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The FGFR inhibitor Rogaratinib
reduces microglia reactivity and
synaptic loss in TBI
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1Department of Neurology, Ulm University, Ulm, Germany, 2Institute for Stem Cell Biology and
Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States, 3German
Center for Neurodegenerative Diseases (DZNE), Ulm, Germany, 4Institute of Anatomy and Cell biology,
Ulm University, Ulm, Germany, 5Institute of Translational Trauma Immunology, Ulm University, Ulm,
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Background: Traumatic brain injury (TBI) induces an acute reactive state of

microglia, which contribute to secondary injury processes through phagocytic

activity and release of cytokines. Several receptor tyrosine kinases (RTK) are

activated in microglia upon TBI, and their blockade may reduce the acute

inflammation and decrease the secondary loss of neurons; thus, RTKs are

potential therapeutic targets. We have previously demonstrated that several

members of the Fibroblast Growth Factor Receptor (FGFR) family are

transiently phosporylated upon TBI; the availability for drug repurposing of

FGFR inhibitors makes worthwhile the elucidation of the role of FGFR in the

acute phases of the response to TBI and the effect of FGFR inhibition.

Methods: A closed, blunt, weight-drop mild TBI protocol was employed. The

pan-FGFR inhibitor Rogaratinib was administered to mice 30min after the TBI

and daily up to 7 days post injury. Phosphor-RTK Arrays and proteomic antibody

arrays were used to determine target engagement and large-scale impact of the

FGFR inhibitor. pFGFR1 and pFGFR3 immunostaining were employed for

validation. As outcome parameters of the TBI injury immunostainings for

NeuN, VGLUT1, VGAT at 7dpi were considered.

Results: Inhibition of FGFR during TBI restricted phosphorylation of FGFR1,

FGFR3, FGFR4 and ErbB4. Phosphorylation of FGFR1 and FGFR3 during TBI

was traced back to Iba1+ microglia. Rogaratinib substantially dowregulated the

proteomic signature of the neuroimmunological response to trauma, including

the expression of CD40L, CXCR3, CCL4, CCR4, ILR6, MMP3 and OPG. Prolonged

Rogaratinib treatment reduced neuronal loss upon TBI and prevented the loss of

excitatory (vGLUT+) synapses.
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Conclusion: The FGFR family is involved in the early induction of reactive microglia

in TBI. FGFR inhibition selectively prevented FGFR phosphorylation in the microglia,

dampened the overall neuroimmunological response and enhanced the

preservation of neuronal and synaptic integrity. Thus, FGFR inhibitors may be

relevant targets for drug repurposing aimed atmodulatingmicroglial reactivity in TBI.
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Introduction
Traumatic Brain Injury (TBI) is characterized by the dynamic

interplay of multiple cellular actors, including neurons, astrocytes,

microglia as well as vascular and immune cells, which may assume

beneficial or detrimental roles, depending on time and space (1, 2).

Microglial cells swiftly react to TBI by migrating to the site of injury

(3), assuming an ameboid, chemotactic morphology (4) and diverse

reactive functional states including ones characterized by increased

interferon response (5) and by disease-associated-like microglial

markers (6, 7). Unchecked acute microglial reactivity in TBI has

been largely considered detrimental, leading to acidosis, oxidative

stress, enhanced neuronal damage and synaptic loss (8–10) in the

“secondary injury” phase.

However, early post-traumatic depletion of microglia by CSF1R

inhibitor administration reduces the extent of neuronal apoptosis but

does not affect the overall lesion size and actually increased the size of

intracerebral haematoma (11). Actually, a number of microglia-

associated responses, such as glial limitans repair and debris

clearing may have neuroprotective outcomes (12–14) and may be

carried out by specific subset or functional states of microglial cells

[such as repopulating microglia; (15, 16)]. Thus, the goal of

suppressing microglial reactivity should be substituted by the aim

for a fine-tuning microglial reactivity and phenotype to maximize

tissue preservation.

Receptor tyrosine kinases have emerged in the last 20 years as a

class of drug targets, with more than 70 small-molecule kinase

inhibitors approved for human use [mainly in oncology; (17, 18)]

and therefore lend themselves to effective drug repurposing.

Notably, RKT activation is a prominent response in TBI: a

targeted phosphoproteomic screening of 39 RTK has revealed the

significant increase in phosphorylation of multiple families of RTK

including VEGFR1-3, EphB4, Met, MSPR, EGFR, ErbB3 and

FGFR4 at 3h and 24h timepoints (19). In fact, Met and VEGFR,

among others, were shown to be phosphorylated in microglial cells,

contributing to their regulation. Proof of concept of the use of RTK

as entry points for acute TBI treatment has been provided by the use

of VEGFR and Met small-molecule inhibitors: both caused the

substantial divergence in the phosphoproteomic profile after TBI
02
(demonstrating target engagement) and resulted in improved motor

performance (19). Furthermore, prolonged treatment with a Met

inhibitor delivered persistent improvement in motor performace

and enhanced neuronal preservation (19). These findings have

opened up the possibility that multiple RTKs may be involved in

the early induction of reactive microglial phenotype(s) and may

lend themselves to therapeutic modulation. Among these, some

FGFR family members displayed transient up-phosphorylation

between 3h and 24h after trauma. Interestingly, the FGFR family

does not only control proliferation and plasticity, but has been

implicated also in the control of inflammation: blockade of FGFRs

reduce the cytokine storm and macrophage proliferation in sepsis

(20) and FGFR ligand FGF23 induces TNF-a in macrophages (21).

