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uninfected infants
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and John W. Sleasman2*

1Molecular HIV Host Interactions Section, National Institute of Allergy and Infectious Diseases,
Bethesda, MD, United States, 2Division of Allergy and Immunology, Department of Pediatrics, Duke
University School of Medicine, Durham, NC, United States, 3Department of Biostatistics and
Bioinformatics, Duke University School of Medicine, Durham, NC, United States, 4Department of
Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill,
Chapel Hill, NC, United States, 5Institute of Global Health and Infectious Diseases, School of Medicine,
University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
Introduction: HIV-exposed uninfected (HEU) infants exhibit elevated pro-

inflammatory biomarkers that persist after birth. However, comprehensive

assessments of bioprofiles associated with immune regulation and

development in pregnant women with HIV (PWH) and HEU infants has not

been performed. Maternal immunity in PWH may be imprinted on their HEU

newborns, altering immune bioprofiles during early immune development.

Methods: Cryopreserved paired plasma samples from 46 HEU infants and their

mothers enrolled in PACTG 316, a clinical trial to prevent perinatal HIV-1

transmission were analyzed. PWH received antiretrovirals (ARV) and had either

fully suppressed or unsuppressed viral replication. Maternal blood samples

obtained during labor and infant samples at birth and 6 months were

measured for 21 biomarkers associated with germinal centers (GC),

macrophage activation, T-cell activation, interferon gamma (IFN-g)-inducible
chemokines, and immune regulatory cytokines using Mesoscale assays. Pregnant

women without HIV (PWOH) and their HIV unexposed uninfected (HUU)

newborns and non-pregnant women without HIV (NPWOH) served as

reference groups. Linear regression analysis fitted for comparison among

groups and adjusted for covariant(s) along with principal component analysis

performed to assess differences among groups.

Results: Compared with NPWOH, PWOH displayed higher levels of GC,

macrophage, and regulatory biomarkers. PWH compared to PWOH displayed

elevated GC, T cell activation, and IFN-g-inducible chemokines biomarkers at

delivery. Similar to their mothers, HEU infants had elevated GC, macrophage, and

IFN-g-inducible chemokines, as well as elevated anti-inflammatory cytokines, IL-

10 and IL-1RA. Across all mother/newborn dyads, multiple biomarkers positively

correlated, providing further evidence that maternal inflammation imprints on
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newborn bioprofiles. By 6 months, many HEU biomarkers normalized to levels

similar to HUU infants, but some GC and inflammatory biomarkers remained

perturbed. Bioprofiles in PWH and HEU infants were similar regardless of the

extent of maternal viral suppression by ARV.

Conclusions: GC immune pathways are perturbed in HEU newborns, but

immune regulatory responses down regulate inflammation during early

infancy, indicating a transient inflammatory effect. However, several GC

biomarkers that may alter immune development remain perturbed.
KEYWORDS

HIV, pregnancy, immune development, A proliferation-inducing ligand (APRIL),
macrophage, lymphoid germinal centers, HIV-exposed uninfected (HEU) infants, HIV-
unexposed uninfected (HUU) infants
1 Introduction

HIV-exposed uninfected infants and children have increased

morbidity and mortality associated with susceptibility to severe

infections and neurodevelopmental delay (1–6). While the causes of

these morbidities are complex, impaired immune development

contributes to the adverse outcomes throughout childhood

(7–13). There is increasing evidence that HIV-associated immune

dysregulation in pregnant women with HIV (PWH) adversely

impacts their HIV-exposed uninfected (HEU) infants (1, 5, 14–16).

Pregnancy, in the absence of HIV infection, is associated with

profound changes in maternal immunity that is tightly regulated

from early fetal implantation to the time of delivery (17, 18). To

assure maternal tolerance toward fetal tissues and to protect the

fetus from infection, key shifts in immunity and immune bioprofiles

occur throughout the course of gestation (19–21). By the time of

labor and delivery, the fetal/maternal interface is skewed toward a

pro-inflammatory state primarily mediated by activated monocytes/

macrophages within the placenta (20, 22). Macrophage activation in

late pregnancy is countered by enhanced immune regulatory

pathways including T regulatory cells (23, 24). Immune

dysregulation of the fetal/maternal interface is associated with

adverse pregnancy outcomes, such as pre-term birth and

preeclampsia (20, 24, 25). In PWH, further HIV-associated

perturbations of maternal pro-inflammatory pathways are
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thought to contribute to an increased incidence of adverse

pregnancy outcomes in HEU newborns (26, 27).

In HIV-unexposed and uninfected (HUU) newborns, germinal

center (GC) architecture consist of macrophages, dendritic cells, T

cells, and B cells that are under-developed compared to older

children (21). Within GC of HUU newborns there is a paucity of

T follicular helper cells associated with decreased expression of Th1

cytokines and functional immaturity of follicular dendritic cells

(28–30). Critical for immune priming in early life, GC components

shape effective vaccine responses in infants by directing

immunoglobulin class switch via IL-21, CD40/CD40L, production

of B cell developmental cytokines such as APRIL and BAFF, and

cognate interactions between T cells and B cells (31–35). Plasma GC

biomarkers detected in cord blood can predict vaccine responses in

later infancy in HUU infants (36).

Compared to HUU newborns, HEU newborns and infants

exhibit elevated pro-inflammatory bioprofiles similar to maternal

profiles, including few studies directly comparing PWH and

pregnant women without HIV (PWOH) mother/baby dyads

(9, 15, 37). Over the first 6 months of life and beyond, HEU

infants display persistent monocyte and antigen presenting cell

activation, impaired T cell responses, and upregulated T regulatory

cell function (38, 39). Some of these previous studies have examined

GC biomarkers such as IL-21 but there has not been a

comprehensive assessment of bioprofiles associated with GC

development that included key factors such as APRIL, BAFF, and

CD40L (15).

