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The thymus road to a T cell:
migration, selection, and atrophy
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University, Ghent, Belgium, 3Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent
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The thymus plays a pivotal role in generating a highly-diverse repertoire of T

lymphocytes while preventing autoimmunity. Thymus seeding progenitors (TSPs)

are a heterogeneous group of multipotent progenitors that migrate to the

thymus via CCR7 and CCR9 receptors. While NOTCH guides thymus

progenitors toward T cell fate, the absence or disruption of NOTCH signaling

renders the thymus microenvironment permissive to other cell fates. Following T

cell commitment, developing T cells undergo multiple selection checkpoints by

engaging with the extracellular matrix, and interacting with thymic epithelial cells

(TECs) and other immune subsets across the different compartments of the

thymus. The different selection checkpoints assess the T cell receptor (TCR)

performance, with failure resulting in either repurposing (agonist selection), or

cell death. Additionally, environmental cues such as inflammation and endocrine

signaling induce acute thymus atrophy, contributing to the demise of most

developing T cells during thymic selection. We discuss the occurrence of acute

thymus atrophy in response to systemic inflammation. The thymus demonstrates

high plasticity, shaping inflammation by abrogating T cell development and

undergoing profound structural changes, and facilitating regeneration and

restoration of T cell development once inflammation is resolved. Despite the

challenges, thymic selection ensures a highly diverse T cell repertoire capable of

discerning between self and non-self antigens, ultimately egressing to secondary

lymphoid organs where they complete their maturation and exert their functions.
KEYWORDS

thymus organogenesis, thymus morphology, thymus colonization, T cell development,
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Ruiz Pérez et al. 10.3389/fimmu.2024.1443910
1 Introduction

1.1 A short history of the thymus

The term “thymus”, derived from the ancient Greek “qυmός
(thumos)”, meaning “soul/spirit”, possibly believed to be the soul’s

dwellingplace for its central location just above the heart. For centuries

the function of the thymus remained enigmatic, and until the 1950 no

apparent immune function couldbe attributed to the thymusdue to; 1)

the apparent absence of health problems in thymectomized adult

individuals 2) the lackof germinal centers as comparedwith the spleen,

2) the lack of antibody-producing cells post-immunization, 4) the

insufficient immune responses following thymus lymphocyte transfer

to immunocompromised recipients, 4) the misconception about the

reduced thymus size in individuals that succumbed to infectious

diseases versus young healthy individuals (1, 2).

It wasn’t until a series of pioneering studies by Jaques Miller and

colleagues between 1959 and 1957 that the thymus function was

elucidated, the last among the major internal organs to be

discovered (3–7). Performing either thymectomy or bursectomy

in chickens Miller’s team demonstrated the thymus’s essential role

in cellular immunity and, in conjunction with the bursa for the

cellular and humoral responses (5, 7–9). Despite these experiments

and firm conclusions, one of the leading immunologists of that

period, Peter Medawar (1915 – 1987) stated: “We shall come to

regard the presence of lymphocytes in the thymus as an evolutionary

accident of no very great significance” (10). Nevertheless, Miller’s

discoveries contributed to enduring paradigms in immunology still

valid to this day: 1) The thymus is not only a source for T cells but

also the site where T cell progenitors are “trained” for self-tolerance

and develop immunocompetence through interactions with thymic

epithelial cells and other professional antigen-presenting cells

(APCs); 2) Due to the role of T cells mediating allograft rejection,

repressing T cells is a valuable therapeutic approach for

transplantation; 3) B and T cells are different lineages that adopt

their fate in different organs and; 4) Effective immune response

requires a collaboration from both B and T cells. These paradigms

laid the foundation of T cell biology, profoundly impacting modern

medicine in fields like autoimmune and inflammatory diseases,

oncology, and organ transplantation.
1.2 Thymus origin in evolution

The thymus is evolutionary conserved across species in jawed

vertebrates (gnathostomes) (11). The anatomical position, the number

of thymic lobes per animal, and its organogenesis can vary between

species (12).Thepresenceof a thymus-likeorganhasbeen suggested in

the cyclostomes (lampreys) (13). Nevertheless, Chondrichthyes

(cartilaginous fish, i.e. sharks and rays) are considered the oldest

thymus-bearing taxon (12). Parts of the genetic network underlying

thymopoiesis was already present before the thymus originated (14)

from an ancient gut-associated lymphoid tissue (GALT) (12, 15). The

prevailing view is that as the cellular immune system developed, the

thymus evolved in relation to its role in immune tolerance to copewith

the increased potential for self-reactiveT cells (16).As the evolutionary
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origin of the thymus has been linked to the evolution of jaws in the

cartilaginousfishes, its originmight also be related to theirwider access

to food sources increasing the need of a more specific immune

responses (16).
1.3 Thymus organogenesis

The thymic organogenesis differs across species in terms of timing

and the number of pharyngeal pouches required for its development

(12). In mammals, thymus organogenesis is a multi-step process

involving 1) thymus fate determination from the common thymus-

parathyroid primordium, 2) detachment from the parathyroid, 3)

migration to the thorax cavity and subsequently, 4) multipotent

progenitors (MPP) colonization. In humans, the thymus continues

growing during postnatal development until reaching its peak in

cellularity few weeks after birth, followed by a decline starting before

puberty (17). These kinetics are similar in mice, humans, equines, and

zebrafish (18). The thymus derives from the pharyngeal pouches of the

endodermal gut tube around embryonic day 9.5 (E9.5, “E#” hereafter

referring to day of murine embryonic development), in a process

regulated by HOX3, PAX1, PAX9, FGF8, and FOXN1 (the earliest

thymus-specific marker, detected at E11) (15). By E11.5, the third

pharyngeal pouch has formed the thymus and parathyroid structures,

preparing for their separation, guidedby thePax-Eya-Sixgene cascade.

Surrounded by a mesenchymal capsule from neural crest cells, these

structures then detach from the pharynx around E12.5 and begin

migrating to the anterior thoracic cavity (19). The dissociation of the

thymus from the parathyroid, potentially influenced by FOXN1 and

GCM2, is followed by the thymus’s outgrowth regulated by HOX and

FGF family members (19, 20). By E15 (8-10 weeks of gestation in

humans) (21, 22), the thymus is positioned in its final anatomical

location, coincidingwith the colonization of hematopoietic precursors

necessary for lymphopoiesis (12, 23).

The vasculature and lymphatic systems are developed in parallel

in the embryo. The blood vascular system is one of the first

functional systems formed in the body during embryonic

development (starting from E8.5) (24) while the lymphatic system

is initiated from day E9.5-10.5 (25, 26). The thymus vascularization

starts around E15, while the onset of the lymphatic wiring remains

unknown (27). Unlike other lymphoid organs, the thymus does not

contain afferent lymphatic vessels entering it. It only contains

efferent lymphatic vessels from where thymocytes egress to the

periphery (28). Notably, the migration of multipotent progenitors

(MPPs) from the different niches (yolk sac, fetal liver, and bone

marrow) to the thymus starts prior formation of vasculature and

lymphatic system (29). This process is crucial as a first step of T-cell

development and it will be discussed in the coming sections.
2 The thymic landscape: architecture
and compartments

The compartmentalized architecture of the thymus is essential

for allowing the correct development and selection of T cells. In
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mammals, the thymus is a bi-lobulated organ separated by an

interlobular septum and linked by connective tissue. The thymus

morphology and cellular composition is highly conserved across

species (30). Its microanatomy comprises connective tissue,

extracellular matrix components, epithelial cells, and various

immune cells. The immune cell compartment is predominantly

formed by developing T lymphocytes, but also includes minor

populations of dendritic cells (DCs), macrophages, monocytes,

neutrophils, eosinophils, natural killer (NK) cells, innate-lymphoid

cells (ILCs), and B cells (31–36). Structurally, the thymus is organized

into four distinct morphological and histological layers: the capsula,

cortex, corticomedullary junction, and medulla, arranged from the

outermost to the innermost layer (37), as illustrated in Figure 1.
2.1 Capsula

The thymus is encased in a connective tissue layer known as

“capsula”, which envelops both lobes. The capsula comprises an

outer and inner layer made up of collagen and reticular fibers. The

inner layer can invaginate to form septa, from which thin trabeculae

that contain vascularized capillaries extend towards the center of

the thymus lobe. Approximately 5% of the developing thymocytes

are found in the subcapsular area, region proximate to the outer

cortex (21).
2.2 Cortex

The cortex is the next distinct histological region of the thymus,

characterized by a high concentration of immature lymphocytes
Frontiers in Immunology 03
which outnumber epithelial cells, macrophages, and dendritic cells

that support T-cell development. Noteworthy, there is a gradient of

less mitotically active cells towards the inner part of the thymus

getting close to the corticomedullary junction, that reflects the

different stages of the development of pre-T cells, directly

correlated with their anatomical position within the thymus (21).