Furthermore, FGFR inhibitor Infigratinib reduced microglial rand

lymphocyte responses in a multiple sclerosis murine model (22)

whereas a different FGFR inhibitor reduces the inflammatory

response to B. burgdorferi antigens (23). FGFR inhibitors appear

to reduce the availability of immunoproteasome subunits by

inducing autophagy in immune cells (24). Taken together, this

evidence supports the hypothesis that FGFR inhibitors may

modulate inflammatory responses in TBI.

Since FGFR inhibitors have been recently introduced in clinical

practice (25), we set out to explore the potential role of FGFR in the

early stages of the neuroinflammatory response to TBI.
Results

Pan-FGFR inhibitor modifies the RTK
phosphorylation landscape of acute TBI

We explored the effect of the pan-FGFR inhibitor BAY 1213802

[Rogaratinib-HCl; (26); henceforth BAY121], on the TBI-associated

RTK phosphorylation landscape with the goal to demonstrate

effective and specific target engagement. Mice were subjected to a

blunt weight-drop mild TBI (or sham surgery), followed 30 min

later by administration of BAY121 (or vehicle). NSS score ranged

between 0 and 1 (coherently with the mild TBI protocol) at the 3h

timepoints. At 3h post injury mice were sacrificed, samples from the

injury site were obtained (Figure 1A) and processed for RTK
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phosphorylation screening using a nitrocellulose antibody arrays

(RTK targets including FGFR 2, 3 and 4). Principal component

analysis (PCA) demonstrated a substantial overlap among S-Veh,

T-BAY and S-BAY samples, whereas T-Veh stood out (Figure 1B).

Analysis of individual RTK phosphorylation revealed a significant
Frontiers in Immunology 03
upregulation of p-FGFR3 and p-FGFR4 (but not of pFGFR2) upon

TBI which was negated by the BAY121 treatment (Figures 1C–E); of

note, the antibody array did not include phosphoFGFR1 antibodies.

In addition, TBI upregulated the phosphorylation of HGFR, cRet,

ErbB4, EphA3 and downregulated phopsho-EphB2 (Figures 1F–J).
FIGURE 1

FGFR Inhibitor selectively alters RTK phosphorylation pattern at 3h post injury. (A) Outline of the experimental design. BAY121 (Rogaratinib) was
administered by oral gavage at the dose of 25 mg/kg 30 min after TBI and samples were obtained 3h after TBI. (B) Principal component analysis
(PCA) plot displayed group wise distribution of samples, highlighting the separation between TBI-Veh samples (red) and the BAY121-treated samples,
which overlap with Sham-Veh samples. The group specific ellipses indicate 95% confidence interval. (C-J) Antibody phospho-array focused
proteomic analysis of RTK phosphorylation patterns upon TBI with or withouth BAY121 treatment. Differential phosphorylation analysis showed the
inhibitor significantly decreased the phosphorylated levels of (D) pFGFR3, (E), pFGFR4 (the array does not include pFGFR1) and (F) ErbB4 after TBI.
However, the inhibitor showed no effect on phosphorylation levels of (C) FGFR2, (G) HGFR, (H) cRET, (I) EphA3, and (J) EphB2. Significance for
differentially phosphorylated proteins was set at p<0.05 (FDR adjusted). [(B-J): n=5-6/group; *p<0.05, **p<0.01, ***p<0.001].
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Interestingly, BAY121 also prevented the phosphorylation of ErbB4

(Figure 1F) but did not affect the up-phosphorylation of cRet and

EphA3 (Figures 1H, I; only statistical trends were detected for

HGFR nd EphB2).

Taken together, these findings demonstrate that TBI

upregulates the phosphorylation of FGFR and BAY121

successfully negates this event; BAY121 (confirming target

engagement) does not appear to block the phosphorylation of

other RKTs with the exception of ErbB4 (supporting the

selectivity of BAY121).
FGFR inhibitor prevents FGFR1 and FGFR3
phophorylation in microglia upon trauma

We investigated the cellular sources and the spatial

distribution of FGFR phosphorylation using immunohistological

approaches. Only antibodies against FGFR1(pY654) and FGFR3

(pY724) proved suitable for immunolabeling of brain sections,

whereas no antibody against phospho-FGFR2 and phospho-

FGFR4, suitable for immunohistochemistry, was available

from commercia l sources ; there fore , we l imited our

immunohistochemical study to phospho-FGFR1 and phospho-

FGFR3. Animals were subject to TBI and injected 30 min later

with either vehicle or BAY121 and sacrificed 3h after the injury

(2.5h after treatment; Figure 2A). In we could detect a significant

fraction of Iba1+ cells displaying pFGFR1 immunoreactivity

already in S-Veh samples. Moreover, immunoreactivity for both

pFGFR1 and pFGFR3 was significantly upregulated in the site of

injury (“core”, located in cortical layer II/III region) in T-Veh but

not in T-BAY samples (Figures 2B, E). Interestingly, the

immunoreactivity pattern of pFGFR1 and 3 highlighted large

number of small cells of ramified morphology, resembling

microglia. In fact, co-immunostaining with Iba1 demonstrated

that 70-90% of Iba1+ cells in the site of injury displayed

immunoreactivity for pFGFR1 and >50% of Iba1+ cells

displayed immunoreactivity for FGFR3. In T-Veh samples, both

the immunofluorescence intensity in Iba1+ cells (Figures 2C, F)

and the fraction of Iba1+ immunopositive for phospho FGFR1 or

phospho FGFR3 was significantly increased compared to S-Veh

(Figures 2C, D, F, G). Notably, in T-BAY samples, both the

immunofluorescence intensity and the number of Iba1+ cells

immunopositive for phosphoFGFR1 and FGFR3 were strongly

decreased (no change in the total number of Iba1+ cells

was noted).