The current study is based on the hypothesis that the maternal

immune milieu in PWH can imprint early immune bioprofiles in

HEU newborns and infants. To test this hypothesis and to extend

the scope of previous investigations of immunity in HEU newborns

and infants, a panel of plasma biomarkers reflecting T cell activation

and differentiation, such as sCD27, IL-17, IL-22, and IL-2, and

interferon (IFN)-induced chemokines, combined with biomarkers

of GC development was developed to assess a broad array of
frontiersin.org
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biomarkers associated with early immune development. Plasma

samples obtained from PWH and their HEU infants enrolled in

Pediatric AIDS Clinical Trial Group (PACTG) 316, the largest

United States clinical trial to prevent perinatal HIV transmission,

were evaluated (40). Maternal samples were assessed during labor

along with term HEU infants at birth and 6 months. A cohort of

PWOH and their term HUU infants were included for comparison

as well as a longitudinal cohort of HUU infants from birth to 6

months. This novel study fills important gaps in the understanding

of the effect of pregnancy and HIV infection on immune networks

and how maternal immunity shapes immune development

in infants.
2 Materials and methods

2.1 Study cohort and plasma
sample collection

Plasma samples were selected from biorepositories established

to enhance retrospective analysis of archived blood samples from

study participants enrolled in clinical trials. Archived samples from

PWH and their HEU infants were obtained from Biomedical

Research Institute Repository (Rockville, MD) that were stored

from participants enrolled in PACTG 316, a nevirapine study for

the prevention of HIV transmission from mothers to babies

(ClinicalTrials.gov ID: NCT00000869). This was an international,

multicenter, randomized, double-blinded, placebo-controlled phase

III clinical trial that enrolled a total of 1,506 mother/infant dyads

between 1997 and 2000 (40). All PWH received antiretrovirals

(ARV) according to the standard of medical care at the time of

enrollment and were randomized to receive nevirapine or placebo

as a single dose for the mother during labor, and for the newborn

immediately following delivery. For the current study, 46 PWH and

their HEU infants from clinical sites within the United States,

primarily from sites in the northeastern and southeastern regions

were included. Based on the protocol, maternal plasma samples

were drawn from PWH during labor (within 2 days prior to

delivery); two exceptions were samples drawn before labor at 11

and 13 days prior to delivery. PWH were excluded from selection if

they had active infection, history of AIDS defining illnesses, or CD4

T cell counts < 200 cells/µl. Pre-term newborns (gestation < 37

weeks), were excluded because prematurity alters immune

bioprofiles (41–44). Half of the PWH (n = 23) achieved viral

suppression (VS) on ARV, defined as plasma viral load (VL) ≤

400 HIV-1 RNA copies/mL at the time of sampling, while the other

half (n = 23) achieved partial viral suppression (virally non-

suppressed, VNS) with plasma VL > 400 HIV-1 RNA copies/mL

(range 417 to 63,444 copies/mL). All HEU newborn blood samples

were obtained as cord blood (CB) with a second venous blood

sample obtained at 6 months of age. HEU infants were all term

infants (gestation > 37 weeks), per protocol, delivered vaginally or

by caesarian delivery, and all were exclusively formula fed to

prevent transmission of HIV by breast milk (Table 1).
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Samples from healthy women and infants in the current study

were obtained from 50 HUU newborns and infants, 18 PWOH, and

21 non-pregnant women without HIV (NPWOH), available in the

Duke Pediatric Immunology Biorepository, established for future

studies involving healthy mothers and infants, and approved by the

Institutional Review Board of Duke University (IRB#:

Pro00056028). Stored newborn and infants’ samples were

obtained under a protocol, the effect of breast feeding on

immunologic priming in young infants (ClinicalTrials.gov

Identifier NCT02568579) and collected from sites in Florida and

North Carolina between 2011 and 2017. All samples came from

term deliveries (gestation > 37 weeks), delivered vaginally with

paired PWOH and newborn CB samples from 18 mother/newborn

dyads. Among the 50 newborns, 32 were followed over the first 6

months of life and were either breast fed, formula fed, or a mixture

of breast and formula feeding (Table 1). Maternal plasma samples

from PWOH collected during labor (within 2 days before delivery).

Additional single time point plasma samples from 21 NPWOH

were selected for comparison to PWOH to identify the influence of

pregnancy on individual biomarkers. These participants were self-

declared healthy individuals who were enrolled as the control group

for Substance Use and Immunity in HIV+ Adolescents by Systems

Biology (ClinicalTrials.gov Identifier NCT00683579) between 2011

and 2021. Details for this cohort have been previously

described (45).

The current study design was formulated based on a 2019

request from the Eunice Kennedy Shriver National Institute of

Child Health and Human Development (NICHD) for exploratory/

developmental R21 research proposals (RFA-HD-19-018). The use

of archived samples was approved by NICHD counsel and a

research proposal, Impact of maternal HIV infection on immune

priming of their uninfected infants, was peer reviewed by an NIH

scientific review panel with the notice of award issued on April 14,

2020. Under a separate application (NWCS 629), a request for

samples was submitted and approved by the International Maternal

Pediatric Adolescent AIDS Clinical Trials Network (IMPAACT) on

August 6, 2020, and the specimens were released for study. All

PWH and HEU samples and clinical information obtained from

PACTG 316 participants, PWOH, HUU, and NPWOH were de-

identified. All participants or legal guardians provided signed

informed consent. Ethical review and approval for use of the

samples involving human participants was provided by Duke

University Institutional Review Board: Pro00050219 - Effects of

Breast Feeding on Immunologic Priming in Young Infants and

Pro00106528 - Impact of Maternal HIV Infection on Immune

Priming of Their Uninfected Infants, Office of Human Subject

Research (OHSR) of National Institute of Health (exemptions

13412, 13413 and 13414).
2.2 Biomarkers

Double spun frozen plasma aliquots from whole blood were

used in batch analysis. Twenty-three biomarkers associated with B
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cell and GC development (APRIL, BAFF, sCD40L, IL-21),

macrophage activation (sCD14, sCD163), T cell activation and

differentiation (sCD27, IFN-g, IL-17A, IL-22, IL-2, IL-4, and IL-

23), IFN-g-inducible chemokines (CXCL9/MIG, CXCL10/IP-10),

immune activation chemokines (CCL4/MIP-1b, CCL5/RANTES,
CXCL8/IL-8), inflammatory cytokines (TNF-a, IL-1b, IL-6), and
immune regulatory cytokines (IL-10, IL-1RA) were assessed. APRIL

was measured with a magnetic bead based Luminex singleplex assay

(Bio-Rad, Hercules, CA), other biomarkers were quantified by

singleplex (sCD14 and CCL5/RANTES), or multiplex (all other

analytes) assays, using the Meso Scale Diagnostics (Rockville, MD,

USA) platform, according to the manufacturer’s instructions. IL-4

and IL-23 were excluded from further analyses because more than

40% of the samples had values below the limit of detection for the

assays. All values for the remaining 21 plasma biomarker

concentrations are shown in Supplementary Tables 1, 2.
Frontiers in Immunology 04
2.3 Study design

Plasma biomarker concentrations were compared across four

distinct groups: 1) NPWOH and PWOH, 2) PWOH and PWH, 3)

HUU and HEU newborns, and 4) HUU and HEU infants at 6 months.