The cortex is the most cellular dense region in the thymus,

accounting for about 70-80% of them, and is the primary site of

positive selection (21). The cortex harbors the cortical thymic

epithelial cells (cTECs) that play a role in the positive selection of

developing thymocytes.
2.3 Corticomedullary junction

The inner cortex borders the corticomedullary junction, a layer

characterized by a high density of blood and lymph vessels,

supported by connective tissue (23). The thymus only contains

efferent lymphatic vessels from where thymocytes egress into

circulation. As a consequence, unlike lymph nodes, the thymus

does not swell during an infection (28). Arteries supply the organ

through the corticomedullary region, branching into capillaries that

extend into the medulla and cortex. Generally, cortical capillaries

are less fenestrated, resulting in limited circulation of antigens,

whereas medullary capillaries are fenestrated, facilitating antigen

flow (38). Nerve fibers innervate the thymus, following the

vasculature within the capsule and septum adjacent to the

corticomedullary junction (38). The areas surrounding large

blood vessels in the CMJ are called perivascular spaces (PVS)

(39). PVS primarily contain recently infiltrated early thymic

progenitors (ETPs), SP CD4+, and SP CD8+ cells, but also plasma
FIGURE 1

Overview of the structural layers and cellular composition of the thymus lobe. The figure illustrates a zoom view of the four different morphological
layers from the outer to the inner: capsula, cortex, corticomedullary junction (CMJ) and medulla and the diversity of cell types contained within
those layers with their reported anatomical localization within the thymus. The schematic does not represent their relative numbers within the
thymus tissue.
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cells are present in the PSV (40, 41). Thymus seeding progenitors

(TSPs) enter the thymus through large venules located at the

corticomedullary junction and once they become naïve CD4+ or

CD8+ T cells re-enter the circulation through the post-capillary

venules. This area thus becomes a hub for both incoming immature

lymphocytes and mature lymphocytes preparing to exit the

thymus (23).
2.4 Medulla

The medulla forms the central layer of the thymus and

continues between adjacent lobules, often extending deep into the

cortex, near the capsular region. This region, less dense than the

cortex, contains mature T cells, epithelial cells, Hassall’s corpuscles,

macrophages, dendritic cells, B cells, and other myeloid cells (23).

Approximately 10-15% of all thymocytes, predominantly single

positive (SP) CD4+ or CD8+, are located in the medullary region,

undergoing negative selection (Expanded in Section 3.2). The

thymus medulla hosts various antigen-presenting cells (APCs)

including medullary thymic epithelial cells (mTECs), DCs,

macrophages, and B cells, which present self-peptides via major

histocompatibility complexes I (MHC-I) and II (MHC-II) (42). The

affinity between TCR and MHC-self peptide is a crucial

determinant for the selection fate of developing thymocytes

(expanded in Section 3.2). Those that have strong TCR affinity

are negatively selected by programmed cell death (PCD).

Thymocytes that successfully overcome the positive and negative

selection steps, become mature and can eventually egress from the

thymic medulla blood vessels into circulation. Localizing in the

medulla, Hassall’s corpuscles, are thought to be involved in the

clearance of dying thymocytes (43), and are an important source of

thymic stromal lymphopoietin (TSLP) involved in dendritic cell

instruction and regulatory T cells (Treg) induction in the

thymus (44).

The compartmentalization of the thymus is critical for enabling

the correct development and selection of developing T cells as

specialized processes occur in different morphological layers that

contain diverse immune-, and stromal- cells that orchestrate T cell

development and survival. The precise location of each subset of

developing T cells in the different structural layers will be described

in the following sections.
3 How to become a T cell

Functioning as a primary lymphoid organ, the thymus provides

the essential microenvironment to support the generation of a

highly-diverse and self-tolerant T cell repertoire. The thymus is a

dynamic organ that contains a high number of different cell types

working together to allow the complex process of T-cell

development. T cell development is a well-orchestrated, tightly-

regulated process that encompasses a set of steps including:

colonization by multipotent progenitors (45, 46), T cell

specification, commitment, selection (47–51), and tolerance

instruction (52).
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3.1 Migration of multipotent progenitors to
the thymus

Self-renewinghematopoietic stemcells (HSCs)havenotbeenshown

in the thymus (53) and therefore, the thymus is believed to rely on

continuous seeding of multipotent progenitors (MPPs) from the aorta-

gonad mesonephros (AGM), yolk-sac, fetal liver, or fetal bone marrow

during embryogenesis and bone marrow throughout adult life (54)

(Figure2).Notably, not all circulatingMPPsare able to successfully settle

in the thymus. Thymus-homing MMPs exhibit specific molecular

characteristics that enable them to settle in the thymus: 1) To migrate

and enter the thymus they expressCCR7 andCCR9 (55, 56), and 2) they

should be responsive to NOTCH signaling (54), ultimately these

thymus-homing MMPs are known as thymus seeding progenitors

(TSPs). TSPs are a heterogeneous group of multipotent, non-

committed progenitors that selectively home to the thymus (57).

Multiple candidates have been proposed as TSPs, including

multipotent progenitors (MPPs), lympho-myeloid primed progenitors

(LMPPs), common-lymphoid progenitors (CLPs) or T cell-lineage

committed progenitors (58). Identifying TSPs is challenging due to

rapid changes in cell-surface phenotypes, transcripts, and the extremely

limitednumbersof theseprogenitors in circulationand the adult thymus

(58–60). Further research is required to establish a consensus on the

various subsets constituting the group of TSPs, as well as to develop a

unified nomenclature for clarity in the field (see Table 1).

TSPs consistof lympho-myeloidprimedprogenitors (LMPPs) (57,

72), common lymphoid progenitors (CLPs) (65, 73), and granulocyte-

monocyteprogenitors (GMPs) (36, 48, 68). Shortly after entry,CCR9 is

downregulated byNOTCH signaling (74). The environmental cues by

the thymus stroma influence TSPs, leading them to adopt the

phenotype of early thymus progenitors (ETPs) (54). Murine ETPs

have a great proliferative potential (75), with a single progenitor being

able to give rise tomore than 105 thymocytes in 12 days of fetal thymic

organ cultures (FTOCs), implying a doubling time of 34 h on average

(76). The doubling time of human ETPs has not been well

characterized, likely due to technical limitations (59, 77).

Constitutive expression of Notch1 in bone marrow progenitors leads

to loss of B cell potential and aberrant T cell development (49). The

presence ofNK/T-biased (B-cell deficient) progenitors in the fetal liver

and fetal blood suggests that NOTCH signaling might occur

extrathymically prior thymus colonization (49). More recently, it has

been shown that bone marrow LMPPs undergo NOTCH signaling

resulting in inhibition their myeloid potential and skewing toward T

cell fate (72). Furthermore, DN1a/b cells from mice RBPJ-inducible

mice (unresponsive to NOTCH signaling) exhibited a myeloid bias

(72). These findings demonstrate that NOTCH signaling pre-primes

TSP progenitors extrathymically and is required before thymus

colonization (72).

Throughoutdevelopment, particularly in fetal andneonatal stages,

there are different reservoirs of HSCs. The yolk-sac (YS) is the earliest

niche ofHSCs, exportingprogenitors fromE7.5 (78, 79). Subsequently,

the aorta–gonad–mesonephros (AGM) contributes to the circulating

HSCs pool from day E9. Progenitors from the YS and AGM seed the

fetal liver that actively export HSCs to peripheral organs from E10.5, a

process that gradually decreases during development (78, 79).

Eventually, the bone marrow becomes the primary HSC reservoir
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from E14.5 onwards, dominating HSC export by E17 (78, 79)

(Figure 2). The earliest stage of fetal thymus colonization in mice is

detected at day E11.5 (29). Progenitor cells migrating from various

hematopoietic niches to the thymus are guided by G protein-coupled

receptors (GPCRs), responding to chemokine gradients towards the

thymus (80). The first step of mobilization of hematopoietic

progenitors from the bone marrow into circulation is regulated by

the CXCR4-CXCL12 axis (54). Cxcr4-/- mice exhibited impaired

migration from the bone marrow to the fetal liver (81). Additionally,

c-Kit - stem cell factor (SCF) axis was also identified being involved in

themobilizationofbonemarrowprogenitors into circulation (54).The

fetal thymusproducesCCL21,CCL25, andCXCL12, chemoattractants

for TSPs (54). Blockage of CCL21 andCCL25 but notCXCL12 leads to

reduced colonization of TSPs progenitors in the thymus (79). The

number of fetal thymocytes is reduced in CCR7 knock-outs (receptor

for CCL21) (79) and CCR9 knock-outs (receptor for CCL25) (82),

while CXCR4 (receptor for CXCL12) knock-out mice were not

defective in fetal thymus colonization. Various studies employing

CCR7/CCR9 double knock-outs independently demonstrated that

CCR7-CCL21 and CCR9-CCL25 are essential in regulating thymus

homing of uncommitted progenitors towards the thymus prior and

after vascularization (29, 56).
3.2 T-cell development and thymic
selection in space and time

TSP progenitors enter the thymus at the CMJ region from the

blood by transmigration and extravasation (46), a process regulated
Frontiers in Immunology 05
by P-selectin glycoprotein ligand-1 (PSGL-1), CCR7, and CCR9