Taken together these results confirm the elevation in FGFRs

activation upon TBI and demonstrated the successful target

engagement for BAY121 on microglial cells.
FGFR inhibition significantly suppresses
immune responses in the site of injury

Next we explored if prolonged BAY121 administration could

not only affect the acute reactive microglial phenotype, but

generate a long-lasting, broad alteration of the proteomic
Frontiers in Immunology 04
neuroimmunological landscape associated with brain injury.

Mice subjected to trauma were administered with BAY121 (or

vehicle) 30 mins after trauma (or sham surgery) and continued

daily for 3 days (Figure 3A). A targeted proteomic profile of the

injury site, involving >1300 individual protein was obtained by

antibody arrays. PCA plot showed a substantial separation

between S-Veh and TBI-Veh samples on one side and S-BAY

and T-BAY on the other (Figure 3B). When compared to S-Veh

samples, TBI-Veh samples displayed the upregulation of 16

proteins and the downregulation of 3 proteins (Figure 3C).

The upregulated proteins involved multiple mediators of

inflammatory responses, including KC (murine homologue of

the chemoattractant IL-8), the microglial regulator Axl, the

chemotactic receptor CCR10 and the immune regulator CD40

and its ligand CD40L. On the other hand, BAY121 resulted in a

substantial change in the proteome when administered after

trauma: 51/1308 proteins were downregulated and 98/1308 were

upregulated in TBI-BAY121 vs TBI-Veh samples (Figures 3D, E,

Supplementary Figure S1A). The gene ontology analysis revealed

that BAY121 treatment resulted in the downregulation of proteins

involved in immune function and cytokine response (top 5 GO

categories, Supplementary Figures S1B, C). Strikingly, Axl and

CD40L (upregulated in TBI-Veh vs Sham-Veh) were among the

top strongly downregulated along with microglia polarization

indicator CD80 and, proinflammatory signaling and chemotaxis

markers such as CXCR3, CCL4, CCR4, ILR6, MMP3 and

Osteoprotegerin [recently involved in microglial reactivity; (7)]

(Figure 3D). The upregulated proteins display an enrichment in

the GO categories of cellular signaling, metabolism and protein

synthesis, including the mitochondrial protein TRAP and the ion

channel KCNAb3.

We further characterized the distinct signature imposed by

BAY121 treatment upon TBI by constructing a protein-protein

interaction (PPI) network for the proteins up- or down-regulated by

the treatment. We employed the String algorithm and visualized the

network using the Cytoscape software. After preprocessing of the

dataset, PPI network displayed 137 nodes and 243 edges

(Figure 3E). Most notably, proteins up- and down-regulated by

BAY121 were enriched in two distinct clusters, with most of the

down-regulated proteins related to the immune response forming a

tight cluster. Taken together, the proteomic data suggest that

prolonged administration of the FGFR inhibitor BAY121

profoundly reduces the sub-acute neuroinflammatory response

to TBI.
Prolonged FGFR inhibitor alters both
neuron-specific and immune-specific
proteins 7d post injury

We further investigated the proteomic signature of prolonged

FGFR inhibition in TBI by taking into consideration samples

obtained at 7 dpi. As before, mice subjected to trauma were

administered with BAY121 (or vehicle) 30 mins after trauma. The

treatment was continued for 7 days (1 dose/day) for 7 days

(Figure 4A). PCA plot based on the targeted proteomics (1308
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targets), revealed that, while the S-Veh and T-Veh samples largely

clustered together, S-BAY121 and TBI-BAY121 minimally

overlapped the Veh groups (Figure 4B), indicating a persistent

and profound effect of BAY121 treatment.
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The analysis of differentially expressed proteins revealed the

increased expression in TBI-Veh (vs Sham-Veh) of the proteins

involved in inflammation such as Axl, CD40, CCR10 and SOD2,

whereas the B-cell marker CD21 was downregulated (Figure 4C).
FIGURE 2

Upregulation of pFGFR1 and pFGFR3 in microglia 3h post injury. (A) Outline of the experimental design. BAY121 (Rogaratinib) was administered by
oral gavage at the dose of 25 mg/kg 30 min after TBI and samples for immunohistology were obtained at 3h after TBI. (B-D) Immunostainings for
pFGFR1 (green) and Iba1 (red) for Sham- Veh, TBI Veh, Sham- BAY121 and TBI BAY121 treated mice. Quantification of pFGFR1 immunostaining
intensity in Iba1+ cells (C) and fraction of pFGFR1+ cells (D) display a significant increase upon TBI, which is negated by the treatment with BAY121.
(D-F) Immunostaining for pFGFR3 (green) and Iba1 (red) shows the upregulation of pFGFR immunoreactivity in Iba1+ cells and the increase in the
fraction of pFGFR3 upon TBI. Both indexes are decreased by treatment with BAY121. n=4/group; >300 cells per animal n.s., not significant; **p<0.01;
***p<0.001, ****p<0.0001. Overview Scale bar: 50µm. Inset scale bar: 20µm.
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Notably, the comparison of BAY121-treated TBI vs vehicle-treated

