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Identification of crosstalk genes
and immune characteristics
between Alzheimer’s disease
and atherosclerosis
Wenhao An1†, Jiajun Zhou1†, Zhiqiang Qiu1, Peishen Wang2,
Xinye Han2, Yanwen Cheng2, Zi He2, Yihua An1*

and Shouwei Li1*

1Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China,
2Department of Research and Development, Beijing Yihua Biotechnology Co., Ltd, Beijing, China
Background: Advancements in modern medicine have extended human

lifespan, but they have also led to an increase in age-related diseases such as

Alzheimer’s disease (AD) and atherosclerosis (AS). Growing research evidence

indicates a close connection between these two conditions.

Methods: We downloaded four gene expression datasets related to AD and AS

from the Gene Expression Omnibus (GEO) database (GSE33000, GSE100927,

GSE44770, and GSE43292) and performed differential gene expression (DEGs)

analysis using the R package “limma”. ThroughWeighted gene correlation network

analysis (WGCNA), we selected the gene modules most relevant to the diseases

and intersected them with the DEGs to identify crosstalk genes (CGs) between AD

and AS. Subsequently, we conducted functional enrichment analysis of the CGs

using DAVID. To screen for potential diagnostic genes, we applied the least

absolute shrinkage and selection operator (LASSO) regression and constructed a

logistic regression model for disease prediction. We established a protein-protein

interaction (PPI) network using STRING (https://cn.string-db.org/) and Cytoscape

and analyzed immune cell infiltration using the CIBERSORT algorithm. Additionally,

NetworkAnalyst (http://www.networkanalyst.ca) was utilized for gene regulation

and interaction analysis, and consensus clustering was employed to determine

disease subtypes. All statistical analyses and visualizations were performed using

various R packages, with a significance level set at p<0.05.

Results: Through intersection analysis of disease-associated gene modules

identified by DEGs and WGCNA, we identified a total of 31 CGs co-existing

between AD and AS, with their biological functions primarily associated with

immune pathways. LASSO analysis helped us identify three genes (C1QA, MT1M,

and RAMP1) as optimal diagnostic CGs for AD and AS. Based on this, we

constructed predictive models for both diseases, whose accuracy was

validated by external databases. By establishing a PPI network and employing

four topological algorithms, we identified four hub genes (C1QB, CSF1R,

TYROBP, and FCER1G) within the CGs, closely related to immune cell

infiltration. NetworkAnalyst further revealed the regulatory networks of these

hub genes. Finally, defining C1 and C2 subtypes for AD and AS respectively based

on the expression profiles of CGs, we found the C2 subtype exhibited

immune overactivation.
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Conclusion: This study utilized gene expression matrices and various algorithms

to explore the potential links between AD and AS. The identification of CGs

revealed interactions between these two diseases, with immune and

inflammatory imbalances playing crucial roles in their onset and progression.

We hope these findings will provide valuable insights for future research on AD

and AS.
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1 Introduction

With the continuous progress of modern society and medical

technology, human life expectancy is steadily increasing, which is a

delightful development (1–3). However, this brings along a series of

challenges, one of which is the rise in age-related diseases (4).

Among these ailments, Alzheimer’s disease and atherosclerosis

stand out as two significant focal points. Alzheimer’s disease leads

to cognitive decline, while atherosclerosis triggers cardiovascular

diseases, causing immense suffering not only to the patients

themselves but also imposing a heavy burden on their families

and society at large (5, 6).

Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder, typically characterized by memory loss, cognitive decline,

and behavioral abnormalities (7). Currently, it affects a significant

number of individuals globally, with a growing trend. Data shows that

in the United States alone, there are approximately 6.7 million AD

patients aged 65 and older, and this number is projected to exceed

13.8 million by 2060 (8). The exact cause of AD remains unclear, but

research suggests that genetic factors, abnormal protein metabolism,

and neuroinflammation may be involved in its pathogenesis, with

neuronal death and abnormal protein accumulation likely playing

significant roles (9, 10). Initial symptoms of AD typically includemild

memory issues, such as forgetting important dates or events,

progressing to severe memory loss and the inability to navigate

familiar surroundings (11). As the disease progresses, patients may

also experience language impairments, mood swings, social

withdrawal, and other symptoms (12). Currently, there is no cure

for Alzheimer’s disease, but some medications and non-

pharmacological therapies can help slow disease progression and

alleviate symptoms (13). Therefore, early diagnosis and intervention

are crucial for managing this condition.