(83) (Figure 2). Once in the thymus, most of the TSPs are instructed

by the thymus microenvironment becoming ETPs and mostly being

directed towards T cell fate. However, ETPs comprise a

heterogeneous group of non-committed progenitors that can

adopt granulocyte- (36, 84), monocyte/macrophage- (45, 85),

dendritic- (86, 87), ILCs- (31, 73), B- (88) and, NK- (35, 89)

fates. Following initial contact with thymus milieu and the thymic

stroma, the TSPs become early thymic progenitors (ETPs), and

remain uncommitted towards T cell fate (46, 53). Downstream

ETPs, double negative (DN) thymocytes, characterized by the lack

of CD4 and CD8 surface markers, comprise the different

maturation stages of developing T cells. DN cells undergo a

stepwise differentiation pathway orchestrated by the thymic

stroma and supportive immune cells that consist in two main

phases; specification and commitment (51). DN1 (Lin- CD44+

CD25-) are located close to the entry site in the corticomedullary

junction. DN1 survival is promoted by IL-7 - IL7R and stem cell

factor (SCF) - c-KIT interactions (90, 91), while Delta-like ligand 1

(DLL1) – NOTCH1 axis promotes differentiation (92), and CCR7

aid their progressive migration toward the cortex and subcapsular

zone (93, 94). As they move through the medulla, they transition

into the DN2 stage (Lin-CD44+CD25+). CCR7 deficient mice

accumulate DN1-2 cells in the corticomedullary junction,

unveiling that CCR7 is essential for controlling the migration of

DN1-2 cells from the corticomedullary junction to the cortex (93).

Additionally, CXCR4 deficient mice show an arrest in T cell

development at DN1 stage, revealing the importance of CXCR4

in facilitating the migration of DN1 cells to the cortex (93)
FIGURE 2

Current model of thymus colonization by MPPs during fetal development and thorough adulthood. During fetal development, CXCR4 plays a role in
aiding MMPs being mobilized from either AGM, yolk sac, or fetal liver even prior complete formation of the blood circulation system. MPPs, primarily
LMPPs and CLPs migrate to the thymus in a CCR9-, CCR7-dependent manner. Shortly after birth, the bone marrow becomes the primary site of
MPPs residency and export. Analogous to during fetal development, progenitors are mobilized into circulation via CXCR4 and c-Kit and later guide
towards the thymus by CCL21 and CCL25 (CCR7 and CCR9 ligands) by chemotaxis. Lastly PSGL-1 plays a role in the transmigration of the TSPs for
entering the thymus.
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(Figure 3). Despite the roles of CCR7, CCR9, CXCR4, our

understanding of the environmental cues that direct the

migration of early DN thymocytes from the CMJ to the cortex

remains uncomplete (96). DN1 thymocytes are multipotent, while

DN2 thymocytes are uncommitted to T cell lineage but their fate is

restricted to B-, T-, NK-, and DCs- lineages (94).

The commitment towards T cell fate starts at DN2a stage by

upregulation of IL-7R, and components of the TCR complex (97).

At DN2b stage, the progenitors experience an upregulation of

transcription factors and genes linked to the rearrangement of the

TCR, leading to irreversible commitment to T cell fate (92, 97, 98).

DN2 thymocytes proliferate extensively before TCR rearrangement

(99). Mice deficient for RAG1 or RAG2 recombinases show a

complete block in T cell development at DN3 stage (100). In the

subcapsular zone, where DN3 cells reside, part of the subset

undergoes b-selection (99) where the strength of the TCRb chain

is tested in combination with a surrogate “pre-TCR” before the

TCRa chain is created (101). With no lysine kinase 1 (WNK1) is

serine/threonine-specific kinase is expressed in developing T cells

that can regulate the activity of solute carrier transporters (SLCs)

ultimately promoting cell motility. Notably, both TCR- and CCR7-

signaling results in WNK1 upregulation that negatively controls

LFA-1-mediated ICAM adhesion, promoting chemokine-mediated

cortical migration of b-selected DN3 thymocytes (102). At the same
Frontiers in Immunology 06
time, fewer DN3 cells undergo gd-selection where the newly form g-
and d- chains are functionally tested (51).

Notably, gd T cells constitute less than 0.5% of the total murine

thymocyte population (103). DN cells expressing TCRgd commit to

the gd-lineage, typically without entering the DP stage of T cell

development (104). Whereas most gd T cells remain DN and

become mature gd T cells prior to egressing the thymus, some

acquire CD4 and CD8 markers suggesting that they undergo a

similar DP-to-SP development route as ab T cells (104). The ab vs

gd lineage choice is currently debated between by two different

models. Firstly, the classical model includes a pre-commitment

selection where the lineage fate is determined before TCR-

rearrangement. Secondly, the alternative model emphasizes the

TCR signal strength and NOTCH signaling, rather than TCR

identity, to dictate ab vs gd lineage fate, with strong TCR signal

favoring gd-skewing (103, 104). DN3a thymocytes, characterized by

low expression of CD27 can differentiate into TCRgd T cells in the

absence of NOTCH/Delta signaling while the absence of NOTCH

stimulation in DN3a cells reduce the number of TCR-ab-lineage
thymocytes (105). In mice, the NOTCH ligand JAG2, promotes gd
T cell development, while DLL1 and DLL4 contribute to ab lineage

development (104). OP9-DL1 cultured human Il2GFP DN3b

thymocytes preferentially adopt gd lineage over ab (105). This

subset was characterized as CD27+ CD5+ CD2+ CD62L+ in
TABLE 1 Compilation of the different progenitors subsets identified as TSPs candidates in the bone marrow or blood and the progenitors subsets
identified in the thymus with their corresponding flow cytometric profile.

Tissue Subset name Abbrev. Gating strategy/profile Ref.

BM Hematopoietic Stem Cells HSCs
Lin- Sca-1+ c-Kithi Flt3-CD34+/- [m] [FC]

Lin- Sca-1+ c-Kithi Flt3-CD34+/- CD48- CD150+ [m] [FC]
(61–63)

Thymus
and BM

Lineage- Sca-1+ c-Kit+ LSK Lin- Sca-1+ c-Kit+ [m] [FC] (55, 60)

Blood Circulating T cell progenitor CTPs
Lin- Sca-1+c-Kitlo CD25- CD44+ Thy1.1+ IL-7Ra+ PSGL-1+ CCR9+

[m] [FC]
(64)

Thymus
and BM

Lympho-Myeloid
Primed Progenitors

LMPPs
Lin- Sca1+ c-Kit+ Flt3hi [m] [FC]

Lin- Sca1+ c-Kit+ CD34+ Flk2+ [m] [FC]
Lin- Sca1+ c-Kit+ CD34+ IL-7Ra-/lo

(36,
65, 66)

Bone marrow Common-Myeloid Progenitors CMPs Lin- c-Kit+ Sca-1- CD34+ CD16/32lo (67)

Thymus
and BM

Common Lymphoid Progenitors CLPs
Lin- c-Kit+ IL-7-Ra+ [m] [FC]

Lin- Sca-1lo c-Kitlo Flt3hi IL-7-Ra+ [m] [FC]
Lin- Sca-1+ c-Kit+ IL-7-Ra+ CD34lo/-[m] [FC]

(36,
60, 65)

BM Common Lymphoid Progenitors-2 CLP-2 Lin- c-Kit-/lo B220+ [m] [FC][cc] (60)

BM
and Thymus

Granulocyte-monocyte Progenitors GMPs
Lin- CD4- CD34+ CD1a- CD44+ HLA-DR+ CD123+ IRF8hi [h] [CS]

Lin- Sca1- c-Kit+ CD34+ CD16/32+ [m] [FC]
(36,

48, 68)

BM Early Lymphoid Progenitors ELPs Lin- c-Kithi Sca-1hi CD27+[m] [FC] (69)

Thymus Early Thymus Progenitors ETPs
Lin- CD25- CD44+ c-Kithi [m] [FC]

Lin- CD25- CD44+c-Kithi IL-7Ra+ Sca-1+ [m] [FC]
(31,

55, 70)

Thymus
and BM

Macrophage - Dendritic progenitors MDPs Lin- c-Kithi Flt3+ CX3CR1+ (71)

Thymus
and BM

Common Dendritic Progenitors CDPs Lin- c-Kithi Flt3+ CX3CR1+ CD115+ (71)
fro
-/lo, negative/low expression; lo, low expression; +, positive expression; hi, high expression; BM, Bone marrow. Analogous names for antibodies: c-Kit, CD117; Sca-1, Ly-6A/E and Ly-5.1; Flt3,
CD135 and Flk2; CD150, SLAMF1; CD48, SLAMF2; IL-7Ra, CD127; CD16/32, FcgRIII/FcgRII; CD115, CSFR1; CD123, IL-3Ra; Thy1.1, CD90.1; CCR9, CD199. Symbols: [m], mouse; [h],
human, [FC], Flow cytometry; [CS], CITE-Seq; [cc], cell culture, in vitro observation.
ntiersin.org

https://doi.org/10.3389/fimmu.2024.1443910
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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accordance with the expression pattern of differentiated gd T cells

(105). This study revealed differential gene expression ofRunx3, Egr-2,

Egr-3, Id3, Ikaros, Bcl-2, Helios and Aiolos in murine gd T cells

compared to other thymocyte subsets. Other studies showed

increased NR4A1-3, ETV5, KLF2, RELB, HES1, and ZBTB16 in

human gd T cells (106, 107). Nonetheless, the identity of the

supposed gd-precursor within the DN fraction is still unknown. In

mice, a DN1 subset expressing high levels of IL-7 and SOX13

preferentially adopt gd fate (108, 109). Collectively, the two

prevailing developmental models are not opposed to each other as

both pre-TCR progenitor identity, TCR-signal strength, and NOTCH

signaling seem to contribute to gd-lineage development (110).