The study design is outlined in Figure 1. The first analysis compared

PWOH (n = 18) and NPWOH (n = 21) to determine how third

trimester pregnancy influences immune bioprofiles in the absence of

HIV infection. Second, comparison of PWOH (n = 18) and PWH (n =

46), including PWH-VS (n = 23) and PWH-VNS (n = 23) measured

the impact of suppressed HIV infection on maternal bioprofiles near

the time of delivery. Third, to determine how bioprofiles of HIV

exposed-uninfected newborns differ from unexposed newborns, HUU

and HEU newborns whose mothers’ viral replication were suppressed

(HEU-MVS) or not suppressed (HEU-MVNS) were analyzed. Fourth,

direct comparisons at birth between mother/baby dyads (each mother
TABLE 1 Demographics and clinical characteristics of study participants.

Study groups

NPWOH
(n=21)

PWOH
(n=18)

HUU
(n=50)a

PWH-VS
(n=23)

HEU-MVS
(n=23)

PWH-VNS
(n=23)

HEU-MVNS
(n=22)b

Time point Entry Laborc Birth & 6m Laborc Birth & 6m Laborc Birth & 6m

Women’s age (year)d 23 (20-30) 28 (23-31) NA 26 (23-33) NA 26 (23-30) NA

Self-reported as African
Americans

48% 17% 16% 44% 52%

CD4 T cell count (cells/mL)d,* ND ND ND 640 (433-798) ND 440 (259-530) ND

Viral load (HIV-1 RNA copies/
mL plasma)d

NA NA NA < 400e NA 2,881
(1,505–22,948)

NA

ARV during
pregnancy**

ZDV alone NA NA NA 1 (4%) NA 10 (44%) NA

NRTI combo NA NA NA 9 (39%) NA 7 (30%) NA

NRTI combo
+ PI

NA NA NA 13 (57%) NA 6 (26%) NA

ARV to mother
during labor

Nevirapine
single dose

NA NA NA 11 (48%) 13 (57%)

Pregnancy NA NA Termf NA Termf NA Termf

Baby sex Male NA NA 50% NA 39% NA 55%

Female NA NA 50% NA 61% NA 46%

Baby birth weight (kg)d,* NA NA 3.6 (3.1–3.9) NA 3.0 (2.8–3.4) NA 3.0 (2.8-3.4)

Mode of
delivery

Vaginal NA 100% 65% 46%

Cesarean
section

NA 0% 35% 55%

Infant feeding
method

Breast fed NA NA 59% NA 0% NA 0%

Formula fed NA NA 16% NA 100% NA 100%

Mixed fed NA NA 25% NA 0% NA 0%
NPWOH, non-pregnant women without HIV; PWOH, pregnant women with HIV; PWH-VS, pregnant women with HIV virally suppressed; HEU-MVS, HIV-exposed uninfected born to virally
suppressed mother; PWH-VNS, pregnant women with HIV virally non-suppressed; HEU-MVNS, HIV-exposed uninfected born to virally non-suppressed mother; ARV, antivirals; ZDV,
zidovudine; NRTI, nucleotide reverse transcriptase inhibitor; PI, protease inhibitor; ND, not determined; NA, not applicable.
aall 50 HUU babies have birth cord blood samples, including 32 HUU who also have 6 month venous blood samples; 18 HUU have maternal data; btwin newborns were excluded from the
analysis; cblood sample obtained during labor within 2 days before delivery; dMedian (25% - 75% quartile range); eundetectable HIV-1 viral load < 400 HIV-1 RNA copies/mL plasma; fterm
pregnancy is defined as delivery between 37 weeks 0 days and 41 weeks 6 days (44)
*p < 0.05 by Mann-Whitney U test (comparing CD4 T-cell between two PWH groups or birth weight between HUU and HEU babies); **p < 0.05 by Fisher’s exact test (comparing ARV during
pregnancy between two PWH groups).
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including PWOH, PWH-VS, and PWH-VNS vs her newborn

including HUU, HEU-MVS, and HEU-MVNS) to determine if

biomarkers in newborns reflect the biomarkers in their mothers.

Fifth, comparison among 6-month-old HUU and HEU infants

(HEU-MVS and HEU-MVNS) to determine how bioprofiles of

HEU newborns differ from HUU at 6 months of life and assess the

changes in bioprofiles over time.
2.4 Data analysis

Biomarker concentrations were log10 transformed with values

below the lower detection limit placed at one-half the assay lower

limit for analysis. Statistical analyses were performed within R. PCAwas

performed using the prcomp function within R. Linear regression was

performed for all analyses except when observations were at a lower
Frontiers in Immunology 05
limit of detection (left censored data), in which case Tobit regression was

performed. Mother’s age was adjusted for all analysis (Figure 1), while

babies’ sex was adjusted relative to their biomarkers (Figure 1, analyses

3-5). In the analysis of biomarker correlation between pregnant women,

or mother/newborn dyads, adjustments were made for the pregnant

women’s HIV and viral status (Figure 1, analyses 2 and 4). Multiple

testing corrections were via Benjamini-Hochberg FDR (https://

www.jstor.org/stable/2346101) with an unadjusted p-value less than

0.05 and an FDR corrected p-value less than 0.1 set as significant.

Pairwise comparisons among three groups of mothers (PWOH,

PWH-VS, PWH-VNS) or babies (HUU, HEU-MVS, HEU-MVNS

newborns or infants) were performed with significance set at p <

0.0167 (p < 0.05/3) using Bonferroni correction.