Atherosclerosis (AS) is a chronic, progressive arterial disease

characterized by the deposition of lipid plaques within the blood

vessel walls and thickening of the vessel walls (14). Rough estimates

suggest that currently there are billions of individuals globally afflicted

by this condition (15). The primary causes of AS include dyslipidemia,

chronic inflammatory responses, and endothelial dysfunction within

the blood vessels, among other factors (16). This disease has a wide-
02
ranging impact, affecting various arteries throughout the body,

including those of the heart, carotid, cerebral, and peripheral arteries,

leading to cardiovascular diseases such as myocardial infarction, and

cerebrovascular diseases such as stroke, making it a leading cause of

death worldwide (17–19). When confronting AS, prevention, early

diagnosis, and aggressive treatment are often paramount in controlling

and managing the disease (20).

Advancements in molecular biology and genomics have

significantly propelled scientists’ understanding of the genetic basis of

complex diseases (21, 22). Gene expression represents the activity level

of specific genes at particular times and under specific conditions,

determining cellular characteristics and functions, and largely

influencing the health and disease states of an organism (23). By

studying gene expression, we can discern which genes are activated or

suppressed under certain conditions, thus unveiling the biochemical

reactions and signal transduction processes within cells (24).

Transcriptomic analysis, by comprehensively examining all mRNA

expression in a cell or tissue, provides a systematic understanding of

gene expression regulatory networks (25). This research approach not

only allows for the quantitative analysis of the expression levels of tens

of thousands of genes but also captures the interactions and regulatory

relationships between different genes. It holds significant importance in

revealing gene expression differences under various physiological states

and disease conditions, aiding scientists in identifying potential

pathogenic genes and biomarkers (26, 27).

Currently, there is increasing evidence suggesting a close

association between Alzheimer’s disease (AD) and atherosclerosis

(AS) (28–30). They both belong to age-related diseases and are largely

regulated by the immune system. Recent advancements in AD

research have confirmed the significant role of peripheral immune

dysfunction in its pathogenesis (31–33). Meanwhile, vascular aging

and endothelial dysfunction also appear to be common triggers

between the two diseases (34). However, there is relatively limited

research on the correlation between these two diseases based on gene

expression levels. To address this gap, we conducted in-depth analysis

utilizing public online databases, involving 888 patients with either

AD or AS, along with their corresponding healthy population. Our

study aimed to explore the association between these two diseases,

striving to identify shared crosstalk genes (CGs) and analyze the
frontiersin.org
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primary biological effects of these genes. Through the application of

machine learning algorithms, we successfully identified the optimal

diagnostic genes and hub genes shared by AD and AS. This finding

was supported by consistent expression patterns across four

databases, validating the accuracy of our results. Furthermore, we

delved into understanding these two diseases through immune

infiltration analysis and confirmed the associated networks of key

genes. Finally, we successfully identified subtypes of these two

diseases using CGs. In conclusion, through this study, we aim to

provide new insights for future researchers in predicting these two

diseases and exploring the mechanisms underlying their association.
2 Materials and methods

2.1 Data download and processing

We retrieved four gene expression datasets (GSE33000,

GSE100927, GSE44770, and GSE43292) from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). Among these, GSE33000 and

GSE100927 were analyzed as disease experimental groups. The

former includes 310 samples of Alzheimer’s disease patients and

157 samples of normal brain tissue, while the latter comprises 69

samples of atherosclerosis patients and 35 samples of normal

arterial tissue. On the other hand, GSE44770 and GSE43292 were

analyzed as disease validation groups. The former consists of 80

samples of Alzheimer’s symptomatic patients and 173 samples of

normal brain tissue, whereas the latter includes 32 samples of

atherosclerosis patients and 32 samples of normal arterial tissue.