While gd-selected DN3 thymocytes show little proliferation and

remain double negative, DN3 thymocytes that underwent b-selection
proliferate robustly and rapidly differentiate intoDN4cells (Lin-CD44-

CD25-) and later acquire CD4 and CD8 surface markers becoming

double-positive (DP) thymocytes (CD44-CD25-CD4+CD8+) in the

subcapsular zone (51) (Figure3).DP thymocytes remainsquiescent for

several days as the TCRa rearrangement process involves the creation

of double-strand breaks in the DNA being incompatible with DNA

replication (111, 112). At this stage, the polarity of themigration of DP

T cells reverses, guiding them back from the cortex to the medulla
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(113).Gradients ofCXCL12 (SDF-1) repel thymocytes,while S1P1 acts

as a chemoattractant, aiding their migration across the thymus layers

(113). CD69, which antagonizes S1P1, serves as a residency marker

(113). In the cortex, DP T cells interact with cTEC, DCs, and B cells as

antigen presenting cells (APCs) (114, 115). A weak TCR:MHC

interaction is required to protect DP thymocytes from death by

neglect, known as positive selection (116–118). Positively selected

CD4+ or CD8+ SP thymocytes are relocated into the medulla. There,

they engage with DCs, mTECs, and plasmacytoid dendritic cells

(pDCS) for further screening. SP Thymocytes that show too strong

TCR: MHC-self peptide interactions undergo negative selection and

die predominantly by apoptosis (91, 115). Notably, SP thymocytes

exhibiting high-affinity TCR:MHC-self peptide interactions,

considered autoreactive, can be redirected to become regulatory T

cells (Treg), invariant natural killer T cells (iNKT) or TCRab+

CD8aa+ intestinal intraepithelial lymphocytes (IELs), in a process

known as agonist selection (91, 119).

A small fraction of thymic SP CD4+ T cells (∼1%) expressing the
high-affinity IL-2 receptor alpha (IL-2Ra) or CD25 and displaying

strong affinity for self-peptides, as revealed in Nur77GFP transgenic

reporter mice, are agonist-selected to become Tregs (120, 121). Initial

TCR stimulation causes upregulation of CD25, GITR, OX40 and
FIGURE 3

Spatiotemporal model of T cell development in the thymus. 1) TSPs enter the thymus through blood vessels typically irrigating the thymus in the
medulla and CMJ in a process mediated by PGSL-1. Then, the thymus microenvironment instructs them to become ETPs or DN1 entering the T cell
differentiation path. 2) DN1 move towards the cortex where they become DN2 which proliferate robustly. This migration through the cortex is
mediated by chemokine gradients promoting the migration of the developing thymocytes via CCR7 and CXCR4. 3) In the outer cortex, DN3 undergo
TCR rearrangement, thereby irreversibly committing towards T cell fate. 4) Next, DN thymocytes encounter ab- vs gd- lineage choice based on the
MHC-TCR interaction strength, and NOTCH signaling among other factors. In this step, their TCR is tested in a process known as b- or gd- selection,
where cells must interact with MHC to receive a survival signal. Failure to engage MHC results in programmed cell death at the DN3 stage. 5) Later
on, DN3 move forward in the development and become DN4 and DP, staying quiescent for several days. At this point, the polarization of the
migration reverses. This inward migration of DP is regulated by S1P, CXCL12 and CD69. 6) DP interact with cTECs and undergo positive selection
based on the TCR-MHC strength and affinity interactions. 7) Cells displaying low-moderate TCR-MHC interaction are positively selected. 8) Cells
with high TCR-MHC affinity mostly undergo cell death, 9) while a small fraction that recognize self-antigens are rescue to become regulatory T cells
(Tregs) or other types of unconventional T-cells (95). 10) Positively selected cells undergo another selection round by interacting with APCs, either
DCs or mTECs. 11) Successful interactions lead to their maturation into SP CD4+ or CD8+ thymocytes and naïve T cells that are ready to egress to
the periphery and complete their development in secondary lymphoid organs.
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TNFR2 among others (121). CD4+ CD25hi thymic Treg precursors

subsequently acquireFOXP3expression independentlyoffurtherTCR

engagement in the presence of IL-2 or IL-15 (122). FOXP3 expression

is tightly regulated at the transcriptional level by four conserved non-

coding sequences (CNS1-4) (95). Transcription factors bind these

CNSs tocontrolFoxp3 transcription.Notably, c-Rel binding toCNS3 is

crucial for thymic Treg development, as evidenced by the dramatic

decrease of thymic Tregs in c-Rel-/- mice (103). Interestingly,

continuous endogenous production of IFN I and IFN III by AIRE+

mTECs is required to instruct APCs to promote Treg selection (42).

While the thymus is themajor site forTreg development, around∼10–
15% of peripheral CD4+ T cells can differentiate into Tregs instructed

by environmental cues such as the presence of TGFb (121, 123).Much

less is known about the signals directing intrathymic Treg precursor

migration, and the residency or egress of Tregs compared to their

conventional T cell counterparts. Notably, the maintenance of

immunological self-tolerance highly relies on Treg suppressive

functions as unveiled by the lethality of Foxp3-/- murine model (124,

125) and the Foxp3 mutation in humas leading to immune

dysregulation, polyendocrinopathy, enteropathy and X-linked

(IPEX) syndrome ultimately resulting in death during infancy (126).

Ultimately, successfully selected naïve SP CD4+ and CD8+ T

cells, CD4+ CD25+ FOXP3+ Tregs, and other unconventional T cells

subsets egress the thymus via lymph and blood vessels and migrate

to secondary lymphoid organs such as lymph node where they

complete their maturation and exert their functions.
3.3 Hormone regulation of intra-thymic
T-cell migration and survival

Beyond its crucial role as a primary lymphoid organ and its

contribution to the establishment of the lifetime T cell pool, the

thymus also functions as an endocrine gland (127, 128).

Accordingly, the thymus is highly innervated by both sympathetic

and parasympathetic nerves, facilitating neuroendocrine control and

similar to the adenohypophysis, thyroid, adrenals releases hormones

into the bloodstream (127, 129). Neurotransmitters such as

norepinephrine (NE) and acetylcholine (ACh) are locally released

and control the delivery and expression of other hormones (128).

The thymus produces several hormones like thymosin,

thymopoietin, thymulin, thymic humoral factor (THF) and

luteinizing and follicle-stimulating hormones, which are important

inpre-thymocytematuration (127, 129–132).Hormones play a critical

role in influencing cellmotility andcontributing in the regulationof life

versus death decisions of developingT cells. Thymulin is an important

regulator of neuro-immune endocrine thymus axis (130). Paracrine

signaling via thymopoietin specifically enhances the differentiation of

T cells (131), and thymosin is essential for pre-thymocyte maturation

(127, 129). Outside the thymus, thymosin, thymopoietin, and

thymulin seem to be highly immunomodulatory but are also part of

an extensive neuroendocrine network, affecting the production of

other hormones, such as the production of pineal gland hormones

affecting the circadian rhythm (133). Thymopoietin have been shown

to directly bind to antigen-presenting cells on their MCH class II
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molecules, whereas thymulin and thymosin seem to retain anti-

inflammatory functionalities (134–136).

Stress- andAge- related hormonal changes are known to influence

thymic output (137–139). Endocrine hormone signaling significantly

influences thymocyte development and output by regulating cell

migration controlling the degradation or deposition of the thymus

extracellularmatrix components (ECM) thereby affecting chemokine-

ECM intrathymic migration routes (137). For example, growth

hormone (GH) and prolactin can boost thymocyte growth and

movement (140, 141). Additionally, prolactin affects DCs-expressing

prolactin receptors resulting in the increase production of

proinflammatory cytokines leading to acute thymus atrophy

induction (141). Thyroid hormones like triiodothyronine (T3) and

thyroxine (T4) also play a role in T-cell development by affecting

thymocyte adhesion andmigration (137).Notably, glucocorticoids are

known to trigger apoptosis in developing T cells (142), whereas leptin,

primarily produced by adipose tissue crucially impact mTECs-

expressing leptin receptor conferring protection against thymic

stress and enhancing thymus output (143). Oxytocin (OT) and

vasopressin (VP), mainly produced in the pituitary gland, can also

beproduced in the thymusand impact SPCD8+ thymocytes, leading to

apoptosis and reduced proliferation (144).

