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Introduction: The Janus kinase (JAK) family includes four cytoplasmic tyrosine

kinases (JAK1, JAK2, JAK3, and TYK2) constitutively bound to several cytokine

receptors. JAKs phosphorylate downstream signal transducers and activators of

transcription (STAT). JAK-STAT5 pathways play a critical role in basophil andmast

cell activation. Previous studies have demonstrated that inhibitors of JAK-STAT

pathway blocked the activation of mast cells and basophils.

Methods: In this study, we investigated the in vitro effects of ruxolitinib, a JAK1/2

inhibitor, on IgE- and IL-3-mediated release of mediators from human basophils,

as well as substance P-induced mediator release from skin mast cells (HSMCs).

Results: Ruxolitinib concentration-dependently inhibited IgE-mediated release

of preformed (histamine) and de novo synthesized mediators (leukotriene C4)

from human basophils. Ruxolitinib also inhibited anti-IgE- and IL-3-mediated

cytokine (IL-4 and IL-13) release from basophils, as well as the secretion of
Abbreviations: ANOVA, Analysis of variance; CTR, control; EMA, European medicines agency; ET, essential

thrombocythemia; FceRI, high-affinity immunoglobulin (Ig)E receptors; FDA, food and drug administration;

HSMCs, skin mast cells; IC50, half-maximal inhibitory concentration; IMDM, Iscove modified Dulbecco

medium; JAK, Janus kinase; LDH, lactate hydrogenase; LTC4, leukotriene C4; MCTC, mast cell expressing

tryptase and chymase; MDM, monocyte-derived macrophage; MF, myelofibrosis; MPN, Philadelphia (Ph)-

negative myeloproliferative neoplasms; MRGPRX2, MAS-related G protein-coupled receptor-X2; PGMD,

poly-glycerol-malic acid-dodecanedioic acid; Pipes, piperazine-N, N’-bis (2-ethanesulfonic acid); PV,

polycythemia vera; STAT, signal transducer and activator of transcription; SD, standard deviation; TYK2,

tyrosine-protein kinase 2; r, coefficient of correlation; VIP,vasoactive intestinal peptide

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1443704/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1443704/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1443704/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1443704/full
https://orcid.org/0000-0002-4723-0167
https://orcid.org/0000-0002-7835-2212
https://orcid.org/0000-0002-5928-1869
https://orcid.org/0000-0002-9005-6571
https://orcid.org/0000-0001-6145-7475
https://orcid.org/0000-0001-9504-429X
https://orcid.org/0000-0002-6434-3112
https://orcid.org/0000-0002-9849-4701
https://orcid.org/0000-0001-7889-425X
https://orcid.org/0000-0002-5871-1898
https://orcid.org/0000-0002-9285-4657
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1443704&domain=pdf&date_stamp=2024-08-12
mailto:gildanet@gmail.com
https://doi.org/10.3389/fimmu.2024.1443704
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1443704
https://www.frontiersin.org/journals/immunology


Poto et al. 10.3389/fimmu.2024.1443704

Frontiers in Immunology
preformed mediators (histamine, tryptase, and chymase) from substance P-

activated HSMCs.

Discussion: These results indicate that ruxolitinib, inhibiting the release of several

mediators from human basophils and mast cells, is a potential candidate for the

treatment of inflammatory disorders.
KEYWORDS
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1 Introduction

The Janus kinase (JAK) family includes four cytoplasmic tyrosine

kinases: JAK1, JAK2, JAK3, and tyrosine-protein kinase 2 (TYK2)

(1, 2). JAKs are constitutively bound to several cytokine receptors and

upon ligand binding to its receptor, JAKs phosphorylate downstream

signal transducers and activators of transcription (STAT) (3, 4). The

STAT family has seven members (STAT1, STAT2, STAT3, STAT4,

STAT5A, STAT5B, and STAT6) (5), which have a major role in the

regulation of hematopoietic and immune cells (2). The tyrosine

kinase domain of JAKs is the site of catalytic activity and is

blocked by first- and second-generation JAK inhibitors (6).