All gene expression datasets underwent standardization using the

“normalizeBetweenArrays” package in R software.
2.2 Differential gene expression analysis

We utilized the “limma” package in R software to perform

differential gene expression analysis on the standardized GSE33000

and GSE100927 datasets. For the GSE33000 dataset, the criteria for

screening differential expression genes (DEGs) were set as |logFC|≥0.5

and p-value<0.05, while for the GSE100927 dataset, the criteria were

|logFC|≥1 and p-value<0.05. Using volcano plots, we displayed the

DEGs that met these criteria, highlighting genes with |logFC|≥1 in AD

and |logFC|≥2 in AS. Additionally, gene expression heatmaps were

generated to illustrate the top 30 upregulated or downregulated DEGs.
2.3 Weighted gene correlation network
analysis identifies disease-related
gene modules

Weighted gene correlation network analysis (WGCNA) is

employed to discover highly correlated gene clusters (modules), and

these modules are associated with external sample features and other

modules through a module feature gene network approach (35). We

utilized the “WGCNA” package in R software to construct the gene co-

expression network. Firstly, the quality of samples and genes was
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inspected to ensure data quality met the requirements. Secondly,

hierarchical clustering was performed on samples to detect outlier

samples, and outliers were removed based on corresponding high

values. Thirdly, the pickSoftThreshold function was used to compute

an appropriate soft threshold, and a biologically meaningful scale-free

network was established. Fourthly, the dynamic tree-cutting algorithm

was employed to construct a topological overlap matrix, establish the

gene co-expression network, and identify gene modules. Fifthly, by

computing gene significance and module membership, gene modules

were linked to clinical features, and the structure and associations of

feature gene networks were visualized. Finally, genes from the

respective modules were selected for subsequent analysis.
2.4 Identification and enrichment analysis
of crosstalk genes

DEGs identified from GSE33000 and GSE100927, as well as

gene modules obtained from WGCNA analysis from both datasets,

were analyzed by taking their intersection. Overlapping genes were

considered as crosstalk genes (CGs) related to both diseases. The

CGs were uploaded to https://david.ncifcrf.gov/ for Gene Ontology

(GO) analysis and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis. Bubble plot tools were utilized to visually

represent the results. Relevant immune processes were selected

from the c5.all.v7.5.1 gene set, and Gene Set Variation Analysis

(GSVA) from the R package “GSVA” was used to calculate

enrichment scores for each patient. Heatmaps were generated

using the “pheatmap” package for visualization.
2.5 Filtering potential diagnostic genes
in CGs

The Least Absolute Shrinkage and Selection Operator (LASSO) is a

regularizationmethod for linear regression. It adds an L1 regularization

term to the loss function of the regression model to limit the sum of the

absolute values of the model parameters. This allows many model

parameters to become zero, achieving the goal of feature selection and

model sparsity (36). We used 5-fold cross-validation to determine the

optimal regularization parameter for AD (GSE33000) and AS

(GSE100927) respectively, and analyzed the two databases using the

“glmnet” package. Ultimately, we selected their intersection as the best

diagnostic genes in the CGs of the two diseases. The expression

patterns of these genes in the two diseases were displayed through

box plots, and their diagnostic effectiveness was observed by the area

under the receiver operating characteristic (ROC) curve (37). We also

included datasets GSE44770 and GSE43292 for validation.
2.6 Building disease prediction model
based on diagnostic genes

We utilized the “Irm” package in R software to incorporate the

three identified optimal diagnostic genes and constructed a logistic

regression model for predicting the occurrence of the related disease,
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generating a nomogram (38). “Scores” represent the scoring situation

of each identified gene, while “Total Score” indicates the sum of

scores for each gene. The accuracy of the model in disease prediction

was evaluated through ROC curves, while calibration curves and

decision curves were employed to assess the consistency between

prediction and actual observation, incorporating the corresponding

validation group for comprehensive model evaluation.
2.7 Construction of PPI network and
screening of hub CGs