TBI samples revealed a substantial divergence in the proteome: 123/

1308 proteins were downregulated and 38/1308 proteins were

upregulated (Figures 4D, E). The gene ontology analysis of the

downregulated proteins revealed a substantial involvement of

proteasome regulatory proteins and nucleo-cytoplasmic

trafficking, pointing toward an impaired protein degradation and

cellular stress (Supplementary Figure S2B). The comparatively

small number of upregulated proteins did not lend itself to a

reliable GO analysis.

Interestingly, when we mapped the PPI of proteins altered by

BAY121 treatment (TBI-BAY121 vs TBI-Veh) using STRING/

Cytoscape, three distinct sub-networks (cumulatively displaying 112

nodes and 135 edges; Figure 5E) were identified. The smallest of the

network (13 proteins) involved downregulated proteins related to the

inflammatory/phagocytic function (notably Catepsins and Serpins)

and immune regulation (such as CD40L). The two larger networks
Frontiers in Immunology 06
(65 proteins) included many subunits of the proteasome system,

chaperones and trafficking proteins, the largest majority of which

were downregulated (Figure 4E, Supplementary Figure S2A). Based

on these findings, the proteomic analysis at 7dpi suggested that

blockade of FGFR signaling produced a persistend impact on the

neuroinflammatory cascade but also substantially impacted the tissue

protein homeostasis.
FGFR inhibitor reduces neuronal loss and
synaptic loss 7d post trauma

Finally, we sought to determine if the effects of FGFR blockade on

the neuroinflammatory response to TBI were associated with reduced

neuronal vulnerability and synaptic integrity. As before, mice were

subjected to trauma and treated with either vehicle or the FGFR
FIGURE 3

FGFR inhibitor suppresses immune-related proteome signature at 3d post injury. (A) Outline of the experimental design; BAY121 was administered 30
mins after trauma and continued for 3d (25 mg/Kg once daily by oral gavage, vehicle alone as control). Samples were collected 3d post injury.
(B) PCA plot of proteomic data shows the separation of TBI-Veh from BAY121-treated samples. (C, D) After modified differential protein expression
analysis (FDR <0.05), subsets of upregulated (Red) and downregulated (Blue) proteins with log fold change and individual significance for (D) TBI-Veh
compared to Sham–Veh and (D) TBI-BAY121 compared to TBI-Veh (n=5/group). (E) Protein-protein-interaction analysis revealed distinct clustering
of downregulated and upregulated proteins in TBI-BAY121 vs TBI Veh; the cluster of downregulated proteins is enriched with immune- and
inflammation-related proteins.
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inhibitor 30 mins after trauma for 7 days (1 dose/day) (Figure 5A). As

expected, density of microglia was still increased in the injury site

(“core”, located in layed II/III of cortex, on the axis of the site of injury)

of TBI -Veh mice, but not in TBI-BAY121 group (Figures 5B, C).

Conversely, the density of NeuN+ cells was significantly reduced in
Frontiers in Immunology 07
the site of injury in TBI Veh mice compared to Sham mice

(Figures 5B, C). Notably, BAY121 treatment significant increased

the number of surviving neurons in the injury site.

We further explored the preservation of synaptic structures in

the injury site upon BAY121 treatment. We assessed the density
FIGURE 4

Prolonged FGFR inhibitor treatment significantly alters the TBI-related proteome profiles at 7d post injury. (A) Outline of the experimental design;
BAY121 was administered 30 mins after trauma and continued for 7d (25 mg/Kg/day). Samples were collected 7d post injury. (B) PCA plot shows the
substantial separation between TBI groups and groups treated with BAY121. (C, D) After modified differential protein expression analysis (FDR <0.05),
subset of significantly upregulated (Red) and downregulated (Blue) proteins with log fold change and individual significance for (C) TBI-Veh vs
Sham–Veh and (D) TBI-BAY121 vs TBI-Veh. (E) Protein-protein interaction analysis by STRING reveals three distinct networks affected by prolonged
BAY121 treatment, related to protein synthesis proteasomal degradation and inflammation (n=5/group).
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(number of synaptic puncta per 400µm2) of excitatory synapses in

the form of pre-synaptic VGLUT1 as well as of inhibitory synapses

in the form of pre-synaptic VGAT. VGLUT1 showed a significant

loss in synaptic density after TBI, which was not observable any
Frontiers in Immunology 08
more after BAY121 treatment 7dpi (Figures 5D, E). VGAT+

terminals were also significantly decreased in the lesion area at 7

dpi (Figures 5F, G) with a trend toward better preservation in T-

BAY samples.
FIGURE 5

Prolonged FGFR inhibitor administration preserves neuronal density at 7 dpi. (A) Outline of the experimental design; BAY121 was administered 30
mins after trauma and continued for 7d (25 mg/Kg daily by oral gavage). Samples were collected 7d post injury. (B, C) Immunostaining for NeuN
showed a significantly decreased number of neurons in the ijury site of TBI-Veh group compared to Sham–Veh; a significantly higher number of
neurons was seen in the TBI-BAY121 group. Note that microglial density was also increased in TBI-Veh but not in TBI-BAY121. (n=4/group; **p<0.01,
***p<0.001, ****p<0.0001; Scalebar 70µm) (D, E) Loss of VGLUT1 density after TBI is dependent on FGFR signaling 7d after TBI. (n=4/group;
***p<0.001; Scale bar: overview = 70mm; insert = 5mm) (F, G) VGAT density in the TBI core is significantly reduced at 7dpi. (n=4/group; **p<0.01;
Scale bar: overview = 70mm; insert = 5mm).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1443940
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rehman et al. 10.3389/fimmu.2024.1443940
Discussion