The JAK2-STAT5 signaling pathway is crucial for the activation

growth and survival of mast cells (7, 8) and basophils (9–12).

STAT5 also plays a role in IgE-mediated mast cell degranulation,

making the JAK2-STAT5 pathway an appealing target for the

inhibition of mast cell activation (8). Ruxolitinib, a JAK1/JAK2

inhibitor (13), has shown clinical benefits in polycythemia vera

(PV) patients which carry an activity mutation of JAK2 gene (i.e.,

V617F) (14–16). Ruxolitinib inhibits anaphylaxis in mice, and two

studies reported a decrease in mast cell mediator-related symptoms

in patients with systemic mastocytosis treated with ruxolitinib (17,

18). Several JAK1/2 and STAT5 inhibitors suppress the activation of

mastocytoma cell lines (19, 20) and human basophils (21–23).

Human peripheral blood basophils share some similarities with

tissue-resident mast cells (24, 25). Both cell types express high-

affinity immunoglobulin (Ig)E receptors (FceRI), contain basophilic

granules in the cytoplasm, and release histamine and other

inflammatory mediators (24). Several studies have demonstrated

the distinct roles of basophils in allergic inflammation in both mice

(26, 27) and humans (28–30). Atopic dermatitis and chronic

spontaneous urticaria are characterized by chronic pruritus (31)

and basophils are involved in their pathobiology (32) and likely

contribute to itch (33). Itching is also a common symptom in PV,

affecting more than 50% of patients (34, 35). Pruritus can be an

initial symptom or precede the development of hematologic

manifestations (35–38). Importantly, Pieri and collaborators first

demonstrated that basophils from JAK2 V617F PV patients

overexpressed CD63, a marker of basophil activation (39),

compared to controls when challenged with IL-3 plus fMLP (21).
02
Moreover, the JAK2 inhibitor compound AZD1480 reduced CD63

expression in basophils of PV patients in response to IL-3

plus fMLP.

Mast cells are in close anatomical association with myelinated

and unmyelinated neural structures and blood vessels (40), forming

an important functional unit that maintains homeostasis and

responds to insults (41–44). A critical aspect of this multicellular

crosstalk includes the interaction between mast cells and sensory

nerves (45). Sensory nerves express neuropeptides (e.g., substance

P, VIP) and neurotransmitters that facilitate neural-immune

communication, leading to mast cell mediator release which

subsequently activates sensory neurons via different receptors

(33). Mast cell density in the skin was increased in JAK2 V617F

transgenic mice compared to controls (46).

Ruxolitinib inhibits the catalytic activity of wild-type JAK2 as

well as mutant JAK2 (6). This drug was approved for the treatment

of MF by the US Food and Drug Administration (FDA) in 2011 and

by the European Medicines Agency (EMA) in 2012, followed by the

approval for the treatment of hydroxyurea-resistant or -intolerant

PV in 2014. Recent evidence demonstrates that ruxolitinib inhibits

the release of hexosaminidase and TNF-a from mast cell lines (47)

and the expression on human basophils of CD300f induced by IL-3

(48). In this study, we have evaluated the in vitro effects of

pharmacologic concentrations of ruxolitinib on IgE-mediated

release of proinflammatory mediators (histamine and LTC4) and

cytokines (IL-4 and IL-13) from highly purified human basophils.

Additionally, we have examined the effects of ruxolitinib on IL-3-

mediated release of cytokines (IL-4 and IL-13) from basophils and

on substance P-induced secretion of several preformed mediators

(histamine, tryptase, and chymase) from human skin mast cells.
2 Materials and methods