The construction and analysis of PPI networks help uncover the

interactions between important proteins underlying diseases,

thereby inferring key functions and pathways in disease

progression (39). We utilized the online analysis tool STRING

(https://string-db.org/) to compute PPI networks of CGs and

visualized the results using Cytoscape software. In the process of

screening hub CGs, the cytoHubba plugin was employed, along

with four topological analysis methods, including Maximal Clique

Centrality (MCC), Degree, Maximum Neighborhood Component

(MNC), and Edge Percolated Component (EPC), to jointly identify

hub expression genes. The expression profiles of hub expression

genes across four databases were demonstrated using violin plots.
2.8 Analysis of immune cell infiltration

Immune cells exhibit specific patterns of infiltration and

residence during the onset and progression of diseases. These

patterns provide crucial clues and guidance for understanding

their roles in disease mechanisms and offer key information for

the development of novel therapeutic approaches (40). Utilizing

tissue-based gene expression matrices, we employed the

CIBERSORT algorithm to compute the infiltration levels of 24

immune cell types. Through box plots, stacked bar charts, and

correlation heatmaps, we presented the infiltration results of

immune cells along with their associated features.
2.9 Gene regulation and network analysis
of interactions with diseases, drugs, and
chemical substances

NetworkAnalyst (http://www.networkanalyst.ca) is an online

platform used for complex meta-analysis of gene expression (41). In

this study, we utilized the NetworkAnalyst platform for

multifaceted analyses. Construction of the Gene-miRNA

interaction network was based on the TarBase v8.0 database,

while the TF-Gene interaction network relied on the ChEA

database, and the study of TF-miRNA crosstalk was based on the

RegNetwork database. Additionally, we employed the DisGeNET

database, DrugBank database, and Comparative Toxicogenomics

Database (CTD) to analyze associations between genes and diseases,

interactions between proteins and drugs, and interactions between

proteins and chemical substances.
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2.10 Consensus clustering analysis
identifies disease subtypes associated
with CGs

The consensus clustering method is an unsupervised algorithm

that effectively distinguishes different subtypes or subgroups within a

dataset by identifying and clustering individual samples. Using CGs,

we employed the Pam algorithm from the “ConsensusClusterPlus”

package to determine subtypes for both AD and AS (42).

Subsequently, through immune infiltration analysis and the GSVA

algorithm, we analyzed the relevant features of the subtypes for these

two diseases separately and presented these results using box plots

and heatmaps.
2.11 Statistical analysis and
visualization processing

This study employed R software (version 4.2.3, Windows

platform), in conjunction with various software packages, for

statistical analysis and plotting. To assess significant differences

between two groups of data, we utilized two-sided Wilcoxon tests

for analysis; while for evaluating correlations between two groups of

data, Pearson correlation analysis was employed. In statistical

terms, we defined a p-value less than 0.05 as having significance.
3 Result

3.1 Identification of DEGs in AD and AS

After standardizing the required datasets, we identified 550

DEGs (Supplementary Table 1) in the AD dataset GSE33000,

comprising 252 upregulated genes and 298 downregulated genes.

In the AS dataset GSE100927, we identified 463 DEGs

(Supplementary Table 2), including 326 upregulated genes and

137 downregulated genes. The volcano plots illustrate all DEGs in

AD and AS (Figures 1A, B), while the heatmap displays the top 30

upregulated or downregulated DEGs with the highest differences

between the two diseases (Figures 1C, D).
3.2 Weighted gene correlation network
analysis and key module selection

In the AD dataset GSE33000 and AS dataset GSE100927, we

employed WGCNA to construct an unsigned co-expression network

to identify the gene sets most associated with AD and AS,

respectively. For the soft thresholding, we chose a value of 14 for

both datasets (Figures 2A, D). Under the conditions of a minimum

module size of 50 and a merge cut height of 0.25, we generated cluster

dendrograms for AD and AS (Figures 2B, E). Through clinical

correlation analysis, we obtained 9 gene module sets for both

diseases (Figures 2C, F). Without considering the grey module, we

selected the modules MEgreen and Meturquoise (Supplementary

Table 3), which had the highest positive correlation with AD and
frontiersin.org
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AS, respectively, as well as the modules MEturquoise and MEblue