Our data show that FGFR family is prominently activated in the

early phases of mild TBI in particular in microglial cells. Inhibition

of the FGFR family by BAY121 results in the suppression of early

microglial reactivity and reduces the neuroinflammatory footprint

at later stages, which ultimately leads to an improved preservation

of neuronal and synaptic integrity in the site of injury.

TBI results in the simultaneous activation of multiple RTK

families, often with distinct temporal dinamics (19): the activation

of HGFR/Met has been shown to lead to a reactive, phagocytic

microglial state with detrimental consequences (19), whereas the

activation of the ErbB family in inhibitory interneurons controls

synaptic plasticity and circuit activity after TBI (27). Likewise,

activation of the VEGF-C/VEGFR3 contributes to drive

microglial polarization after TBI (28) and multiple members of

the Tyro-Axl-Mer RTK family regulate microglial reactivity and

phagocytic activity in TBI (29) and other disease conditions (30).

Our focused screening, together with the immunohistochemical

confirmation, reproduce the activation of Met, ErbB4, EphB2 and

ErbB4 previously identified (19, 27) and identify a significant

phosphorylation of several members of the FGFR family. The pan

FGFR inhibitor BAY121 effectively suppresses FGFR1, FGFR3 and

FGFR4, with limited effect on the trauma-related activation of other

RTK. A notable exception is the full blockade of the induction of

ErbB4 phosphorylation; since ErbB4 is highly involved in synaptic

plasticity and stability (31, 32) and it is activated by TBI (27), it is

possible that this effect of Rogaratinib, possibly mediated by

microglia modulation, may contribute to the maintained of circuit

integrity and excitation/inhibition balance. The combined screening

and immunohistochemistry data demonstrate that BAY121 is

effective and relatively selective in preventing FGFR family

receptors activation in microglia when administered 30 min after

trauma, i.e. in a therapeutic window.

Interestingly, some degree of FGFR phosphorylation was

detected also in sham samples; this suggests that a baseline FGFR

activation in microglia may control the physiology of these cells in

homeostatic conditions. Multiple FGFR ligands are normally

expressed in the brain by neurons, astrocytes and other cells (33)

and therefore are posited to control microglia as well. Microglial

phagocytosis is involved not only in debris clearing upon injury but

also in synaptic pruning (34), and FGF/FGFR may contribute to the

regulation of this process as well.

The blockade of FGFR signaling by BAY121, both in acute

(single dose) or protracted (3 to 7 days) administration, consistently

results in the dampening of the neuroinflammatory response to TBI

at the level of microglial reactivity as well as in terms of broad

inflammatory proteomic footprint. In particular, whereas TBI

elevates the protein level of CD40 and Axl both at 3d and 7d,

Rogaratinib downregulates CD40 and Axl at 3dpi. Axl and CD40

expression corresponds to the induction of a reactive microglial

state with upregulated phagocytosis, coherent with the tissue debris

clearance occurring after injury (35–37) and the suppressed

upregulation by Rogaratinib at 3d is compatible with the reduced

reactivity of microglia (and better synaptic preservation at later

stages). Although CD40 and Axl are still upregulated by TBI at 7dpi,
Frontiers in Immunology 09
they do not appear in the proteome subset downregulated by

Rogaratinib. While the negative effect at 7dpi cannot be attributed

only to biological effects without further investigations

(heterogeneity of TBI mice increases at 7dpi -see (19) potentially

increasing the number of false negatives), it could be possible to

speculate that an escape from Rogaratinib effect, either in microglia

or in infiltrating immune cells, could take place at 7dpi and account

for the lack of downregulation in CD40 and Axl.