2.1 Reagents

Bovine serum albumin, human serum albumin, piperazine-N,

N’-bis (2-ethanesulfonic acid) (Pipes), hyaluronidase, chymopapain,

elastase type I, substance P, LTC4 (Sigma Chemical Co., St. Louis,

MO, USA), and ruxolitinib (Cambridge Bioscience, Cambridge, UK)
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were commercially obtained. Ruxolitinib was dissolved in ethanol at

the concentration of 13 mg/ml. Collagenase (Worthington

Biochemical Co., Freehold, NJ, USA), Hanks’ balanced salt solution

and fetal calf serum (FCS), Iscove modified Dulbecco medium

(IMDM) (GIBCO, Grand Island, NY, USA), human recombinant

IL-3 (R & D System, Minneapolis, MN, USA), deoxyribonuclease I

and pronase (Calbiochem, La Jolla, CA, USA), Percoll® (Pharmacia

Fine Chemicals, Uppsala, Sweden), HClO4 (Baker Chemical Co.,

Deventer, The Netherlands), (3H)-LTC4 (New England Nuclear,

Boston, MA, USA) were commercially purchased. Basophil

Isolation Kit II and CD117 MicroBead kit were obtained from

Miltenyi, Biotec (Bologna, Italy). Anti-IgE produced by rabbit

immunization with the Fc fragment of a human IgE myeloma

(patient PS) and then absorbed with the IgE Fab (49) was a gift of

Drs. Teruko and Kimishige Ishizaka (La Jolla Institute for Allergy and

Immunology, La Jolla, CA, USA). Rabbit anti-LTC4 antibody was

donated by Dr. Lawrence M. Lichtenstein (The Johns Hopkins

University, Baltimore, MD, USA). Tryptase fluoroenzyme

immunoassay (Phadia Diagnostic AB, Uppsala, Sweden) was kindly

donated by Kabi Pharmacia (Milan, Italy).
2.2 Buffers

The Pipes buffer was made by 25 mM Pipes, 110 mM NaCl, 5

mM KCl, pH 7.4 and referred to as P buffer. P2CG contains, in

addition to P buffer, 2 mM CaCl2 and 1 g/l dextrose (32) and was

used for short-term (45 min) incubations of basophils and skin mast

cells. PGMD contains 1 mMMgCl2, 10 mg/l DNase, and 1 g/l gelatin

in addition to P buffer, pH 7.37 and was used to wash skin mast cells

during the isolation. IMDM was used for long-term incubation of

human basophils (4 hours for IL-4 and 16 hours for IL-13).
2.3 Purification and activation of
human basophils

The study was approved by the Ethics Committee of the

University of Naples Federico II (198/18), and written informed

consent was obtained from all subjects involved in the study

according to the recommendations from the Declaration of

Helsinki. Basophils were isolated from peripheral blood of healthy

volunteers (26% females), aged 19-44 years, undergoing

hemapheresis at the University of Naples Federico II. Buffy coats

were subjected to double-Percoll density centrifugation, which

produced basophil-depleted cell and basophil-enriched cell

suspensions (50, 51). Basophils were purified from the basophil-

enriched cell suspensions using the Basophil Isolation Kit II

(Miltenyi, Biotec, Bologna, Italy). Duplicate basophil aliquots, with

a purity of ≥ 98% assessed by Alcian blue staining (52) were

resuspended in P2CG and the cell suspension were placed in 12 x

75 mmpolyethylene tubes and warmed to 37°C; anti-IgE (10-1 mg/ml)

was added, and incubation was continued for 45 min at 37°C (53). At

the end of incubations, cells were centrifuged (1000 g, 22°C, 2 min)

and the supernatants were stored at -20°C for subsequent assay of

histamine and LTC4 (54). Histamine was expressed as percent of the
Frontiers in Immunology 03
total content assessed in samples lysed with the addition of 2%

HClO4, minus the spontaneous release (53, 55). LTC4 was analyzed

by radioimmunoassay. Individual histamine and LTC4 release values

were the means of duplicate determinations, replicates differing from

each other by < 5%. In experiments evaluating the release of

cytokines, basophils with purity ≥ 99% were incubated at 37°C for

4 hours (IL-4) or 16 hours (IL-13) (56) in IMDM in the presence of

anti-IgE (10-1 mg/ml) or IL-3 (10 ng/ml). At the end of incubations,

the cell-free supernatants were harvested and stored at -20°C for

subsequent assay of IL-4 and IL-13 by ELISA (56).
2.4 Purification and activation of human
skin mast cells

Skin samples were obtained from female patients, aged 20-58

years, undergoing either elective cosmetic surgery or mastectomy for

breast cancer (54). The subcutaneous fat was eliminated by blunt

dissection and skin tissue was cut into 1-2 mm fragments and

dispersed into single cell suspension as previously described (54).

