1 mutations are associated with poor

prognosis and decreased disease-free survival (89). Consistently,

this study demonstrated that the rate of CTNNB1 mutations was

upregulated in the high-risk group and that the increased rate

of CTNNB1 mutations was associated with decreased OS.

Additionally, one study reported that TP53 and TTN exhibited

the highest mutation rates and that these mutations served as

cancer-driving factors in hepatitis B virus-related HCC (90).

These findings suggest that patients in the high-risk group are

sensitive to DNA-damaging agent-based therapies due to enhanced

genomic instability.
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The tumor microenvironment exerts regulatory effects on

tumor phenotypes. Immune cell infiltration, which is crucial for

the immune evasion of tumor cells and the induction of

inflammation, is a key feature of the tumor environment (91).

This study examined the differential immune cell infiltration levels

between the high-risk and low-risk groups. The risk scores were

positively correlated with the presence of B cells, CD4+ T cells, CD8

+ T cells, macrophages, neutrophils, and dendritic cells. Previous

studies have demonstrated that CD4+ and CD8+ T cells suppress

HCC development through the induction of anti-tumor immune

responses (92). The proportion and quantity of CD4+ T cells are

reported to be significantly upregulated in the peritumoral area of

HCC tissues, promoting HCC progression (93). The presence of

CD8+ T cells is associated with prolonged OS (94). Recent studies

have reported a close correlation between intra-tumoral dendritic

cell infiltration and poor prognosis in patients with HCC (95),

which is consistent with the findings of this study. The infiltration of

neutrophils in HCC is linked to adverse clinical outcomes (96).

Neutrophils, which are involved in the activation, regulation, and

effector functions of immune cells (97), accelerate HCC progression

by secreting various cytokines (100). Increased macrophage

infiltration is associated with poor prognosis in HCC (98).

Macrophage infiltration in the tumor microenvironment

promotes tumor growth, angiogenesis, invasion, and metastasis

(99). Targeting macrophages is a promising adjuvant

immunotherapy approach for patients with HCC (100, 101). The

enrichment of immune-related pathways varied between the high-

risk and low-risk groups. The TIDE score in the low-risk group was

lower than that in the high-risk group. This suggests that patients in

the low-risk group can potentially benefit from immunotherapy. In

high-risk patients with HCC, high levels of immune cell infiltration

may not indicate that the immune system can effectively control or
FIGURE 9

Validation of prognostic genes. The mRNA expression levels of five prognostic genes in cancer and para-cancerous tissues. * p< 0.05.
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clear tumor cells. Immune cell functions are suppressed in the

immunosuppressive microenvironment or the cancer cells evade

immune system recognition and attack through multiple

mechanisms, impairing the anti-tumor functions of immune cells.

Previous studies have demonstrated that myeloid-derived

suppressor cells exert immunosuppressive effects in HCC by

expanding immune checkpoint signaling and suppressing the

cytotoxic activity of natural killer cells. Additionally, cancer cells

evade T-cell recognition due to the lack of a transporter protein or

b2 macroglobulin associated with major histocompatibility

complex class 1 antigen presentation (102, 103). Thus, this study

contributed to the elucidation of unique mechanisms of the HCC

immune microenvironment, which may aid in developing novel

therapeutic strategies, including immunotherapeutic strategies, for

HCC (104). The results of this study are consistent with those of

previous studies on immune infiltration in HCC. This study offers

valuable direction and guidance for understanding the mechanisms

of immune cells in HCC. However, further studies are needed to

elucidate specific mechanisms.

Increasing the sensitivity of HCC to various drugs can benefit

patients, although further studies are needed to elucidate the

specific underlying mechanisms (105). Analysis of drug sensitivity

and risk scores revealed that the IC50 values of 5-fluorouracil,

sorafenib, and VX-11e were low in the high-risk group, indicating

their enhanced efficacy in this group. Conversely, the IC50 values of

gefitinib, ceritinib, and sunitinib were high in the low-risk group,

suggesting their decreased efficacy in this group (106). Thus, the

prognostic model established in this study may facilitate the

development of improved treatment strategies for HCC.

Six prognostic genes were used to construct a model to

quantitatively assess the prognosis of patients with HCC. Patients

with high-risk scores exhibited significantly decreased OS. The

AUC values for predicting 1-year, 2-year, and 3-year OS were

0.75, 0.68, and 0.66, respectively. Univariate and multivariate

analyses revealed that the risk scores and T-stage were

independent prognostic factors. This indicated the relevance of

the prognostic model for patients with late-stage HCC. Gene testing

data and clinical characteristics should be integrated in the future

for a comprehensive assessment. In this study, a nomogram

combining risk scores and clinical factors was developed to

predict the 1-year, 2-year, and 3-year OS of patients with HCC.

The AUC values for predicting 1-year, 2-year, and 3-year were more

than 0.7. Calibration curves revealed that the predicted survival

rates concurred with the actual survival rates. The ROC curves

demonstrated excellent predictive performance of the nomogram.

Thus, the model developed in this study can quantitatively predict

the prognosis of patients with HCC and enable the customization of

treatment plans. This scoring system will aid healthcare

professionals in predicting survival and selecting optimal

treatment options.

This study has several limitations. The sample size was small in

this study. Additionally, the data were obtained from public

datasets. Furthermore, the accuracy and stability of the prognostic

model were not validated through clinical studies. Finally, only the
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transcript levels were evaluated in this study, which may not reflect

protein levels. Future studies must focus on overcoming

these limitations.

In conclusion, this study established a novel prognostic model

based on TCRs to predict the clinical outcomes of patients with

HCC. Six TCR genes were correlated with HCC prognosis. The

findings of this study may enable the development of novel

diagnostic and therapeutic strategies for HCC.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

LH: Data curation, Formal analysis, Methodology, Resources,

Writing – original draft. XB: Data curation, Formal analysis,

Methodology, Resources, Software, Writing – original draft. XL: Data

curation, Formal analysis, Methodology, Resources, Software,Writing –

review & editing. SL: Data curation, Formal analysis, Methodology,

Resources, Software, Writing – review & editing. ZM: Formal analysis,

Methodology, Resources, Software, Visualization, Writing – review &

editing. LM: Formal analysis, Methodology, Resources, Software,

Visualization, Writing – review & editing. XD: Conceptualization,

Funding acquisition, Investigation, Project administration,

Supervision, Validation, Writing – review & editing.
Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

study was supported by financially supported by Ningxia Natural

Science Foundation (Grant No.: 2023AAC03584), Ningxia Natural

Science Foundation Key Project (Grant No.: 2022AAC02065) and

Ningxia Key Research and Development Program (Grant

No.: 2022BEG02039).
Acknowledgments

We acknowledge Dr. Xuming Mao from the University of

Pennsylvania for valuable suggestions and revision of the

manuscript. The language used in this study has been

professionally edited by ExEditing.com.
Conflict of interest

ZM is employed by Weiluo Microbial Pathogens Monitoring

Technology Co., Ltd. of Beijing.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1444091
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hai et al. 10.3389/fimmu.2024.1444091
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Frontiers in Immunology 14
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1444091/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Construction of competing endogenous RNA (ceRNA) and microRNA

(miRNA)/transcription factor (TF)-gene networks. (A) ceRNA network of

characteristic genes (red squares, blue diamonds, and yellow circles
indicate characteristic genes, miRNAs, and long non-coding RNAs

(lncRNAs) (degree ≥ 8), respectively). (B) miRNA/TF-gene network (red
squares, purple diamonds, and yellow circles indicate characteristic genes,

miRNAs (degree > 1), and TFs, respectively).
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