Interestingly, FGFR family members are expressed not only on

microglia but also on a number of immune cells, suggesting their

broad contribution to immunity and inflammation: FGFR2

mediates chemotaxis in neutrophils (38), and FGFR1 is expressed

in T-cells (39, 40) as well as on macrophages and lymphocytes in

lupus nephritis (41). At brain level, FGFR signaling contributes to

microglial reactivity to bacterial products by inducing pro-

inflammatory cytokines (42) and a small-molecule FGFR

inhibitor reduces the infiltration of lymphocytes and activated

macrophages, as well as the production of pro-inflammatory

cytokines, in the EAE model (22). Thus, our data are coherent

with a role of the FGFR family in modulating the overall

neuroinflammatory cascade and cytokine response to injury,

including microglial reactivity. Interestingly, FGFR expressed on

oligodendrocytes also contribute to the regulation of

neuroinflammatory cascades in EAE: conditional deletion of

FGFR1 or FGFR2 from oligodendrocytes results in decreased

microglial reactivity and lymphocytes infiltration in EAE as well

as in reduced levels of pro-inflammatory cytokines (43, 44); thus,

FGFR blockade may immunomodulatory effects through additional

cell types. Although in our model blockade of FGFR resulted in

reduced neuroinflammation and enhanced synaptic and neuronal

preservation in our model, anti-inflammatory effects of FGFR have

been also reported: systemic administration of FGF21 reduces the

inflammatory response in a stroke model (45) and intranasal

administration of FGF20 reduced blood-brain-barrier impairment

in severe TBI (46). Thus, the net effect of FGFR activation may

depend on the complex interplay of the inflammatory context and

of the mix of FGFR ligands available (42). To this respect, multiple

RTK are activated simultaneously in mild TBI [Figure 1, (19)];

blockade of FGFR does not affect other RTK also involved in

regulation of microglial reactivity (such as HGFR/Met), although

a similar anti-inflammatory effect is observed. This may imply a

functional redundance of RTK regulation of reactive microglia, or

may suggest that the ultimate phenotype is dependent on the

combinatorial activation or one or more RTK, which would

enable the fine-tuning of the response to the specific conditions.

Hence, FGFR signaling may be ultimately pro- or anti-

inflammatory depending on the ensemble of RTK activation and

the context conditions.

Histological readouts at 7 dpi demonstrate that protracted

BAY121 administration results in a reduced loss of excitatory and

inhibitory synapses and in the overall preservation of neuronal

survival. The proteomic analysis highlights the lack of inflammatory

mediators in BAY121-treated samples (still present in the T-Veh

samples) and the downregulation of two clusters of proteins

involved in proteasome regulation, Golgi function, ribosome

biosynthesis and a third cluster of proteases and protease
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inhibitors. The reduced microglial reactivity (reduced DAM-like

phenotype and decreased CD68 expression) may contribute to the

preservation of synaptic integrity, since microglia mediates synaptic

elimination in several disease settings (47, 48); the downregulation

in multiple proteases and protease inhibitors enriched in

phagocytes, such as Cathepsins and Serpins, is compatible with

this model. In addition, the downregulation of proteasome-

regulators and in trafficking proteins may point toward a more

limited synaptic de-stabilization and reduced degradation of

synaptic components [many of which, are proteasome-dependent:

(49–51)]. It must be stressed that FGF/FGFR themselves are

regulator of synaptogenesis and synaptic stability (52, 53) and,

although we observed a positive impact on synaptic preservation,

this outcome may be the net consequence of effects on microglial as

well as on other cells types.

A few limitations of the present work are worth addressing.

BAY121 is a small-molecule pan FGFR inhibitor; however, the

possibility of small-molecule tyrosine kinase inhibitors having

additional targets (26, 54), possibly contributing to their

biological effect, cannot be fully discounted; to date, our array

RTK screening does not demonstrate substantial inhibition

besides the FGFR family. In particular, BAY121 (Rogaratinib) is

reported to have IC50 in the low-nanomolar range for FGFRs (26)

but an IC50 in the sub-micromolar range for CSF1R. Although the

IC50 is more than 100-fold larger for CSF1R than for FGFRs, given

the relevance of CSF1R in microglia physiology and

pathophysiology, the relative contribution of this low-affinity

target to the overall Rogaratib efficacy remains to be fully elucidated.

Furthermore, the effect of systemic administration of a pan-FGFR

inhibitor may be not restricted only to microglia but may involve

additional players in the CNS [e.g., neurons, oligodendrocytes,

immune cells; (33, 53, 55)] although at least in the acute phase,

phosphorylation of FGFR1 and 3 is largely restricted to Iba1+ cells.

Finally, FGFR are endowed with highly pleiotropic functions in

synaptic stability (53), axonal guidance (56) and myelination (57)

and the full spectrum of the beneficial and detrimental consequences

of FGFR inhibition in acute TBI are not fully elucidated.
Conclusion

Our findings provide a proof-of-concept of the translational

value of targeting the FGFR in acute TBI for the modulation of early

microglial reactivity and enhanced preservation of neuronal and

synaptic integrity. Recently, rogaratinib-HCl entered clinical trials

(58, 59) and three FGFR inhibitors (pemigatinib, futibatinib, and

infigratinib) have been approved for human use in the therapy of

several gastrointestinal, urologic or haematopoietic neoplasms

(25, 60). Although their chronic administration is not devoid of

side effects (60), acute or short-term administration may maximize

their immunomodulatory and anti-inflammatory effects without

interfering with tissue regeneration. In this context, one may

envision the administration of FGFR inhibitors in patients with

severe neurotrauma and evidence of intense neuroinflammatory

responses or synaptic damage (e.g., using synaptic damage

biomarkers; 61), in order to limit mcroglia-driven damage. Our
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findings support the investigation of the repurposing of FGFR

inhibitors in this direction. Preliminary to in-human applications,

the long-term impact of acute or subacute FGFR inhibitors should

be studied using behavioural readouts (e.g., motor and cognitive

readouts), together with their impact on astrocyte prolieration, scar

formation and oligodendrocyte survival. Given the multiple cellular

subpopulations affected by FGFR in the brain, the use of a panel of

peripheral biomarkers may contribute to disentangle the protective

effects of FGFR inhibitors.
Materials and methods

Animals

All experimental procedures were performed in compliance

with animal protocols approved by the local veterinary and animal

experimentation committee at University Ulm and by the

Regierungspraesidium Tubingen under the license no. 1370.