Selection of archived plasma samples from multiple cohorts

collected at different times and locations results in inherent

confounders within the data sets. To address this, we performed a
FIGURE 1

Overview of biomarker analyses plans across study groups. Analyses 1-3 and 5 compare biomarker concentrations; analysis 4 correlates biomarker
concentrations between mother and baby dyads; PCA1 demonstrates how the pregnant women clustered relative to all biomarkers; PCA2 illustrates
how the infants clustered relative to all biomarkers at birth and at 6 months of life; dotted line divides studies involving women, and studies involving
infants only. Analysis 1, compare NPWOH with PWOH; Analysis 2, compare among PWOH, PWH-VS, and PWH-VNS; Analysis 3, compare among
HUU, HEU-MVS, and HEU-MVNS newborns at birth; Analysis 4, correlation between all pregnant women (PWOH, PWH-VS, and PWH-VNS) with all
their newborns (HUU, HEU-MVS, and HEU-MVNS); Analysis 5, compare among HUU, HEU-MVS, and HEU-MNS infants at 6 months of age. The
number of participants in each group is shown in parentheses. The graphic was created with BioRender.com. NPWOH, non-pregnant without HIV;
PWOH, pregnant without HIV; PWH-VS, pregnant with HIV virally suppressed; PWH-VNS, pregnant with HIV virally non-suppressed; HUU, HIV-
unexposed uninfected; HEU-MVS, HIV-exposed uninfected born to PWH-VS; HEU-MVNS, HIV-exposed uninfected born to PWH-VNS. PCA,
principal component analysis.
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sensitivity analysis on infant biomarkers that were associated with

mother’s HIV status focusing on the mode of delivery, randomization

arm for PACTG 316, and feeding methods for the 6-month analysis.

We reran the model testing for significant biomarkers at birth and six

months without adjustment for any confounders on varying subgroups

of infants. To assess the role of mode of delivery and PACTG

randomization arm, we compared the HUU to a subgroup of HEU

who were randomized to placebo and had vaginal delivery. We

collapsed the two HEU newborns from the PWH-VS and PWH-

VNS groups together due to the small sample size, and no differences

between these two HEU groups were observed. To assess the impact of

feeding method on the 6-month analysis, we compared the HEU

infants at 6 months to HUU infants who received exclusively formula,

or a mix of formula and breast fed. Results of the sensitivity effect

estimates were compared to the results obtained for the entire HEU

and HUU cohorts. PCA was also performed in the HEU group via the

prcomp function within R to assess for any clear patterns by these

confounders. For the PCA, values at the lower detection limit placed at

one-half the lower limit and all data was log10 transformed. Missing

data was mean imputed solely for the PCA.
3 Results

Overall, 17% of PWOH self-identified as African American, while

about half of NPWOH and PWH were African American. Women’s

age was similar across the groups (Table 1). Among 46 PWH at delivery,

CD4 T cells counts were higher in PWH-VS [median 640 (range 433 –

798 cells/µL)], compared to PWH-VNS [median 440 (range 259 – 530

cells/µL)] (p = 0.0039).While all PWH received ARV during pregnancy,

half of PWH had undetectable plasma VL (≤ 400 HIV-1 RNA copies/

mL), and half had detectable plasma viral levels [median 2,881 (range

1,505 – 22,948) HIV-1 RNA copies/mL]. ARV among PWH varied as a

higher proportion of PWH-VS received nucleotide reverse transcriptase

inhibitor (NRTI) in combination with a protease inhibitor (PI), while

more PWH-VNS received zidovudine (ZDV)monotherapy (p = 0.006).

Overall, 52% of PWH (24/46) were randomized to single dose

nevirapine with similar distribution in VS [11/23 (48%)] and VNS

[13/23 (57%)] PWH. The proportion of male and female babies was

similar across all groups. Although the HEU newborns had lower birth

weights compared to HUU (p <0.0001), all newborns included in the

analysis were term deliveries, defined as > 37 weeks gestation (44). All 50

HUU newborns and the majority of HEU infants (26 of 46) were

vaginally delivered (HEU-MVS, 65%; HEU-MVNS, 46%). Over the first

6 months of life all HEU infants were exclusively formula fed, while

among HUU infants 16% were formula fed, 59% were breast fed, and

25% received mixed (formula and breast) feeding.
3.1 Influence of pregnancy on immune
bioprofiles in women without HIV

To identify immune bioprofiles associated with pregnancy,

PWOH and NPWOH plasma biomarker concentrations were
Frontiers in Immunology 06
in i t ia l l y compared . PWOH had s ignificant ly h igher

concentrations of biomarkers associated with GC development

(APRIL), macrophage activation and inflammation (sCD14,

sCD163, and IL-6), T cell activation (sCD27), and immune

regulation (IL-10 and IL-1RA), but lower concentrations of

sCD40L, CCL5, and IL-1b (Figure 2). In contrast, no significant

association was observed between pregnancy and plasma

concentrations of GC cytokines BAFF and IL-21, T cell

differentiation biomarkers (IFN-g, IL-17A, IL-22, and IL-2), IFN-

g-inducible chemokines (CXCL9, and CXCL10), immune activation

chemokines (CCL4 and CXCL8), or TNF-a. Taken together, third

trimester pregnancy in the absence of HIV infection is associated

with elevated pro-inflammatory bioprofiles, particularly sCD14 and

sCD163, suggesting GC and macrophage activation.
3.2 Influence of HIV infection on immune
bioprofiles during pregnancy

To assess the influence of HIV infection on pregnancy

bioprofiles, biomarkers among PWH (PWH-VS and PWH-VNS)

were compared with PWOH. Eleven biomarkers were similar

among the groups of pregnant women independent of HIV status

[including B cell developmental marker BAFF; macrophage

activation biomarker sCD14, T cell markers IFN-g, IL-17A, IL-22
and IL-2; immune activation markers CCL4 and CXCL8;

inflammatory cytokine IL-6; and immune regulatory biomarkers

IL-10 and IL-1RA] (Supplementary Table 3). In contrast, ten

biomarkers showed significant associations across the three

groups of pregnant women (Supplementary Table 3).

To further define significant bioprofiles among pregnant

women, pairwise differences between the three groups were

assessed (Figure 3). Relative to PWOH, PWH had lower

concentrations of APRIL and higher concentrations of GC

markers sCD40L and IL-21, macrophage activation marker

sCD163, T cell activation and differentiation biomarker sCD27,

IFN-g-inducible cytokine CXCL9, and immune activation

chemokines CCL5, TNF-a, and IL-1b. In general, independent of

viral suppression status, PWH displayed similar concentrations of

biomarkers with two exceptions: concentration of CXCL9 and

CXCL10 were elevated among PWH-VNS compared to PWH-VS.