Yields with this technique ranged between 0.1 and 0.8 x 106 skin mast

cells/g of wet tissue. At the end of this procedure, skin mast cell

(HSMC) purities were between 4% and 8%. HSMCs were purified

using a CD117 MicroBead Kit cell sorting system (Miltenyi Biotech,

Bologna, Italy) according to the manufacturer’s instructions, reaching

purities between 91% and 96% (54). Duplicate aliquots of purified

HSMCs were suspended in P2CG and 0.3 ml of the cell suspensions

were placed in 12 x 75 mm polyethylene tubes at 30°C; 0.2 ml of each

prewarmed stimulus (substance P) was added, and incubation was

continued at 30°C for 45 min (57). Mediator release from HSMCs is

optimal at 30°C (54, 58). At the end of incubations, cells were

centrifuged (1000 g, 22°C, 2 min) and the supernatants were stored

at -20°C for subsequent assay of histamine, tryptase, and chymase.
2.5 Assay of histamine and LTC4

Histamine concentrations in supernatants of basophils and

HSMCs were measured in duplicate samples with an automated

fluorometric technique (32, 59). LTC4 was assayed in duplicate

samples as previously described (60). The anti-LTC4 antibody is

highly specific, with less than 1% cross-reactivity to other

eicosanoids (60, 61). All determinations were run from duplicate

samples against a standard curve also in duplicate. In calculating net

LTC4 release, spontaneous release of LTC4 from basophils was

always subtracted.
2.6 Assay of tryptase and chymase

Tryptase concentrations were measured in duplicate samples by

fluoroenzyme immunoassay (FEIA) using Uni-CAP100 (Phadia

Diagnostics AB, Uppsala, Sweden) as previously described (62).

Chymase concentrations in supernatants of HSMCs were measured

by DuoSet™ ELISA (R&D Systems, Minneapolis, MN, USA). The

ELISA detection range was 100-8,000 pg/ml).
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2.7 Assay of IL-4 and IL-13

IL-4 and IL-13 concentrations were assessed in duplicate

samples using ELISA kits according to manifacturer’s instructions

(Quantikine Elisa Kit) (R & D Systems, Minneapolis, MN, USA).

The ELISA detection range was 31-2,000 pg/ml (IL-4) and 125-

4,000 pg/ml (IL-13).
2.8 Assay of lactate hydrogenase

Lactate hydrogenase (LDH) concentrations were assessed in

duplicate samples using LDH activity assay kit according to

manufacturer instructions (Thermo Fischer Scientific, Monza, Italy).
2.9 Statistical analysis

Data were analyzed with the GraphPad Prism 9 software

package (GraphPad Software, La Jolla, CA, USA). Values are

expressed as mean ± SD (standard deviation of the mean).

Normality tests (Shapiro-Wilk and Kolmogorov-Smirnov tests)

were performed through GraphPad Prism 9 software. Since the

normal distribution of the results was demonstrated, we performed

one-way analysis of variance (ANOVA) (63). Correlations between

two variables were assessed by Spearman’s rank correlation analysis

and reported as coefficient of correlation (r). Values of p ≤ 0.05 were

considered significant. A log concentration-inhibition curve for

mediator release (histamine, LTC4, IL-4, IL-13, tryptase, and

chymase) was constructed by plotting the log concentration of

ruxolitinib against percent inhibition of release. IC50 values were

assessed by interpolation.
3 Results

3.1 Effects of ruxolitinib on IgE-mediated
release of mediators from human basophils

In a first series of experiments, we evaluated the effects of

ruxolitinib on IgE-mediated release of preformed (histamine) and

de novo synthesized mediators (leukotriene C4: LTC4) from

basophils purified from healthy donors. Basophils were

preincubated (30 min, 37°C) with increasing concentrations of

ruxolitinib (3 - 30 mM) and then challenged with an optimal

concentration of anti-IgE (10-1 mg/ml). The concentrations of

ruxolitinib used in these experiments reflect those achieved in

vivo during treatment (64, 65) and are known to inhibit JAK1/

JAK2 in human blood cells (13). These ruxolitinib concentrations

did not affect the spontaneous release of LDH and histamine from

basophils. Moreover, the vehicle (ethanol) corresponding to the

highest concentrations of ruxolitinib (30 mM) did not affect the

spontaneous or anti-IgE-mediated release of mediators (LDH,

histamine, and IL-13) from basophils (data not shown).