B6SJL male mice aged between p60–p90 days were used

throughout the study.
Pharmacological treatment

Rogaratinib (BAY 1213802) was obtained by Bayer Pharma and

was administered by oral gavage (200µl) dissolved into the

following vehicle: 10% ethanol, 40% Solutol® HS 15, 50% water

(26); vehicle alone was administered as control. The dose of 25mg/

kg (26) was used throughout this study.
Traumatic brain injury procedure

Modified closed, blunt weight drop model Traumatic Brain

Injury (TBI) was performed as previously reported (19). For all

procedures, mice were anesthetized with sevoflurane (2-4% in 96%

O2) and were subcutaneously injected with buprenorphine (0.1mg/

kg; 1 dose/day) as a pre- and postoperative analgesic. The scalp was

shaved and eye ointment was applied preoperatively to protect the

cornea. Scalp skin was then incised on the midline to expose the

skull and the animals were positioned in the weight-drop apparatus

in which the head was secured to a holding frame. Using the 3-axis

mobile platform in the apparatus, the impactor was positioned to

the coordinates of the injection site (From bregma ≈ x = +3.0mm, y

= − 2.0mm, z = 0.0mm). TBI was delivered by dropping a weight of

120g from a height of 45 cm. A mechanical stop prevented a skull

displacement (by the impactor) larger than 2.5 mm, in order to keep

the brain damage comparable. Apnea time was monitored after

injury. The Neurological Severity Score (NSS) was assessed after 3h,

1 dpi and at 7 dpi and never exceeded the score 1 for any mouse. As

such, no animal met the criteria for early sacrifice. Mice were

checked every 2 hours on the day of trauma. Effort was made to

minimize the suffering of animals and reduce the number of

animals used. The contralateral hemisphere was used as control

samples throughout the study.
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Neurological severity score measurement

Throughout all animal experiments the NSS (62) was measured

at 3h, 1h and 7d, depending on sacrificial time of the individual

mouse. The NSS is comprised of a total of 10 individual tasks mice

were subjugated to each timepoint the NSS was measured with a 10 to

30 seconds break inbetween each individual test. The tests include an

arena escape within 3min, mono-/hemiparesis, straight walking,

search behaviour, startle reflex, balancing on a) a 7mm wide

angular beam and b) a 5mm wide round beam and finally a beam

walk test with a lenght of 30cm and a with of a) 3cm, b) 2cm or c)

1cm. Points were awarded when mice could not fulfill an individual

task, which then were summed up into the total NSS score. The total

NSS score for all animals sacrificed as part of the publication are

reported in Supplementary Table S1.
Immunohistochemistry

Brain samples were processed as previously described (7, 19).

Briefly, mice were sacrificed by trans-cardial perfusion with 4% PFA

in PBS, and brains were dissected and postfixed in 4% PFA

overnight. Brains were then transferred to 30% Sucrose for 2

days, after which the samples were embedded in OCT (Tissue

Tek, Sakura, Germany). 40-micron sections were cut with a cryostat

(Leica CM 1950 AG Protect cryostat). Sections spanning the injury

site were selected and blocked (3% BSA, 0.3% Triton in 1x PBS) for

2h at room temperature, followed by incubation for 48h (Iba1,

NeuN, VGAT, VGLUT1) or 72h (Iba1, phosphoFGFR1,

phosphoFGFR3), at 4°C with primary antibodies diluted in

blocking buffer. Identifiers of the antibody used and dilutions are

reported in Supplementary Table S2. Sections were washed 3x

30 min with PBS and incubated for 2h at RT with secondary

antibodies diluted in blocking buffer. The sections were washed with

PBS and mounted using Prolong Gold Antifade Mounting Medium

(Invitrogen, Germany). A list of the antibodies used in this study

can be found in Supplementary Table S2.
Image acquisition and analysis

Confocal images were acquired in 1024 x 1024 pixel and 12-bit

format, with a Leica DMi8 inverted microscope, equipped with an

ACS APO 40x oil objective. Parameters were set to obtain the

optimal signals from the stained antibody or mRNA and at the same

time avoiding saturation. All fluorescent channels were acquired

independently, to avoid cross-bleed. 3-4 sections spanning the core

and perilesional area of the impact site were imaged of each mouse.

For each image a tile scan was set up consisting of x by x tiles

spanning the injury location.

For image analysis, stacks were collapsed in maximum intensity

projection pictures and mean gray value or cell density per fixed

region of interest (ROI) was measured. For quantification, we

considered a 200µm x 200µm ROI centered on the axis of the

injury site.
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Synaptic density was detected after producing a mosaic image

corresponding to 6 x 6 single optical sections (acquired with a 63x

oil objective) with 1 mm optical section thickness. Each cortical

section was imaged at a fixed depth 5-10µm inside the section, the

composite image was positioned so that an uninterrupted coverage

of the impact site with perilesional area was acquired.