These results indicate that at the time of labor, PWH had immune

activation involving IFN-g-inducible chemokines and T cell derived

biomarkers with little difference between PWH-VNS and PWH-VS.
3.3 Immune activation bioprofiles in
HEU newborns

Plasma biomarker concentrations in HEU and HUU newborns

were tested for differences by their HIV exposure status. After

adjusting for covariates of maternal age and infant sex, the

regression analysis identified 15 biomarkers differing significantly

across all groups. In contrast, six other biomarkers (BAFF, IFN-ү,
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FIGURE 2

Comparison of plasma biomarker concentrations between non-pregnant and pregnant women without HIV. Comparisons between PWOH and
NPWOH by plasma biomarkers sorted by association with germinal center development (APRIL, BAFF, sCD40L, IL-21), macrophage activation
(sCD14, sCD163), T cell activation and differentiation (sCD27, IFN-g, IL-17A, IL-22, IL-2), IFN-g-inducible chemokines (CXCL9, CXCL10), immune
activation chemokines (CCL4, CCL5, CXCL8), inflammatory (TNF-a, IL-1b, IL-6) and regulatory cytokines (IL-10, IL-1RA). The Y-axis shows log10
plasma biomarker concentrations (pg/mL). Adjusting for women’s age, linear regression was fitted to compare biomarker concentrations between
PWOH (black dots) and NPWOH (green dots), and Tobit regression was used when data contained values below detection limit, including IL-21, IFN-
g, IL-17A, IL-2, IL-1b, and IL-10. Multiple testing correction was done via the Benjamini Hochberg FDR with significance assessed as an un-adjusted
p < 0.05 and an FDR-adjusted p < 0.1 (shown as *). NPWOH, non-pregnant without HIV; PWOH, pregnant without HIV.
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IL-17A, IL-2, CXCL10 and CCL5) were similar among HEU-

MVNS, HEU-MVS, and HUU (Supplementary Table 4).

Subsequent pairwise comparisons of HEU and HUU groups are

shown in Figure 4. HEU newborns had higher biomarker concentrations

distributed across the functional categories and included: GC biomarkers

APRIL and IL-21, macrophage activation sCD14 and sCD163, T cell

activation and differentiation biomarkers sCD27 and IL-22, IFN-g-
inducible chemokine CXCL9, immune activation chemokine CCL4,

inflammatory cytokines TNF-a and IL-6, and immune regulatory

cytokines IL-10 and IL-1RA. All biomarker concentrations were

similar between HEU-MVS and HEU-MVNS with the exception of

CXCL8 which was higher in HEU-MVNS than in HEU-MVS. sCD40L

and IL-1b differed significantly among all three groups by regression

analysis but were insignificant by pair-wise comparisons.

Sensitivity analyses performed on biomarkers that were

significantly different between HEU and HUU to examine

possible effects of confounding variables, particularly mode of

delivery and randomization to the arm of PACTG 316. HUU

newborns (n = 50) were compared to a subset of HEU newborns

delivered vaginally and received placebo (n = 12). Comparison of

this HEU subset to HUU newborns showed no change in the
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direction of effect estimates of the biomarkers, suggesting that

nevirapine administration and caesarian delivery were not driving

the biomarker results. Other adjustments were not performed due

to the small sample size (Supplementary Figure 1).
3.4 Bioprofiles associations between
mother/newborn dyads

To test for an association between biomarkers in mother/

newborn dyads, a linear regression model fit the newborn (HUU,

HEU-MVS, and HEU-MVNS) values as the outcome and maternal

(PWOH, PWH-VS and PWH-VNS) values, adjusted for maternal

age, newborn sex and maternal HIV status, as the variables of

interest. Across all mother/newborn dyads, eleven biomarkers

[including GC biomarkers (BAFF, and IL-21), macrophage

activation biomarkers (sCD14, and sCD163), T cell differentiation

biomarker (IFN-g, and IL-17A), IFN-g-inducible chemokine

(CXCL9), immune activation chemokines (CCL4, and CCL5), and

inflammatory cytokines (TNF-a, and IL-6)] correlated significantly

(Supplementary Table 5). Four representative biomarkers, IL-21,
FIGURE 3

Comparison of plasma biomarker concentrations between pregnant women with and without HIV. Forest plot for 10 plasma biomarkers which’s
concentrations differed significantly among PWOH, PWH-VS, and PWH-VNS, while the concentrations of the other 11 biomarkers were similar.
Pairwise effect estimates and confident intervals are shown from a linear regression model, adjusting for woman’s age. Tobit regression was used
when data contained values below detection limit, including APRIL, IL-21, CXCL10 and IL-1b. For significant biomarkers (un-adjusted p < 0.05 and
FDR-adjusted p < 0.1), pairwise comparisons were performed with significance set at p < 0.0167 (p < 0.05/3 Bonferroni correction) and shown with

(*). PWH-VS vs PWOH; PWH-VNS vs PWOH; PWH-VNS vs PWH-VS. PWOH, pregnant without HIV; PWH-VS, pregnant with HIV virally

suppressed; PWH-VNS, pregnant with HIV virally non-suppressed.
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CXCL9, sCD14, and TNF-a are shown in Figure 5. Results suggest

that maternal inflammation related to pregnancy is reflected in their

newborns’ bioprofiles.
3.5 Persistence of immune activation
biomarkers over the first 6 months of life
in HEU infants

To determine whether the perturbed newborn bioprofiles persisted

into infancy, 6-month data from 45 HEU, and 32 HUU infants was

analyzed. Similar to the analysis at birth, linear regression analyses,

adjusted for maternal age and infant sex, were used to identify 11

biomarkers that were significantly different across all groups

(Supplementary Table 6). Comparisons of perturbed biomarkers at

age 6 months revealed significantly higher concentrations in HEU

infants in comparison to HUU infants but no differences between

HEU-MVS and HEU-MVNS (Figure 6).

Bioprofiles in HEU infants in reference to HUU infants changed

over time (Figure 7). Statistically significant differences at birth
Frontiers in Immunology 09
between the three groups for sCD163, sCD27, IL-22, CXCL9,

CXCL8, IL-6, IL-10, and IL1-RA were no longer evident at 6

months of life. In contrast, birth differences for APRIL, sCD40L,

IL-21, sCD14, CCL4, TNF-a, and IL-1b persisted for 6 months,

while biomarkers including BAFF, IL-2, IFN-g, and CCL5 emerged

in HEU infants that were significantly different from HUU infants.