In mammals, sex hormones like androgens and estrogens are

hypothesized to contribute to thymic decline with age, as evidenced

by the decline of thymus size and hormonal changes post-puberty

(128). In line with this hypothesis, sex steroid hormones ablation in

mice leads to increase expression of Delta-like 4 (Dll4) in TECs,

ultimately improving thymic function (145). In rats, maternal

protein deprivation during lactation resulted in increased

endogenous leptin levels protecting thymocytes from apoptosis

(143). Conversely, ghrelin enhances thymopoiesis in aged mice,

and its diminished expression in the thymus with age suggests a

protective role against age-related involution by increasing ETPs

numbers in aged mice (139, 146).

Altogether, developing T cells migration, differentiation,

maturation, proliferation, and survival are tightly regulated by a

variety of hormones produced both locally and in other endocrine

glands, critically impacting thymus homeostasis and output.
3.4 Regulation of thymocyte migration and
survival by the thymus extracellular matrix

The thymus extracellular matrix (ECM) is a complex network of

proteins, glycosaminoglycans, and other molecules that support and

facilitates T cell development in combination with other thymus

immune-, and stromal cells (147). Thymic stromal cells, including

epithelial cells and fibroblasts, actively produce ECM components

such as collagen. The main ECM components include: collagen I,

collagen III (to a lesser extent), collagen IV, fibronectin, and

laminins (148–150). Collagen I is predominantly found in the

intracapsular and intraseptal fibers, while collagen IV, fibronectin,

and laminin are defining the membranes in the capsula, septa, and

perivascular spaces (151). These molecules are known to mediate

adhesion, migration, and differentiation of thymocytes (152).

Thymic myeloid cells express various metalloproteases (MMPs)
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that degrade collagen fibers, influencing the intrathymic migration

routes, which are essential for interactions with thymic epithelial

cells and developmental progression of T cells (153–155).

Thymocytes move through the inner thymus in an integrin-

dependent manner with ECM components modulating their

adhesion and spatially regulating thymocyte development. In vitro

experiments showed that thymocyte-fibronectin specific

interactions by recognizing the amino acid sequence Gly-Arg-

Gly-Glu-Ser-Pro regulate the migration of developing thymocytes

in a gradient-dependent manner (156). Developing thymocytes also

engage the ECM via CD44, that binds hyaluronic acid and collagen

(151), and adhere to laminin via a6b64 integrin. Additionally,

VLA-4, -5, -6, and LFA-1 are important regulators of the rolling

and adhesion motility of thymocytes to the ECM (151, 157).

Laminins, primarily produced by thymic stromal cells form

gradients and allow integrin-laminin specific interactions that

create intrathymic routes for thymocyte development (158).

Notably, hormones also orchestrate ECM remodeling thereby

controlling developing thymocytes migration and specification.

Laminin production and secretion by TECs is regulated by

growth hormone (GH) (158). Similarly, triiodothyronine (T3)

treatment increased laminins and VLA-6, leading to an enhanced

migration of thymocytes (158). Glucocorticoids (GCs) are steroid

hormones that cross the plasma membrane and bind to an

intracellular glucocorticoid receptor. Produced by thymic

epithelial cells (TECs), GCs shapes thymocytes TCR repertoire by

mitigating downstream TCR signaling events, thereby promoting

thymocyte negative selection. For example, GC treatment

independently inhibits the transcription factors Nur77 and Helios,

which are upregulated in TCR-signaled thymocytes (159).

Dexamethasone (Dex), a synthetic glucocorticoid commonly used

in clinical settings, induces extensive thymocyte apoptosis,

resulting in acute thymus atrophy. Dex administration triggers

apoptosis through phosphoinositide-specific phospholipase C

(PLC) and acidic sphingomyelinase (aSMase) signaling, leading to

subsequent caspase-3 activation (160). Additionally, Dex treatment

reduces NFAT, AP-1, and c-MYC activity in thymocytes and limits

the expression of anti-apoptotic factors like BCL-2 by promoting

proteasomal degradation, ultimately causing acute thymus atrophy

(161). Additionally, GCs can stimulate the TECs leading to the

accumulation of laminins between the cortex and medulla,

therefore impairing DN4-DP migration leading to T cell

development arrest and thymus atrophy (158, 162).

Taken together, the secretion, distribution, and breaking down

of the ECM components are tightly regulated by thymus immune-

and stromal subsets together with hormones, playing an active role

in remodeling the thymus landscape, thereby promoting or limiting

the developmental progression of pre-T cells.
3.5 Non-T cell thymic subsets contribution
to thymus homeostasis and
T cell development

Beyond developing T cells, the thymic immune landscape also

contain other immune cell substes including B cells (114, 163), DCs
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(48, 68), eosinophils (32), macrophages (34), neutrophils (36, 164),

and all three groups of ILCs (31, 165–168), each of them performing

an essential role in maintaining thymus homeostasis and enabling T

cell development. Thymic B cells participate in negative selection

and tolerance acquisition by presenting autoantigens and

contributing to the development of regulatory T cells (114, 163).

Thymic DCs, together with thymic epithelial cells (TECs) engage in

MHC-TCR interactions with developing T cells and present

self-antigen playing a crucial role in the progression or clonal

deletion of developing T cells (169, 170). Macrophages,

neutrophils, and eosinophils act as scavengers eliminating the

dying T cells in a very rapid process (117, 164, 171). Additionally,

thymus macrophages functions extends beyond phagocytosis, as

they can present antigen and induce cell death of self-reactive

thymocytes (172). Although the functions of thymic ILCs during

homeostasis remain largely unexplored, some studies suggest that

ILCs can influence fate decisions of uncommitted thymus

progenitors, and impact thymus epithelial cells that control the

maturation and egress of developing T cells (165, 166).
3.6 Selection checkpoints: life and death of
a developing T-cell

T cell development and selection is highly regulated to avoid self-

reactivity and autoimmune disorders. During its most productive

phase, the mouse thymus generates around 50 million of DP

thymocytes each day that undergo a series of selection processes. In

total, it is estimated that only 3-5% of developing thymocytes become

mature CD4 or CD8 single positive (SP) T cells and exit the thymus

(117). Programmed cell death (PCD) plays a crucial role in the

elimination of a large number of Pre-T cells that do not overcome

either b-, d-, negative, positive or agonist selections to prevent

autoimmunity (59). The specific molecular cell death pathways

downstream the different T-cell development checkpoints have not

been fully mapped (112, 173), although apoptosis is the default death

modality during T cell development (174, 175).

Early during T cell development, DN1-2 survival is controlled by

the expression of the cytokine receptors CD117 (c-KIT) and IL-7R

that triggers anti-apoptotic signaling via Bcl-2 and the availability of

their respective ligands SCF and IL-7 (176). After the DN2 stage,

thymocyte survival depends on the correct expression of the TCRb
chain and the surrogate pre-TCRa chain in a process known as b-
selection. BCL-2 is expressed both in DN and SP thymocytes, whereas

BCL-XL is predominantly expressed in DP cells (177). Thymocytes

that fail to bind self-MHC die by caspase-3 dependent apoptosis

(178). NF-kB dependent activation of BCL-2-related protein A1

(BCL2A1) is required to inhibit caspase-3 dependent of DN

thymocytes (178). At this stage, CXCR4 is required for the

progression through b-selection as regulator of the localization of

DN1-2 thymocytes and as a co-stimulator to promote the pre-TCR

dependent activation of BCL-2 (179). Additionally, FAS-associated

protein with death domain (FADD) plays a critical role in regulating

survival and transition of DN2 and DN3 during b-selection by

modulating NOTCH signaling (180).
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The BCL-2 family member BIM is required for apoptosis of

autoreactive SP CD4+ and CD8+ thymocytes. Indeed TCR ligation

upregulated Bim expression and promoted interaction of BIM with

BCL-XL, inhibiting its survival function (181). This demonstrates the

engagement of the intrinsic mitochondrial pathway during negative

selection. Bim-/- mice showed abnormal T cell development

characterized by loss of DP T cells and accumulation of DN an

SP subsets (182). In vivo deletion of Bid and Bim suppressed pre-TCR

thymocyte cell death (183). DP thymocytes with appropriate TCR:

MHC interaction strength are positively selected, becoming naïve SP

CD4+ or SP CD8+ T cells (184). However, the majority of DP

thymocytes (approximately 90%) are unresponsive to TCR:MHC

engagement (184). These cells become sensitized to BIM-mediated

intrinsic apoptosis due to BCL-2 downregulation, and ultimately

undergo death by neglect (185). The MAPK pathway is upregulated

in DP thymocytes that exhibit low TCR:MHC avidity, leading to their

positive selection (186) while “strong” negatively selecting signals lead

to Bim-mediated intrinsic apoptosis (181, 187).