Ruxolitinib caused a concentration-dependent inhibition of

histamine release from basophils activated by anti-IgE
Frontiers in Immunology 04
(Figure 1A). The inhibition ranged from approximately 4% at 3

mM to 80% at 30 mM, with an IC50 of 13.60 ± 3.93 mM.

IgE-mediated activation of basophils induces the de novo

synthesis of LTC4 (66), a proinflammatory and vasoactive

mediator implicated in several inflammatory disorders (67, 68)

and angiogenesis (60, 69). The pharmacologic modulation of de

novo synthesized mediators from basophils and mast cells does not

always parallel that of preformed mediators (e.g., histamine).

Figure 1B shows that in the same experiments illustrated in

Figure 1A, ruxolitinib (3 - 30 mM) induced a concentration-

dependent inhibition (5 to 58%) of LTC4 release from anti-IgE-

activated basophils. In these experiments, the IC50 for the inhibition

of LTC4 release from basophils was 21.70 ± 6.73 mM.

We also evaluated the effects of ruxolitinib on histamine release

induced by suboptimal (10-3 to 3 x 10-2 mg/ml) and supraoptimal

concentrations of anti-IgE (3 x 10-1 mg/ml). Figure 1C shows that

increasing the concentrations of anti-IgE (10-3 to 3 x 10-1 mg/ml)

induced a progressive increase in the percentage of histamine

release from basophils. When basophils were preincubated

(30 min, 37°C) with a suboptimal concentration (10 mM) of

ruxolitinib, there was a significant inhibition of histamine release

from basophils activated by all tested concentrations of anti-IgE.
3.2 Effects of ruxolitinib on IgE-mediated
release of cytokines from human basophils

IgE-mediated activation of basophils results in the release of

Type (T)-2 cytokines (IL-4 and IL-13) (70–73). The release of IL-4

from basophils is optimal after 4 hours of incubations, whereas IL-

13 release is optimal after 16-18 hours of incubation (56, 71). To

evaluate the effect of ruxolitinib on anti-IgE-induced IL-4 release,

experiments were performed using purified (> 90%) basophils from

healthy donors. As shown in Figure 1D, ruxolitinib (3 - 30 mM)

caused a concentration-dependent inhibition of IL-4 release from

basophils incubated (4 hours) with anti-IgE. The inhibition ranged

from approximately 7% at 3 mΜ to 71% at 30 mΜ, with an IC50 of

13.20 ± 2.58 mΜ.

In parallel experiments, we evaluated the effects of graded

concentrations of ruxolitinib (3 - 30 mM) on IL-13 release from

anti-IgE-activated human basophils. Based on previous findings

(56, 71), basophils were preincubated with ruxolitinib (30 min, 37°

C) and then incubated for 16 hours at 37°C. Figure 1E shows that

ruxolitinib concentration-dependently inhibited IL-13 release from

anti-IgE-activated basophils. The inhibition ranged from 5% at 3

mΜ to approximately 59% at 30 mΜ, with an IC50 21.60 ± 4.47 mΜ.
3.3 Effects of ruxolitinib on IL-3-induced
cytokine release from human basophils

IL-3 induces the release of T2 high cytokines (IL-4 and IL-13)

from basophils (10, 50, 56, 71, 74, 75) through the activation of the

IL-3 receptor (76). We evaluated the effects of increasing

concentrations (3 - 30 mM) of ruxolitinib on the release of IL-4

and IL-13 from basophils challenged with IL-3 (10 ng/ml).
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Figure 2A shows that ruxolinitib caused a concentration-dependent

inhibition of IL-4 from IL-3-activated basophils. The inhibition

ranged from approximately 8% at 3 mΜ to 61% at 30 mM, with an

IC50 of 21.03 ± 5.55. The inhibition of IL-3-induced IL-13 release

from basophils caused by ruxolitinib varied from 4% at 3 mΜ to

67% at 30 mΜ, with an IC50 of 18.60 ± 8.86 mΜ (Figure 2B).
3.4 Effects of ruxolitinib on substance
P- mediated release of mediators from
human skin mast cells

Mast cells are widely distributed in almost all human tissues (40,

53). The secretory granules of mast cells contain performed

mediators, including histamine, tryptase and chymase (77, 78).