(Supplementary Table 4), which had the highest negative correlation,

for further analysis.
3.3 Identification and functional analysis of
CGs in AD and AS

To identify the most closely associated crosstalk gene sets with

AD and AS, we performed an intersection analysis between the

differentially expressed genes in AD and AS and the relevant gene

module sets determined through WGCNA, resulting in 31 CGs for

both diseases (Figure 3A). Subsequently, we conducted GO

functional enrichment analysis for CGs, displaying the results of

various aspects sorted by ascending p-values (Figure 3B). Biological

process analysis demonstrated enriched contents closely related to

immune function, such as antigen processing and presentation of

exogenous peptide antigen via MHC class II, innate immune

response, neutrophil activation involved in immune response, and

complement activation classical pathway. In addition, cellular

component and molecular function analyses also revealed
Frontiers in Immunology 05
immune-related contents, including complement components C1

complex and MHC class II receptor activity. Most results from

KEGG analysis were also related to the immune system, such as

complement and coagulation cascades, antigen processing and

presentation, and efferocytosis (Figure 3C). Therefore, we inferred

a certain correlation between the pathogenesis of AD and AS in the

immune system, further validated by GSVA. We selected immune-

related biological processes of interest and calculated scores for each

patient in the AD dataset GSE33000 and AS dataset GSE100927.

The results (Figures 3D, E) clearly demonstrated varying degrees of

activation of various immune responses in both diseases compared

to the normal group.
3.4 Identification of the optimal diagnostic
genes in CGs through LASSO analysis

The CGs identified in the previous step were subjected to

LASSO regression analysis using the AD dataset GSE33000 and

the AS dataset GSE100927 (Figures 4A, B). The l values were

selected as lambda.min for both datasets, followed by intersection
FIGURE 1

Differential gene expression analysis. (A, B) Volcano plots depict the differential expression genes (DEGs) in GSE33000 and GSE100927.
(C, D) Heatmaps illustrate the expression patterns of corresponding DEGs in GSE33000 and GSE100927.
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analysis. Eventually, we determined three optimal diagnostic genes:

C1QA, MT1M, and RAMP1 (Figure 4C). To observe the expression

patterns of these three genes in the diseases, we analyzed a total of

four databases including GSE33000 and GSE100927 as

experimental groups for AD and AS, respectively, and GSE44770

and GSE43292 as validation groups for AD and AS, respectively. In

the AD dataset, all three genes were found to be highly expressed in

the disease (Figures 4D, F). In the AS dataset, MT1M showed low

expression in the disease, while the remaining genes exhibited high

expression (Figures 4E, G). Furthermore, to evaluate the predictive

accuracy of the three genes for the diseases, we plotted receiver

operating characteristic (ROC) curves using the four databases. The

area under the curve (AUC) values of the ROC curves were used as

indicators of predictive accuracy. The results (Figures 4H–K)

indicated that in all four databases, the AUC values of the three
Frontiers in Immunology 06
genes were mostly distributed above 80%, suggesting that the

diagnostic genes we identified possess excellent disease

prediction capabilities.
3.5 Construction and evaluation of AD and
AS diagnostic models

To further ascertain the predictive capabilities of the identified

diagnostic genes, we intentionally incorporated the three diagnostic

genes into the GSE33000 and GSE100927 databases to respectively

construct AD and AS disease prediction models. Utilizing ROC

curves, we assessed the disease prediction accuracy of the two

models across four databases, and the results (Figures 5A–D)

indicated that in both the corresponding experimental and
FIGURE 2

Weighted gene co-expression network analysis. (A, D) Determination of soft threshold powers in GSE33000 and GSE100927, R² = 0.90. (B, E) Gene
cluster trees in GSE33000 and GSE100927. (C, F) Relationships between gene modules and traits in disease and normal groups, with numbers in the
modules representing correlation coefficients and p-values.
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validation groups for the two diseases, the AUC values exceeded

0.85. Moreover, in the calibration curves (Figures 5E–H), the

deviation correction curves for the AD and AS cohorts closely

approximated the ideal curve, indicating good model consistency.