Notably, deletion of Mcl-1 results in thymocyte cell death, a

phenomenon rescued by additional deletion of Bak, but not by

single deletion of Bak or Bim (188). This suggests that MCL-1

promotes thymocyte survival independently of BCL-2 by

sequestering proapoptotic Bak (188). Interestingly, thymocytes

from Bax-/- Bak-/- double-knock out mice were resistant to death-

by-neglect (189). However, these mice displayed reduced

thymopoiesis over time, suggesting that the elimination of

apoptotic cells is needed for restoration of normal T cell

development. Noteworthy, Bid-/- Bim-/- Puma-/- triple-knockout

mice displayed a large thymus, and T cells were resistant to IL-7

deprivation (190). Mechanistically, the triple deletion of Bid, Bim,

and Puma prevented the oligomerization of BAX and BAK, and

subsequent cytochrome c–mediated release of caspases, thereby

blocking intrinsic apoptosis (190).

Notably, many key contributors to the survival and

developmental progression have been identified (Figure 4). While

most studies emphasize the involvement of intrinsic apoptosis as

the primary cell death mechanism through T cell selection, the

death receptors tumor necrosis factor receptor 1 (TNFR1), death

receptor 3 (DR3), and death receptor 5 (DR5) are expressed in

DN3-4 thymocytes suggesting a role in thymic selection (191).

Interestingly, RIPK1 expression is developmentally controlled and

it is only expressed following positive selection (192). Deletion of

Ikk1 and Ikk2 with the hCD2iCre (DN2 cells and downstream) or

CD4Cre (DP cells and downstream) resulted in reduced numbers of

SP CD4+ and CD8+ that were more sensitive to TNF-induced

extrinsic apoptosis, while DP and DN numbers remain unaffected

(192, 193). TNF-mediated NF-kB pathway and IKKs are key in

controlling RIPK-kinase activity and promoting SP survival (192).

IKKs control SP survival by repressing RIPK1-induced cell death

independently of NF-kB signaling. Noteworthy, despite sensitizing

CD4+ or CD8+ SP thymocytes to TNF-induced extrinsic apoptosis,

deletion of RIPK1 in thymocytes, does not result in reduced

numbers or frequencies of DN, DP, or CD4+ or CD8+ SP

thymocytes in vivo (193). These results suggest that RIPK1 and

RIPK1-kinase activity are not essential for the steady-state survival

and developmental progression of thymocytes. Additional deletion
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of caspase-8 (Cd4Cre Ripk1-/- Casp8-/-) did not affect thymus

development excluding engagement of RIPK1-mediated

mechanisms (193). However, caspase-8 has been proposed to play

a role in thymocyte development and elimination (194–196).

Indeed, while caspase-8 activation in DP thymocytes was shown

to be FAS-independent, the medullary CD4+ or CD8+ SP

thymocytes that exhibit strong TCR:MHC interaction underwent

FAS-dependent Caspase-8 mediated extrinsic apoptosis in a model

of staphylococcal enterotoxin B (SEB), resulting in clonal

elimination of SEB-reactive Vb8+ cells (197).

Besides extrinsic apoptosis by death domain receptors, also the

involvement of other cell death mechanisms such as RIPK3/MLKL-

driven necroptosis in thymocyte development have been

investigated. Thymus morphology and macrostructure remained

largely unchanged in necroptosis deficientMlkl-/- and Ripk3-/- mice

compared to littermate controls (198). Further characterization of

the RIPK3-deficient mice revealed abnormal proliferation of DP

thymocytes, leading to thymus hyperplasia and an increased

incidence of thymomas (199). This study suggests that RIPK3

may play a role in regulating the homeostasis of DP thymocytes

independently of MLKL and the necroptotic signaling complex.

While intrinsic apoptosis seem to be the primary pathway

regulating steady state thymic selection (197), systemic

inflammation due to different triggers such as infections or

glucocorticoids leads sudden thymocyte depletion, known as

acute thymic atrophy (160, 178, 200). However, it remains

unclear whether extrinsic apoptosis by death domain receptors or

necrotic cell death modalities such as necroptosis, pyroptosis, or

ferroptosis are involved in infection-induced acute thymus atrophy

or other types of acute thymus atrophy.
4 Age-related thymic involution vs
acute thymus atrophy

Despite its crucial role in maintaining immune system

homeostasis, the thymus starts undergoing chronological

regression from a year of life in a process known as age-related

thymic involution (201). Age-related thymic involution is

evolutionary conserved across jawed vertebrates (202–205). In

humans, the rate of thymus regression is around 3% per year

until middle age (35-45 years of age), after which this decreases

to a rate of around 1% until death (206). In humans, age-related

thymic involution takes place from infancy, but increases after

puberty. The most acute phase of age-related thymic involution

occurs at 30-40 years in humans and at 9-12 months of age in mice

(207). While T cell production regresses throughout life, new naïve

T cells can be detected even in individuals of advanced age (208).

Age-related thymic involution is characterized by shrinkage of

the thymus, decreased thymus cellularity (18, 209), diminished

thymus colonization by TSPs and lower number and proliferation

capacity of ETPs (18, 207), reduced number of recent thymic

emigrants (reflected by the number of signal joint T-cell excision

circles (sjTREC) (210), replacement of lymphoid tissue and

fibroblasts by adipose tissue (201, 211), changes in the thymus’s
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architecture and morphology (209, 212), and defects in the thymic

epithelial cell (TECs) compartment (213, 214). Interestingly,

memory B cells accumulate in the aging thymus of humans co-

localizing with cytokeratin+ mTECs (41). Since the thymus

cellularity declines with age, the PVS extend to a larger surface in

aged individuals (41). As an overall result of age-related thymic

involution, a reduced number of recent thymic emigrants can be

detected in peripheral blood with age (208, 210). Related to this, no

apparent differences in the DP percentage can be observed with age,

whereas the decline in thymus cellularity is directly proportional

with ETP numbers (215). However, the number of functional TSP/

ETP niches does not diminish as we age, rather the pre-thymic

progenitors in the blood and bone marrow reduces with age (215),

showing that the thymus regression is not merely due to thymic

morphologic changes. In addition to the previously described

phenomena, the aged thymus exhibit increased reactive oxygen

species (ROS), enhanced senescence of TECs and quiescence of

TEC progenitors (214) and elevated thymocyte apoptosis (178).

Acute thymic atrophy fundamentally differs from age-related

thymic involution (216). Acute thymic atrophy is a stress response

and results in reduced thymic cellularity that disproportionally affects

developing T cells (216). While age-related thymic involution is a

progressive process that worsens throughout life, acute thymic

atrophy is a transient state in which the thymus can recover its
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normal cellularity and tissue architecture. Similarly as age-related

thymic involution, acute thymus atrophy is evolutionary conserved in

vertebrates (202–205). Acute thymic atrophy can be induced by a

wide range of triggers such as infectious diseases (155, 178, 217–223),

sepsis (224), and pro-inflammatory cytokines (225, 226).

In this regard, specific pro-inflammatory cytokines have been

shown to induce acute thymic atrophy, such as the type 1 cytokines

IL-12, IL-18, and IFNg (31, 227), or the type 2 cytokine IL-33 (225),
among others. Duing type 1 immunity, such as infection with the

mouse pathogen Salmonella typhimorium, ETPs/DN1 fraction

remain largly unnaffected during the resultingthymic atrophy

(221, 222) while DP thymocytes are espcially sensitive to acute

inflammation (200, 221).

Acute thymic atrophy also occurs in response to other triggers,

such as malnutrition (228–231), radiotherapy and chemotherapy

(232–234), and pregnancy (235–238). Of note, steroid hormones,

such as the sex hormones progesterone, androgens, and estrogens

(239), as well as glucocorticoids (160, 162) are all capable of

inducing thymus atrophy. Pregnancy-induced thymic atrophy is

primarily mediated by progesterone, and can be inhibited by the use

of progesterone receptor knock out mice (240). Although, steroid

hormones, inhibit effector T cell functions (241), thymus atrophy

induced by androgens and progesterone is mediated by directly

affecting TECs (239). Castration studies revealed that androgens
FIGURE 4

Cell death selection checkpoints during thymic T-cell development and molecules that control life vs death decisions. Early thymus progenitors
(ETPs) are uncommited progenitors that enter the T cell differentiation path instructed by the thymus stroma. The earlier stage is known as DN1
(defined as Lin- CD44+ CD25- c-Kithi), later becoming DN2 (defined as Lin- CD44+ CD25+ c-Kit+). The survival of these progenitors is controlled
mainly by IL-7 availability, SCF - c-KIT interactions, NOTCH signaling and BCL-2 and MCL-1. Later, when the machinery of TCR recombination these
cells are irreversibly committed to the T cell fate and become DN3a (defined as Lin- CD44- CD25+ c-Kit-/lo CD27+ CD28-) and later DN3b (defined
as Lin- CD44- CD25+ c-Kit- CD27+ CD28+). During this stage the TCR chain is tested and BCL2A1 and CXCR4 were reported to control the survival
of DN3 while FASL and glucocorticoids promote cell death when the TCR is defective. Then, DN3 cells move forward in the development acquiring
a DN4 phenotype (characterized as Lin- CD44- CD25- CD27+ CD28+) and ultimately a DP phenotype (characterized as CD4+ CD8+). These cells
remain quiescent for some days and later undergo additional selection rounds where the TCR:MHC affinity is tested. TCR:MHC interaction, BCL-XL,
IL-7, RIPK3 and NF-kB are some of the signals that dictates their survival, while BH3-only proteins BIM and PUMA and their mitochondrial pore
forming targets BAX and BAK are implicated in the cell death execution when the TCR:MHC interaction is not successful. Lastly, DP thymocytes will
adopt a SP CD4+ or CD8+ phenotype and will egress from the thymus to secondary lymphoid organs where they complete their maturation into
different effector and helper subsets. A small fraction of SP CD4+ cells that show high TCR:MHC interaction can be rescued from cell death to
become regulatory T cells (Tregs, defined as CD4+ FOXP3+ CD25+) or unconventional T cells (iNKT, MAIT, etc.).
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effect on thymic size, appear to be a result of reduced TEC

proliferation (242). The steroid hormone progesterone affects

TECs by reducing CCL25 production resulting in less ETP

recruitment (242). Other studies have also shown that

progesterone regulates Aire expression in mTECs, thereby

affecting negative selection (242, 243).