Mast cells containing tryptase and chymase (MCTC) are

predominant in human skin (HSMCs) (77, 78) and can be
Frontiers in Immunology 05
activated by substance P through the engagement of MAS-related

G protein-coupled receptor-X2 (MRGPRX2) receptor (79).

Substance P, a neuropeptide (80) which induces only the release

of preformed mediators from HSMCs (54), is a potent endogenous

pruritogen in mice and humans (81, 82).

In a series of five experiments, we evaluated the parallel release of

histamine, tryptase and chymase from highly purified (> 90%) HSMCs

challenged in vitro with increasing concentrations of substance P.

Substance P (5 x 10-7 – 5 x 10-6 M) induced the concentration-

dependent release of histamine (Figure 3A), tryptase (Figure 3B), and

chymase (Figure 3C) from HSMCs. There was a linear correlation (r =

0.81; p < 0.001) between the release of histamine and tryptase from

substance P-activated HSMCs (Figure 3D). Similarly, there was a linear

correlation (r = 0.77; p < 0.001) between histamine and chymase release

from HSMCs (Figure 3E). No significant correlation (r = 0.48; NS) was

found between tryptase and chymase release from HSMCs induced by

substance P (Figure 3F).
FIGURE 1

(A) Effects of increasing concentrations of ruxolitinib on anti-IgE-mediated histamine release from human basophils. Cells were preincubated
(30 min, 37°C) with or without the indicated concentrations of ruxolitinib and then challenged (45 min, 37°C) with anti-IgE (10-1 mg/ml). Each bar
represents the mean ± SD of six experiments with different preparations of basophils. **p < 0.01; ***p < 0.001 compared with histamine release in
the absence of ruxolitinib (CTR). (B) Effects of increasing concentrations of ruxolitinib on anti-IgE-mediated LTC4 release from human basophils.
Cells were preincubated (30 min, 37°C) with or without the indicated concentrations of ruxolitinib and then challenged (45 min, 37°C) with anti-IgE
(10-1 mg/ml). Each bar represents the mean ± SD from six experiments with different preparations of basophils. **p < 0.01; compared with histamine
release in the absence of ruxolitinib (CTR); (C) Effects of increasing concentrations of anti-IgE, alone or preincubated (30 min, 37°C) with ruxolitinib
(10 mΜ) on histamine release from basophils. Cells were preincubated (30 min, 37°C) with or without ruxolitinib (10 mΜ) and then challenged
(45 min, 37°C) with increasing concentrations of anti-IgE (10-3 – 3 x 10-1 mg/ml). Each point represents the mean ± SD from three experiments from
different preparations of basophils. *p < 0.05; **p < 0.01. Effects of increasing concentrations of ruxolitinib on anti-IgE-mediated IL-4 (D) and IL-13
(E) release from human basophils. Cells were incubated with or without (CTR) the indicated concentrations of ruxolitinib and then challenged (4
hours for IL-4 and 16 hours for IL-13) with anti-IgE (10-1 mg/ml). Each bar represents the mean ± SD from four experiments with different
preparations of basophils. **p < 0.01 compared with IL-4/IL-13 release in the absence of ruxolitinib (CTR).
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FIGURE 3

Effects of increasing concentration of substance P on the release of histamine (A), tryptase (B) and chymase (C) from human skin mast cells
(HSMCs). Cells were incubated (30 min, 30°C) with the indicated concentrations of substance P. Each bar represents the mean ± SD from five
experiments with different preparations of HSMCs. Correlation between the release of histamine and tryptase (D), histamine and chymase (E), and
tryptase and chymase (F) induced by the individual concentrations of substance P used in the five experiments.
FIGURE 2