Quantification of density of synapses was performed using the

IMARIS software (Bitplane AG, Zurich, CH) as previously

described (63). For the quantification of the histological

parameters, we considered a 450µm x 450µm (microglial

imaging) or 200 µm × 200 µm (synapses count) ROI centered on

the axis of the injury site (“core”) into the cerebral cortex (layer II/

III). To measure the intensity of immunolabeling in microglia, we

first subtracted the background intensity (Rolling Ball algorithm,

ball diameter = 30), then individual cells were traced using the Iba1

immunolabeling as mask and the intensity of individual cell was

logged. To determine the percentage of positive cells, for FGFR1 we

considered all cells with average intensity higher than 400 arbitrary

units (after background subtraction) and for FGFR3 we considered

all cells with intensity higher than 100 arbitrary units (after

background subtraction) counted every mean intensity above 400

(after subtracting the background mean value) as a positive. The

number of positive cells was then divided by the number of total

Iba1+ cells in the ROI under consideration.
Phospho RTK array processing

Proteome Profiler Mouse Phospho-RTK Array Kit (R&D

Systems, Minneapolis) was used to determine the Phospho RTK

activation pattern. The nitrocellulose membrane arrays provided in

the kit were based on sandwich immunoassay and processed

according to manufacturer’s instructions. Briefly, membranes

spotted with the anti-RTK antibody were blocked in Array buffer

1 for 1h at RT. 160 ug of protein extracted from cortical samples was

diluted in 1.5mL Array buffer 1 overnight at 4°C. After washing,

arrays were incubated for 2 hours at RT with Anti-Phospho-

Tyrosine-HRP Detection Antibody, diluted to 1:5000 in 1X Array

Buffer 2. After final washing steps, HRP detection was performed by

adding 1 ml Clarity Max™ Western ECL Blotting Substrates from

Bio-Rad. Arrays were imaged using BioRad X-ray imager and

quantified using ImageJ. ROI was drawn on each antibody spot

with a constant diameter and mean gray value was recorded.

Further analysis was performed using R software.
Proteome array processing

200 ug of protein extracted from cortical samples was loaded to

the arrays. The arrays were processed according to the

manufacturer’s instructions. Briefly, the sample was biotinylated

and was mixed with reaction stop reagent and incubated for 30

mins at RT. The glass arrays were incubated in a blocking solution

for 45 minutes and washed. After adding a biotinylated sample to

the coupling solution, arrays were incubated for 2 hours at RT and

washed. The arrays were incubated with a detection buffer with
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Cy5-streptavidin (ThermoFisher) at 1:1000 for 20 minutes at RT.

The washing steps were repeated as described in the manufacturer’s

instructions. After removing excess ddH20 from the slides, the

arrays were dried. The arrays were imaged using a GenePix 4000B

array scanner (Molecular Devices, LLC) and the image analysis was

performed using GenePix Pro Software v7 (Molecular Devices,

LLC). The settings for the analysis were kept constant in all cases.

The GAL file was loaded in the software and the ROIs were adjusted

on the protein spots. Each intensity on F635 was recorded and GPR

files were saved. Further analysis was performed using R software.
Protein-protein interaction network and
hub genes

We constructed PPI networks to analyze the functional

interactions among differentially expressed proteins, using

Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING: http://www.stringdb.org) (64) and visualized the

networks using Cytoscape (https://cytoscape.org/) (65).
Array bioinformatic analysis

Chemiluminescence signal for each spot was logged after

microarray image analysis. The raw intensity values for each

receptor/protein were recorded automatedly via image recorder

software. The raw data files were loaded in R software and the

dataset for each array was preliminary subjected to quality control

assessment (QCA), outlier identification, data distribution, intra-

array and inter-array normalization. Normalized data for each array

was subjected to principal component analysis (PCA) to display

group-based clustering. Confidence ellipses (assuming multivariate

normal distribution) with the first two principal components were

plotted to validate further analysis. Modified linear modeling-based

analysis was then applied to the data to identify significant increase

or decrease in phosphorylation or protein level. For protein array

analyses, the code has been made publicly available on open-access

GitHub repository PROTEAS (19).
Statistics

Statistical analysis was performed with the GraphPad Prism

software suite. Normality was routinely checked using the Shapiro-

Wilk test and equal variance was tested using the Brown-Forsythe

test. Two-way ANOVA with Tukey correction was used for four

group comparisons to examine statistical significance. Protein array

analysis was performed using R software using the PROTEAS

algorythm (previously published; 19), available on GitHub (https://

github.com/Rida-Rehman/PROTEAS), with FDR correction at 0.05.
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Error bars represent standard deviation (SD), unless indicated

otherwise. Statistical significance was set at P < 0.05.
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SUPPLEMENTARY FIGURE 1

Comparison of TBI- Veh and TBI- BAY121 at 3d post injury. (A) Protein-protein
interaction (PPI) of significantly upregulated (red) and down regulated (blue)

proteins. Color distribution is based on fold change (FC). (B, C)Gene ontology
(GO) ana lys i s and for (B ) down regula ted prote ins and (C)
upregulated proteins.

SUPPLEMENTARY FIGURE 2

Comparison of TBI- Veh and TBI- BAY121 at 7d post injury. (A) Protein-protein
interaction (PPI) of significantly upregulated (red) and down regulated (blue)
proteins. Color distribution is based on fold change (FC). (B) Gene ontology

analysis for down regulated proteins.

SUPPLEMENTARY TABLE 1

NSS scoring. This Excel file reports all the individual NSS scores calculated for
each mouse sacrificed as part of this publication.
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