The reduction of the thymus cellularity, disorganization of the

thymus morphology and shrinkage of the thymus (in size and

weight) are the general hallmarks for acute thymic atrophy (216).
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Interestingly, depending on the initial trigger, there are variations of

which stage of T cell development that is blocked and specific

morphological changes can be observed (see Table 2). The variety of

different cytokine and hormonal triggers and their specific thymic

effects indicates that that there are different ‘flavors’ of thymus

atrophy. However, the different effects these various types of thymus

atrophy have on the peripheral immune system remains to be

elucidated. Despit various triggers, we have summarised some of the

primary features of thymus atrophy (see Table 2 and Figure 5).
TABLE 2 Summarized effects of different triggers of acute thymus atrophy on thymus function.

Thymus atrophy trigger Characteristics of the atrophy References

Murine cytomegalovirus (MCMV) 0.01% of thymocytes infected
Reduce cellularity in the cortex
Monocytes and neutrophils infiltration
NK cells absence reduce the atrophy
ILC1s resistant to damage and increased activation
Increased TL1A and IL-18

(31)
(36)
(219)

Influenza A Reduced cellularity (loss of DP)
Disruption of cortex and medulla distinction
Increased IFNg (by NK cells)
NK depletion partly suppress thymic atrophy
Thymic DCs contained viral antigens

(217)
(244)

Salmonella typhimurium DN1 cells remain unnaffected
Reduction of DN2-4 and acute loss of DP thymocytes
Release of glucocorticoids and IFNg that leads to enhance thymocyte death
Increase of myeloid cells in the thymus
Disruption of the medulla

(221)
(222)
(245)

Pneumonia Virus of Mice (PVM) Reduced thymus size and cellularity
Reduced numbers of DP and DN4
Increased proportion of myeloid cells
Increased levels of TL1A and IL-18

(36)

Trypanosoma cruzi Reduced thymus cellularity (loss of DP)
Increase thymocyte egression from the thymus
Increase TNFa, IL-17 and IL-6
Increased DN1 and reduced DN2 and DN3
Increased Cell death

(178)
(218)

(246)
(247)

Sepsis (Cecal ligation and puncture, CLP) Reduced thymus cellularity
Disruption of cortex/medulla distinction
Increased myelopoiesis and reduced lymphopoiesis
Increased extramedullary hematopoiesis

(224)

LPS endotoxin shock Reduced thymus cellularity
Structural disturbance in medulla/cortex distinction
Increased proinflammatory cytokines (IFNg, IL-17, TNFa, IL-6, GM-CSF)

(248)

Irradiation damage Reduced size and cellularity
Reduced developing T cells (DN1-4, DP and SP) and TECs
ILCs resistant to damage

(249)

Dexamethasone-induced damage Reduced size and cellularity
Reduced developing T cells and TECs
Activation of ILC2s
Increased granulocytes, monocytes, macrophages and DCs
Increased eosinophils

(33)
(32)

Pregnancy-induced atrophy Reduced numbers of developing T cells
Reduced thymus export
No changes in cell death (Annexin V)
Reduced thymocyte proliferation (BrdU labeling)
Reduced numbers of stromal cells

(237, 250)

Rotavirus Reduced cellularity in C57BL/6J but not in BALB/c or NOD mice
Relative increase of macrophages

(251)
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Systemic inflammation can impact the thymus resulting in acute

thymic atrophy.

Generally, ETPs and DN1 fraction remain unnaffected during

Salmonella typhimorium-induced thymic atrophy (221, 222), while

DP thymocytes have been reported as one of the most sensitive

subsets to acute inflammation (200, 221). Remarkably, most of the

infectious triggers such as MCMV, Salmonella or Micobacterium

avium do not specifically target the thymus (219, 221, 252), but it is

rather the systemic inflammation that results in the cascade events

characteristic of the thymus atrophy. Thus, some cells might be

responsile of sensing systemic inflammation may trigger the local

dowstream effect in the thymus ultimately leading to atrophy

induction. Remarkably, plasma cells were reported to accumulate

in the thymus perivascular spaces (PVS) and constitutively secrete

immunoglobulin G and show reactivity to common viral proteins

(41). Interestingly, beyond the impact of systemic inflammation on

the thymus T cell counterpart, some immune subsets are specially

resistant to acute inflammation (31, 33, 36, 249, 253). In particular,

recent investigations have highlighted the critical role of thymic

ILCs in driving the endogenous regeneration of the thymus by

producing pro-repair cytokines such as IL-22 (33, 249). Recently,

we showed that the type 1 cytokines IL-12 and IL-18, while inducing

acute thymus atrophy in mice also enhance the production of

neonatal thymic ILC1s, capable of migrating to peripheral organs

(31). Additionally, dexamethasone-induced thymus atrophy

promoted a type 2 immune response driven by thymic ILC2s,

that resulted in tissue regeneration (33).
5 Physiological relevance and future
perspectives on thymus function,
development and atrophy

5.1 Physiological implications of the
thymus function for human health

The thymus is critical for health and survival of individuals,

both in early life and during adulthood. Newborns born with a

genetic defect lacking a thymus suffer from a pathology known as

severe combined immunodeficiency (SCID), which is lethal in the

first years of life unless diagnosed and followed by allogeneic

hematopoietic stem cell transplantation (254). Furthermore, a

deletion on chromosome 22 results in the failure of thymus

development, leading to a pathology known as DiGeorge

syndrome (255). DiGeorge syndrome’s clinical manifestations

include T-cell deficiency (due to thymic hypoplasia),

hypoparathyroidism, cardiac malformations, facial abnormalities

neurodevelopmental delay, behavioral, and psychiatric features

(255). These patients show higher risk of suffering opportunistic

infections (256). Interestingly, patients with partial DiGeorge

Syndrome (pDGS) and Down Syndrome (DS) exhibit changes in

thymus size (hypoplasia) and architecture, increasing their risk of

developing autoimmunity (257). While pDGS patients displayed

lower frequency of SP CD4+, SP CD8+ and Treg, DS-isolated Tregs

showed impaired suppressive capacity (257). These results reveal a
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link between thymic abnormalities and the immune dysregulation

observed in pDGS and DS patients. Myasthenia gravis (MG) is a

rare autoimmune disease mediated by antibodies against proteins

expressed in the neuro-muscular junction such as the acetylcholine

receptor that can be linked to issues with the thymus gland such as

increased risk of thymomas (258, 259). The thymus of MG patients

shows increased production of inflammatory cytokines and

chemokines, leading to B-cell recruitment and the aberrant

development of germinal centers in the thymus (259). Thymic B

cells secrete antibodies against the acetylcholine receptor.

Furthermore, the elevated local inflammation dysregulates the

function of thymic Tregs (259). The acetycholine receptor

expression in human TECs is elevated by type I and II interferons

contributing to a positive feedback loop aggravating the pathology

(259). MG patients are frequently subjected to corticosteroid

treatment or thymectomy in order to stop thymic B-cell

development. Chronic graft-versus-host disease (GVHD) is a

complex multiorgan disorder characterized by autoimmunity and

immunodeficiency, which arises as a complication of allogeneic

hematopoietic cell transplant (HCT) (260). Typically, some months

after allogeneic HCT, donor-derived mature T cells cause local

inflammation and damage epithelial cells in the skin, liver, and

gastrointestinal tract often resulting in sclerosis and fibrosis in

multiple organs (261, 262).

A recent study revealed that thymectomized adult patients

following cardiac surgery showed increased cancer risk and

overall mortality in compared to controls (263). This study

confirmed previous reports indicating the importance of the

thymus for the maintenance of the immune health in adult

individuals (264, 265). Notably, adult individuals are less

responsive to vaccination partly due to the age-related thymus

involution (266, 267). Despite its importance for the human health,

many aspects of thymus biology remain unknown, particularly

regarding the cellular and molecular changes during atrophy and

the functions of non-T cell subsets.
5.2 Future perspectives in thymus
development, function and atrophy

Many models of sytemic inflammation leads to acute thymus

atrophy heavily impacting the thymus immune landscape.