Effects of increasing concentrations of ruxolitinib on IL-3-mediated release of IL-4 (A) and IL-13 (B) from human basophils. Cells were incubated
with the indicated concentrations of ruxolitinib and then challenged (4 hours for IL-4 and 16 hours for IL-13) with IL-3 (10 ng/ml). Each bar
represents the mean ± SD from four different preparations of basophils. *p < 0.05; **p < 0.01 compared with IL-4/IL-13 release in the absence of
ruxolitinib (CTR).
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In a next group of experiments, we compared the effects of

increasing concentrations of ruxolitinib (3 - 30 mΜ) on the release of

histamine, tryptase, and chymase from purified HSMCs activated by

substance P (5 x 10-6 M). Figure 4A shows that ruxolitinib (3 - 30

mΜ) caused a concentration-dependent inhibition of histamine

release from substance P-activated HSMCs. Similarly, in the same

experiments, ruxolitinib inhibited the release of both tryptase

(Figure 4B) and chymase (Figure 4C) from substance P-activated

HSMCs. The IC50 for histamine (13.5 ± 2.29 mΜ), tryptase (17.7 ±

6.82 mΜ), and chymase (13.87 ± 2.60 mΜ) did not differ significantly.
4 Discussion

This study demonstrates that ruxolitinib inhibits the IgE-

mediated release of preformed (histamine) and de novo

synthesized proinflammatory mediators (LTC4) from highly

purified human basophils. Furthermore, ruxolitinib inhibits the

IgE- and IL-3-mediated release of cytokines (IL-4 and IL-13)

from human basophils. Finally, ruxolitinib inhibits the release of

several preformed mediators (histamine, tryptase, and chymase)

from HSMCs activated by substance P.

Pharmacologic concentrations of ruxolitinib (64, 65), known to

inhibit JAK1/2 in human blood cells (13), inhibited the release of

histamine and cytokines induced by IgE cross-linking and IL-3,

which activate distinct membrane receptors on basophils. Anti-IgE

cross-links IgE bound to FceRI (83) and the JAK2-STAT5 signaling

pathways play a critical role in IgE-mediated activation of basophils

(9–12). IL-3 activates the heterodimeric receptor comprising the bc
receptor and a cytokine-specific a chain (IL-3Ra) (76). The bc chain
is the primary signaling component of the IL-3 receptor, while the

specificity of IL-3 is determined by IL-3Ra. The cytoplasmic tail of bc
chain binds mainly to JAK2, which phosphorylates and activates

STAT5 (76). While JAK2 plays a central role in phosphorylating the
Frontiers in Immunology 07
bc (84, 85), JAK1 is also involved in mediating some bc chain

signaling (86, 87). Collectively, these findings explain the inhibitory

effects of ruxolitinib, a JAK1/2 inhibitor 6 on the anti-IgE- and IL-3-

mediated release of cytokines from basophils.

Hermans and collaborators demonstrated that ruxolitinib

inhibited the release of b-hexosaminidase from the human mast

cell line LAD2 activated by substance P (47). Moreover, they found

that ruxolitinib inhibited the release of TNF-a induced by the Ca2+

ionophore A23187 and MCP-1 production caused by substance P

from the mast cell line HMC-1. We have extended their findings

showing that ruxolitinib inhibited the IgE- and substance P-induced

release of mediators from human basophils and HSMCs,

respectively. These findings may have translational relevance in

different inflammatory disorders in which basophils, mast cells, and

their mediators play a pathogenic role.

Ruxolitinib is effective for the treatment of PV (88), a

myeloproliferative neoplasm frequently associated with refractory

and severe pruritus (89). Histamine and tryptase released from

basophils and skin mast cells are involved in the pathophysiology of

pruritus in atopic dermatitis (90, 91). Consistent with our findings,

ruxolitinib is emerging as an effective therapy for the treatment of

pruritus not only for patients with PV but also in human and

experimental dermatitis (92).