Changes in plasma concentrations of significant cytokines varied

from birth to 6 months. For example, APRIL levels declined from

birth to 6 months while sCD14 and TNF-a increased in both HUU

and HEU infants (Supplementary Table 2). The sensitivity analysis

suggested that the results were not changed by feeding methods

(data not shown).
3.6 Bioprofiles in PWH and HEU newborns
are distinct from PWOH and
HUU newborns

Bioprofile relatedness shows considerable overlap between

PWH-VS and PWH-VNS, which was distinct from PWOH
FIGURE 4

Comparison of plasma biomarker concentrations among newborns. Forest plots for 15 plasma biomarkers which’s concentrations differed
significantly among HUU, HEU-MVS, and HEU-MVNS newborns, while the concentrations of the other 6 biomarkers were similar. Biomarker
comparisons show pairwise effect estimates and confident intervals from a linear regression model, adjusting for mother’s age and newborn’s sex.
Tobit regression was used when data contained values below detection limit, including IL-21, IL-22, IL-1b, and IL-10. For significant biomarkers (un-
adjusted p < 0.05 and FDR-adjusted p < 0.1), pairwise comparisons were performed with significance set at p < 0.0167 (p < 0.05/3 Bonferroni

correction) and shown with * HEU-MVS vs HUU; HEU-MVNS vs HUU; HEU-MVNS vs HEU-MVS. HUU, HIV-unexposed uninfected; HEU-

MVS, HIV-exposed uninfected born to virally suppressed mother; HEU-MVNS, HIV-exposed uninfected born to virally non-suppressed mother.
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(Figure 8A). In newborns and infants, there was a considerable

overlap between HEU infants regardless of their mother’s viral

status and both were distinct from HUU. Furthermore, all

newborns at birth were distinct from 6 months with HEU infants

distinguishable from HUU at both time points (Figure 8B).
4 Discussion

PACTG 316 was the largest U.S. multi-site clinical trial to

prevent perinatal HIV transmission and was uniquely suited for

this study as cryopreserved blood samples and clinical outcomes

were available from mothers, newborns, and infants through the

first 6 months of life (40). For many years, the application of

archived clinical and prospectively collected specimens to generate

new research questions has been part of the research priorities of
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HIV/AIDS research agenda (46). Using stored specimens from

completed studies enables secondary analyses involving research

techniques and discoveries that did not exist when the primary

clinical trials were completed (47). Retrospective analysis of clinical

and archived laboratory specimens from completed studies is

efficient and less costly than developing new clinical trials and

can be maximizes resources to address questions of pathogenesis

and generate rationale for new interventions built on the original

research. A considerable number of studies have demonstrated the

validity of using cryopreserved plasma and cell samples that have

been stored decades for immune-based assays (48, 49). However,

the use of archived specimens has limitations (50). In the case of our

study, the ARV used in PACTG 316 differed across time and does

not reflect contemporary ARV used for HIV treatment. The

PWOH, HUU, and NPWOH specimens were collected as part of

different clinical trials and at different geographic sites because
FIGURE 5

Biomarker correlations between mother/newborn dyads. Linear regression was fit with plasma biomarker concentrations from newborns’ (HUU,
HEU-MVS, and HEU-MVNS) values as the outcome (y axis, log10 in pg/mL) and their mothers’ (PWOH, PWH-VS and PWH-VNS) values as the variable
of interest (x axis, log10 in pg/mL) adjusted for mother’s age, newborn’s sex, and mother’s HIV and viral status. Results for four representative
biomarkers are shown: IL-21, marker of germinal center development; CXCL9, biomarker of interferon-g-inducible chemokines; and sCD14 and
TNF-a, biomarkers of macrophage activation. Tobit regression was used when data contained values below detection limit, including IL-21. Multiple

testing correction was based on p-value < 0.05 and FDR p-value < 0.1. PWOH/HUU; PWH-VS/HEU-MVS; PWH-VNS/HEU-MVNS. PWOH,

pregnant without HIV; HUU, HIV-unexposed uninfected; PWH-VS, pregnant with HIV virally suppressed; HEU-MVS, HIV-exposed uninfected born to
PWH-VS; PWH-VNS, pregnant with HIV virally non-suppressed; HEU-MVNS, HIV-exposed uninfected born to PWH-VNS.
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PACTG 316 lacked a reference cohort of women and infants

without HIV. Additionally, the viral quantitation assays used to

define undetectable viral replication (< 400 RNA copies/mL) are less

sensitive than current assays that detect virus as low as 20 RNA

copies/ml (51). While CD4 T cell counts were similar and clinical

co-morbidities such as active infection and AIDS defining illnesses

were excluded, PWH participants selected for study may have had

occult viral infections such as maternal CMV, that could influence

the bioprofiles in the HEU infants (52, 53). The conclusions

regarding the effects of HIV infection during pregnancy and in

HEU infants are strengthened by the inclusion of cohorts of non-

pregnant and pregnant women without HIV and their HUU infants

for comparison to PWH, virally suppressed or not suppressed on

ARV. All infants, regardless of their maternal HIV status, were term

deliveries, so gestational age and complications associated with

prematurity were not included in the model. When the potential

influences of confounders such as mode of delivery, maternal ARV,

and feeding methods were addressed by performing a sensitivity

analysis within specific subsets of newborns and infants the results
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showed no change in the direction of the association for the

significant biomarkers. Collectively, these cohorts allowed for

clear comparisons to reveal the effects of maternal HIV infection

on immune pathways during late pregnancy and in HEU newborns.

Elevated levels of pro-inflammatory cytokines in PWOH are

primarily mediated by maternal cells within the uterus and placenta

at the fetal/maternal interface (19, 20). Factors that accentuate

inflammatory responses, such as LPS, are associated with adverse

pregnancy outcomes including pre-term birth and pre-eclampsia

(54, 55). Using PWOH as a comparison group, our study dissects

HIV effects on both innate and adaptive immune profiles within

pregnant women and the impact of HIV exposure for early immune

development in their HEU newborns and infants. Rather than focus

solely on macrophage activation, the inclusion of biomarkers

involved in GC development (APRIL, BAFF, sCD40L, and IL-21)

expands the scope of previous studies (26, 27, 56). In addition to

pivotal roles in B cell development, Immune mechanisms within

GC mediate pregnancy outcomes in both murine and human

models (57, 58). Overall, the specific repertoire of plasma
FIGURE 6

Comparison of plasma biomarker concentrations among infants at 6 months of age. Forest plot for 11 plasma biomarker concentrations which
significantly differed among 6-month-old infants without or with exposure to maternal HIV (HUU, HEU-MVS, and HEU-MVNS). The other 10
biomarkers’ concentrations were similar. Pairwise effect estimates and confident intervals are shown from a linear regression model, adjusting for
mother’s age and newborn’s sex. Tobit regression was used when data contained values below detection limit, including APRIL, IL-21, IL-2, TNF-a,
and IL-1b. For significant biomarkers (un-adjusted p < 0.05 and FDR-adjusted p < 0.1), pairwise comparisons were performed with significance set at

p < 0.0167 (p < 0.05/3 Bonferroni correction) and shown with *. HEU-MVS vs HUU; HEU-MVNS vs HUU; HEU-MVNS vs HEU-MVS. HUU,

HIV-unexposed uninfected; HEU-MVS, HIV-exposed uninfected born to virally suppressed mother; HEU-MVNS, HIV-exposed uninfected born to
virally non-suppressed mother.
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biomarkers used in our study can be accurately measured and

validated in routine blood testing, supporting their value as

outcome measures in clinical trials (59–64).