Particularly, the medullary area decreases with age while the

perivascular spaces are enlarged (41). However, while the impact

of thymic atrophy in the T cell comparment has been thoroughly

characterized, the changes in the non-T cell immune compartment,

as well as the function of these cells during injury remain elusive.

Some recent studies suggest potential roles of non-T cells as sensors

of systemic inflammation, initiators of acute thymus atrophy, and

conductors of the repair phase post-damage. For example, thymic

DCs sense systemic inflammation and can inhibit mTECs

proliferation via cell-cell contact in a JAGGED1-NOTCH3 axis

dependent manner, ultimately resulting in massive death of

developing T cells and acute thymus atropy (268). Notably, B

cells are suggested to play a role in the humoral response of the

thymus as a protective mechanism against viral infections (41, 269).
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Macrophages, neutrophils, and eosinophils are proportionally

increased during acute thymus atrophy (32, 33, 36, 164). These

cells act as phagocytes in response to increased thymocyte death

(164, 171). Furthermore, thymus macrophages and neutrophils

express high levels of metalloproteases, revealed important in the

remodelling of the thymus ECM contributing to a repair response

and reestablishment of thymus homeostasis (154, 155, 270). In

addition, MafB+/GFP mice diplayed impaired thymic recovery

following irradiation. As Mafb expression was mostly restricted to

thymus macrophages and monocytes this study illustrates an

important role of macrophages and monocytes in thymus repair.

The removal of apoptotic cells in the thymus was proven essential to

trigger the repair program and the production of BMP-4, IL-23, IL-

22 by the stroma to restore thymus homeostasis (271).
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ILCs produce cytokines that can alter the development and fate

of developing T cells. Group-1 ILCs are relatively increased upon

viral infection (31, 244), proinflammatory cytokine exposure (31),

or following irradiation (226), resulting in increased production of

IFN-g and Perforin, among others (31, 244). These factors have

been shown to drive acute thymus atrophy as unveiled in Ifng-/-

(244) and Prf1-/- (226) mouse models. Additionally, targeting of

NK1.1+ cells (majority of group-1 ILCs in the thymus) ameliorated

irradiation induced-acute thymus atrophy (226). Notably, ILC2s

were also relatively increased and activated in dexamethasone-

induced thymus atrophy (33). Dexamethasone - activated ILC2s

increased the expression of genes such as Csf2, Il13, Il5, or Areg

known to impact thymus stroma, myeloid compartment and mTEC

proliferation. In line with these findings, a study conducted in 2012,
FIGURE 5

Anatomical, morphological, cellular and molecular differences between the healthy thymus, inflammation induced-acute thymus atrophy, and age-
related thymus involution. (A) Morphological and cellular characteristics of a young-healthy thymus vs (B) aged-individual thymus. (C) Common
morphological, cellular and molecular alterations produced in inflammation-induced acute thymus atrophy in response to different triggers such as
infections, steroid hormones, malnutrition, irradiation, and pregnancy.
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revealed that following irradiation, thymic DCs produce IL-23

leading to IL-22 secretion by thymus LTis resulting in enhance

TECs proliferation and survival (249). Studies identifying the

critical mediators responsible for inducing thymus atrophy and

promoting thymus regeneration are crucial for understanding the

most effective approaches to enhance thymus function. In the

past few years, BMP4 was identified as a potent endogenous

thymus regeneration factor by enhancing Foxn1 expression in

TECs (253). These studies offer innovative strategies to achieve

thymus rejuvenation.

In fact, some studies have shown that there are treatments that

enhance thymus function and output. The treatment with ghrelin

enhance the production and development of T cells and promotes

the engraftment of T cells in SCID mice (146). Similarly, IL-7 plays

a key, non-redundant role in the generation of the T-cell repertoire

(272), and its administration enhances T cell development (273).

Linked to this, a recent study has shown that CAR-T cell

transplantation cultured with IL-7 and IL-15 improve the

efficiency of the transplantation and reduced the exhaustion of

the transplanted cells (274).

Altogether, non-T cell immune subsets play a crucial role in

maintaining T cell homeostasis and creating the proper

environment for T cell development. Simultaneously, they also

play key roles in initiating acute thymus atrophy and facilitating

repair processes after damage, thus restoring homeostasis. This may

occur through various mechanisms such as (1) the release of

proinflammatory cytokines, (2) direct cell-cell interactions with

thymic epithelial cells (TECs) and thymocytes leading to cell

death in neighboring cells, or (3) actively inducing morphological

changes in thymus architecture through ECM remodeling, resulting

in increased thymocyte death and developmental arrest.

Since the availability of human thymus samples is low, murine

studies to investigate thymus changes induced by systemic

inflammation are very relevant as, conforming a limitation for

performing functional studies in humans. Instead, a recent study

utilized spatial omics techniques in the human thymus (275). These

emerging technologies including spatial transcriptomics resolution,

combined with mouse genetic studies hold promise for elucidating

the interactions between developing T cells and the stroma,

potentially providing insights for interventions to either promote

or inhibit T cell development according to disease requirements.

Another promising alternative is the use of tissue-engineered

artificial human thymus from human iPSCs (276), or the recently

generated thymus organoids (277). These models may better

resemble the physiological conditions in humans and help

determine the extent to which findings from murine studies are

applicable to humans.

Looking forward, it remains unclear whether extrinsic apoptosis

by death domain receptors and necrotic cell death modalities such

as necroptosis, pyroptosis, or ferroptosis are involved in acute

thymus atrophy. Additionally, optimizing thymus function

through the administration of cytokines or hormones to inhibit

thymus atrophy may prove beneficial in certain immunotherapies

against cancer, infectious diseases, or autoimmunity. However,

further research into the various aspects of thymus atrophy and
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its regeneration are required understand when it would be most

beneficial to support thymic T cell development.
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Ach Acetylcholine

AGM Aorta-gonad mesonephros

APC Antigen presenting cell

APCs Antigen-presenting cells

aSMase Acidic Sphingomyelinase

BM Bone Marrow

CAR-T Chimeric Antigen Receptor T-cell

CD Cluster of Differentiation

CDPs Common Dendritic Progenitors

CLP Cecal Ligation and Puncture

CLP Common-lymphoid progenitor

CLP-2 Common Lymphoid Progenitors-2

CMJ Corticomedullary junction

CMP Common-Myeloid Progenitor

CNS Conserved non-coding sequence

cTEC Cortical thymic epithelial cell

CTP Circulating T cell progenitor

DCs Dendritic cells

Dex Dexamethasone

Dll4 Delta-like 4

DN Double negative

DP Double positive

DR3 Death Receptor 3

DR5 Death Receptor 5

DS Down syndrome

E# Embryonic day

ECM Extracellular Matrix

ELPs Early Lymphoid Progenitors

ETP Early Thymic Progenitor

FADD FAS-Associated Protein with Death Domain

FOXP3 Forkhead box P3

GALT Gut-associated lymphoid tissue

GH Growth Hormone

GMP Granulocyte-monocyte progenitor

GPCR G protein-coupled receptor

GVHD Graft-Versus-Host Disease

HCT Hematopoietic cell transplant

HSC Hematopoietic stem cell
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IEL Intestinal intraepithelial lymphocyte

ILC Innate lymphoid cell

iNKT Invariant natural killer T cell

IPEX Immune dysregulation, polyendocrinopathy, enteropathy, X-
linked syndrome

iPSC Induced Pluripotent Stem Cell

LFA-1 Lymphocyte Function-Associated Antigen 1

LMPP Lympho-myeloid primed progenitor

LPS Lipopolysaccharide

LSK Lineage-Sca-1+ c-Kit+

MAPK Mitogen-Activated Protein Kinase

MCMV Murine Cytomegalovirus

MDP Macrophage-Dendritic Progenitor

MG Myasthenia gravis

MHC-I Major histocompatibility complex I

MHC-
II

Major histocompatibility complex II

MLKL mixed lineage kinase domain like

MPP Multipotent progenitor

mTEC Medullary thymic epithelial cell

NE Norepinephrine

NK Natural killer

OT Oxytocin

pDGS Partial DiGeorge syndrome

PCD Programmed cell death

pDC Plasmacytoid dendritic cell

PLC Phosphoinositide-Specific Phospholipase C

PVM Pneumonia Virus of Mice

PVS Perivascular spaces

RIPK1 Receptor-Interacting Protein Kinase 1

RIPK3 Receptor-Interacting Protein Kinase 3

ROS Reactive Oxygen Species

SCF Stem Cell Factor

SCID Severe Combined Immunodeficiency

sjTREC Signal Joint T-Cell Receptor Excision Circle

SLC Solute carrier transporter

SP Single positive

T3 Triiodothyronine

T4 Thyroxine

TCR T cell receptor

THF Thymic Humoral Factor
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TL1A TNF-like ligand 1A

Treg Regulatory T cell

TSLP Thymic stromal lymphopoietin

TSP Thymus seeding progenitor

VLA Very Late Antigen

VP Vasopressin

WNK1 With no lysine kinase 1
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