It is known that de novo synthesized (LTC4) and preformed

(histamine, tryptase, chymase) proinflammatory mediators play a

role in skin inflammatory disorders (93). Moreover, T2-high

cytokines, IL-4 and IL-13, play a key role in the pathophysiology

of skin inflammation (94), such as atopic dermatitis. It has been

recently demonstrated that ruxolitinib cream is effective in the

treatment of adults and adolescents with atopic dermatitis (95–97).

Activation of both resident skin mast cells and infiltrating basophils

plays a key role in atopic dermatitis pathobiology (98, 99). In this

study, we found that ruxolitinib inhibits the release of several

preformed mediators such as histamine, tryptase, and chymase
FIGURE 4

Effects of increasing concentrations of ruxolitinib on substance P-mediated release of histamine (A), tryptase (B), and chymase (C) from human skin
mast cells (HSMCs). Cells were preincubated (30 min, 30°C) with the indicated concentrations of ruxolitinib and then challenged with buffer alone
(CTR) or with substance P (5 x 10-6 M) (30 min, 30°C). Each bar represents the mean ± SD from three experiments with different preparations of
HSMCs. *p < 0.05 compared with histamine/tryptase/chymase release in the absence of ruxolitinib (CTR).
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from substance P-activated HSMCs. There was a linear correlation

between the release of histamine and both tryptase and chymase

from HSMCs activated by substance P. These results are consistent

with the notion that these preformed mediators are stored in

cytoplasmatic compartments of HSMCs (100). Our findings

showing an inhibitory effect of ruxolitinib on the release of

proinflammatory mediators and T2-high cytokines from

basophils and mast cells may explain, at least in part, the efficacy

of this drug in the treatment of atopic dermatitis (95–97).

LTC4 and histamine are involved in lung inflammatory disorders

(101). Furthermore, IL-4 and IL-13 play a critical role in asthma

pathobiology (102). Recent evidences indicate that ruxolitinib reduces

airway inflammation and airway hyperresponsiveness in different

murine models of asthma (103, 104). The inhibitory effects of

ruxolitinib on the in vitro release of histamine, LTC4, and T2-high

cytokines (IL-4 and IL-13) from human basophils suggest that

future studies should investigate the safety and efficacy of systemic

or topical ruxolitinib in the treatment of the upper and lower

airway inflammation.

Several studies have recently demonstrated that ruxolitinib

inhibits in vitro and in vivo the release of different cytokines and

chemokines from immune and structural cells involved in airway

inflammation. In particular, ruxolitinib inhibits the release of IL-6

from human fibroblasts in vivo (105) and the production of IL-6,

TNF-a and CXCL8 from monocyte-derived macrophages (MDM)

in vitro (106–108), as well as IL-6 and TNF-a from human lung

macrophages (109) and LAD2 cells (47). Ruxolitinib also inhibits

the release of CCL5, a chemokine involved in asthma exacerbations,

from bronchial epithelial cells in vitro (110). Our results extend

previous findings showing for the first time that pharmacologic

concentrations of ruxolitinib inhibit the release of T2 cytokines (IL-

4 and IL-13) from human basophils.

Systemic mastocytosis is a rare clonal myeloproliferative

neoplasm characterized by the proliferation and activation of

mast cells (62, 111). Mast cell activation leads to the release of

cytokines, histamine, and tryptase causing pruritus, flushing,

hypotension and even shock (62, 111). Preliminary findings

reported that ruxolitinib improved symptoms and quality of life

in patients with systemic mastocytosis (17, 18). Our findings

indicating that ruxolitinib inhibits mediator release from skin

mast cells suggest that the potential properties of this drug

require further exploration in mastocytosis.

Ruxolitinib has been approved by FDA and EMA for the treatment

of myelofibrosis in patients with PV. Several preclinical studies have

demonstrated the efficacy of systemic or topical JAK inhibitors in

different animal models of lung inflammation (112). The modulation

of a wide spectrum of inflammatory and immunomodulatory

cytokines released by human mast cells, basophils, macrophages, and

fibroblasts by ruxolitinib suggests that this drug is a potential candidate

for the treatment of several inflammatory diseases beyond PV.
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