Proinflammatory biomarkers during late third trimester

pregnancy and labor in healthy women trigger compensatory

increases in regulatory cytokines that attenuate the inflammatory

impact of late pregnancy; for example, lower levels of IL-10 are

associated with pre-eclampsia (23, 24, 65–67). As expected in our

study, PWOH in late pregnancy, compared to non-pregnant

women, displayed higher levels of sCD14, sCD163, and IL-6. A

novel finding in PWOH was the association of late third trimester

pregnancy with high levels of APRIL, a GC biomarker, and sCD27,

a biomarker of T cell activation. In PWOH, pregnancy-related

immune activation is countered by elevated immune regulatory

cytokines IL-10 and IL-1RA (24). Taken together, PWOH who have

term pregnancies display a pro-inflammatory bioprofile

characterized by macrophage activation, but also elevated levels

APRIL and anti-inflammatory cytokines, all known to play key roles

in maintaining normal pregnancies (20, 22–25).

Overall bioprofiles of pregnant women with HIV are distinct

from PWOH, although some individual biomarkers are similar.

Macrophage activation biomarkers sCD14 and IL-6 are associated
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with chronic inflammation in people with HIV, either virally

suppressed or not suppressed on ARV (45, 68, 69). Yet no

significant differences were found in our study between PWOH

and PWH. Absence of an association between these macrophage

activation biomarkers in pregnancy is likely due to innate immune

triggers, particularly through TLR4 during normal labor, that are

similar to chronic HIV infection. Intrauterine microbes may activate

TLR4 on macrophages during normal pregnancy to induce a

macrophage response (25, 43, 54). Furthermore, blockade of TLR4

improves pregnancy outcome in murine models, suggesting that

failure to regulate macrophage activation leads to adverse

pregnancy outcomes including pre-term birth and pre-eclampsia

(70). It remains unclear if a TLR4 inflammatory mechanism plays

a role in HIV-associated pregnancy complications (26, 27, 71).

Although longitudinal comparisons of women with HIV before

and during pregnancy indicate that CXCL10 and sCD14 levels

decline in pregnancy (56), these studies lacked PWOH as a

comparison group. Compared to PWOH in our study, PWH

showed higher levels of several pro-inflammatory biomarkers,

most notably the IFN-g-inducible chemokine CXCL9, which was

further elevated in PWH with detectable viral replication, and the

pro-inflammatory chemokine CCL5. These chemokines are known
FIGURE 7

Changes of perturbed biomarkers from birth to 6 months of age in HEU infants in comparison to HUU infants. The plasma biomarkers significantly
differed in HEU infants (HEU-MVS plus HEU-MVNS, N = 45) from HUU (N = 32 with longitudinal data) at birth and at 6 months of life were
demonstrated by Venn diagram. Biomarkers significantly different by HIV exposure: birth (pink circle) and 6 months (green circle). Biomarkers
persistently different at birth and 6 months of life are in the overlapped area. HUU, HIV-unexposed uninfected; HEU, HIV-exposed uninfected; HEU-
MVS, HIV-exposed uninfected born to virally suppressed mother; HEU-MVNS, HIV-exposed uninfected born to virally non-suppressed mother.
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biomarkers of macrophage activation during viral infection,

including HIV, Hepatitis C, and SARS-COV2, as well as other

inflammatory states associated with macrophage activation (72–77).

PWH had lower APRIL levels but no statistical differences in BAFF.

Additional studies are needed to determine if levels of APRIL,

sCD40L and IL-21, which were higher in PWH compared to

PWOH, are associated with adverse pregnancy outcomes in

PWH. Within the study cohort the cutoff for undetectable viral

suppression was < 400 copies/ml, higher than current viral

detection platforms with cutoffs of < 50 copies/ml. However,

many studies have demonstrated persistent elevated pro-

inflammatory biomarkers even when viral RNA is < 50 copies

with ARV (45, 78, 79). Overall, few differences in biomarker profiles

between PWH-VS and PWH-VNS indicate that some elevated

inflammatory biomarkers in PWH are independent of

viral replication.

Previous studies show higher levels of macrophage activation

and inflammation in HEU newborns (37). Similarly, HEU

newborns in our cohort had elevated sCD14 and IL-6 indicating

enhanced macrophage activity at the fetal maternal interface with

elevated immune regulatory cytokines to counter immune

activation (39). Underdeveloped GC in newborns contribute to

the hypo-responsiveness of HUU infants to immunizations in early

life (21, 28). Macrophage activation biomarkers in HUU CB, such as

sCD14, are associated with higher post-vaccination pertussis

responses, whereas CB concentrations of APRIL are associated

with lower pertussis titers after immunization (36). In contrast,

CB concentrations of sCD14 and APRIL were positively associated

with sustained post-immunization titers to tetanus, demonstrating

how different GC bioprofiles are associated with vaccine

responsiveness. In addition to biomarkers associated with
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macrophage activation, HEU newborns in the PACTG 316

cohort, compared to HUU newborns, displayed higher

concentrations of GC biomarkers APRIL, sCD40L, and IL-21.

Together, PWH and their HEU newborns had elevated

proinflammatory bioprofiles including T cell activation and IFN-

g-inducible chemokine such as CXCL9. While HEU infants have

higher infectious morbidity and mortality compared to HEU

infants, the precise mechanisms are unclear (80). Many studies

have shown that passively acquired maternal immunity from PWH

is lower compared to PWOH (11, 81, 82). However, results of post

immunization immune responses vary among studies of HEU

infants and children. Compared to HUU infants, HEU infants

have more robust post immunization titers to pertussis and

conjugated bacterial immunogens but lower tetanus responses

(83–85). Disruption of GC dynamics in HEU infants is likely to

play a role in determining how HEU infants respond to

immunizations based on the nature of the immunogen. GC

biomarkers may predict how HEU infants responds to

vaccination and explain apparent discrepancies in immunization

outcomes to individual vaccines.

Bioprofiles in HEU newborns were distinct from HUU

newborns independent of the extent of maternal viral suppression

(5, 37), while bioprofiles of HEU and HUU newborns were distinct

from their mothers. Regression analysis between all mother/

newborn dyads revealed multiple significant associations

including GC biomarkers (BAFF and IL-21), macrophage

activation (sCD14 and sCD163), cytokines (IFN-g, IL-17A TNF-

a, and IL-6), and chemokines (CXCL9, CCL4, and CCL5). Most

evidence indicate that there is little transfer of proinflammatory

cytokines across the placenta (86). Fetal/maternal hemorrhage may

results in factors within maternal blood that activate immune
FIGURE 8

Bioprofile relatedness among pregnant women and among newborns. PCA of pregnant women (A), and newborn and infants (B) were generated

using the prcomp package in R on the log10 transformed biomarker concentrations. (A) PWOH; PWH-VS; PWH-VNS. (B) HUU ( CB;

6-months); HEU-MVS ( CB; 6-months); HEU-MVNS ( CB; 6-months). PCA, principal component analysis; PWOH, pregnant without

HIV; PWH-VS, pregnant with HIV virally suppressed; PWH-VNS, pregnant with HIV virally non-suppressed; HUU, HIV-unexposed uninfected; HEU-
MVS, HIV-exposed uninfected born to PWH-VS; HEU-MVNS, HIV-exposed uninfected born to PWH-VNS.
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receptors in the newborn (87, 88). However, based on studies of

mother/baby dyads in other viral infections such as SARS CoV2,

shared inflammatory triggers effecting both mother and newborns

is the most likely explanation in HEU newborns (22, 73, 89). In

HEU newborns these shared triggers could include LPS, HIV

proteins, other infections, environmental, or genetic factors

leading to activation of maternal and fetal immunity through

similar pathways (58, 79, 90–93). There is also recent evidence

that alterations in maternal immune regulatory function can result

in epigenetic changes in CB (94–98). In any case, it is clear that

maternal immunity is imprinted on the newborns to shape early

immune development (91, 92).

Perturbations of GC cellular pathways altered at delivery in

HEU newborns are outlined in Figure 9. Most notably, TLR4/CD14

signaling results in macrophage activation with subsequent TNF-a,
IL-6, IL-1b, CCL4, and CXCL8 secretion (25). The accelerating

inflammatory response is associated with shedding of sCD163 and

IFN-g-induced CCXL9 (55, 99). At the same time, HIV-associated T
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cell activation, manifest by shedding of sCD27, induces IL-22 and

IL-21 production which perturbs T cell/B cell interactions through

CD40/CD40L altering B cell development (34). Dendritic cells are

impacted as evidenced by higher production of APRIL by HEU

newborns. These drivers of T cell and macrophage mediated

activation are simultaneously countered by production of IL-1RA

which blocks IL-1b, as well as production of IL-10 to attenuate

multiple cellular inflammatory pathway including those triggered

by mediators such as LPS and HIV proteins (69, 79, 100). There is

evidence that elevated plasma LPS levels and microbial

translocation causes persistent macrophage activation even with

optimal control of viral replication by ARV in infected individuals.

It is unclear if these factors play a role in the pro-inflammatory

bioprofiles of HEU infants (68, 69, 75, 79, 90, 100).

Normalization of many inflammatory biomarker levels by

immune regulatory mechanisms may suggest a transient

maternal effect on HEU infant immune development. However,

several biomarkers, including APRIL, sCD40L and IL-21,
FIGURE 9

Germinal center cellular networks disrupted in HIV-exposed uninfected newborns. Plasma biomarkers elevated in HEU newborns (HEU-MVS and/or
HEU-MVNS), compared to HUU newborns, are shown in bold red italics font. Biomarkers that are similar in HEU and HUU newborns are shown in
black font. Elevated cleavage of sCD163 and sCD14 indicate Mj activation and associated elevated concentrations of TNF-a, IL-6, IL-1b, CCL4, and
CXCL8 as well as IFN-g-inducible chemokine CCXL9. Cleavage of CD27 to sCD27 is a biomarker of T cell activation, with specific increases Th17-
associated cytokines IL-22 and IL-21 as well as release of sCD40L at the T cell/B cell interface. DC release higher concentrations of APRIL. Mj and T
cell activation are simultaneously countered by IL-10 from Treg cells, and IL-1RA which blocks IL-1b receptor binding to attenuate multiple cellular
inflammatory pathways. These immunoregulatory biomarkers are shown in bold red italics and underlined. Possible triggers of GC activation include
LPS activation through TLR4 and/or effects of HIV proteins on newborn cells (54, 79). Biomarkers IL-4 and IL-23 (shown as grey*) were not included
in the analysis because > 30% of samples had levels below the limit of detection. This graph was created with BioRender.com. HEU, HIV-exposed
uninfected; HEU-MVS, HIV-exposed uninfected born to virally suppressed mother; HEU-MVNS, HIV-exposed uninfected born to virally non-
suppressed mother; HUU, HIV-unexposed uninfected; Mj, macrophage; DC, dendritic cells. Treg, regulatory T cells; GC, germinal center.
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remained perturbed in HEU infants at 6 months suggesting a

sustained effect on GC pathways that could affect B cell

development and immunoglobulin class switch. By 6 months of

age emergence of perturbations in the plasma concentration of

BAFF, T cell chemoattractant CCL5, and Th1 cytokines IL-2 and

IFN-g support the concept that HEU infants have persistent

selective alterations in immunity throughout infancy (38).

Application of these biomarkers, when linked to long-term

clinical outcomes in HEU infants and children, may provide

further insight into the long-term complications associated with

children born to women living with HIV. The fetal/maternal

interface lies at the nexus of innate and adaptive immunity, to

shape GC development. There is increasing evidence that the

intrauterine environment not only affects pregnancy outcomes but

also primes infant immunity to increase the risk for allergic

disorders and the effectiveness of vaccine responses (81, 82, 84,

93, 101, 102). Our results indicate that immune regulatory

responses down-regulate inflammation and are likely to preserve

immune function in HEU infants. However, there may be subsets

of HEU infants who are at risk for long-term infections and

immune dysregulation as a result of maternal HIV infection (13).

Extended longitudinal studies of bioprofiles of immune networks

are needed to assess the long-term health consequences from

gestational viral exposure in HEU infants.
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