Additionally, clinical decision curve analysis (DCA) brought deeper

clinical significance (Figures 5I–L). Across various databases, the

net benefits of clinical intervention based on the predicted

probabilities from the constructed models were higher within the

majority of threshold probability ranges compared to intervening

for all or none. Finally, we detailed the characteristics of the AD and

AS disease prediction models constructed based on the three

diagnostic genes through nomograms (Figures 5M, N). In

summary, through the aforementioned study, we confirmed the

excellent predictive abilities of C1QA, MT1M, and RAMP1

expression as well as the corresponding models in AD and AS.
3.6 Selection of hub genes in CGs

To identify potential interactions within CGs, we constructed a

protein-protein interaction (PPI) network using the STRING

database in Cytoscape software, resulting in a network comprising

31 nodes and 79 edges (Figure 6A). Simultaneously, we employed

four topological analysis methods, including MCC, Degree, MNC,

and EPC, to collectively explore hub genes within CGs. According

to the results, all four topological analysis methods converged on

four common genes: C1QB, CSF1R, TYROBP, and FCER1G

(Figure 6B). Further analysis of disease expression patterns

revealed that these four hub genes exhibited significantly high

expression in both the experimental and validation groups for AD

and AS (Figures 6C–F).
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3.7 Immune cell infiltration analysis

In order to thoroughly investigate the mechanisms underlying

disease pathogenesis, we explored the patterns of immune cell

infiltration in AD and AS cohorts. Utilizing the CIBERSORT

algorithm, we obtained infiltration scores of various immune cells

in the relevant disease tissues. In the GSE33000 dataset, the

distribution of immune cells revealed (Figures 7A, B) that

compared to the normal group, the AD group exhibited a

significantly elevated infiltration pattern of M2 macrophages,

while B cell memory, B cell plasma, and Mast cell resting showed

pronounced decreases in infiltration. In the GSE100927 dataset

(Figures 7D, E), the AS group displayed an exaggerated increase in

infiltration of M0 macrophages compared to the normal group,

while B cell plasma, T cell CD4+ memory resting, and Monocyte

showed noticeable decreases in infiltration. Correlation analysis

(Figures 7C, F) demonstrated a high consistency between the

identified hub genes in CGs and the relationship with immune

cells observed in both diseases’ immune infiltration characteristics.

This confirms the inseparable relationship between the expression

of the hub genes identified earlier and the development of

both diseases.
3.8 Construction of hub gene
interaction networks

To confirm the upstream and downstream interactions of hub

genes and their associated content, we separately constructed

regulatory networks of hub genes and associated networks of
FIGURE 3

Functional and pathway enrichment analysis. (A) Venn diagram illustrates the intersection analysis of DEGs in AD and AS, as well as the gene sets
associated with respective traits, determining the crosstalk genes (CGs) for AD and AS. (B, C) GO and KEGG enrichment analysis of CGs. (D, E) Gene
set variation analysis (GSVA) in GSE33000 and GSE100927.
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diseases, drugs, and chemicals. The gene regulatory network

includes gene-miRNA interaction network, TF-gene interaction

network, and TF-miRNA co-regulation network (Figure 8A). It

can be observed that C1QB occupies a central position in hub gene

interactions, with regulatory factors TCF4, MYC, STAT3, and

SCLY playing a co-regulatory role in hub genes. has-mir-146a-5p,

has-mir-124-3p, has-mir-129-2-3p, and has-mir-99b-5p are
Frontiers in Immunology 08
important miRNAs in the hub gene network. In the protein-

chemical, protein-drug, and gene-disease associated networks

(Figure 8B), associated diseases and drugs mainly focus on the

action of C1QB, while chemicals such as Nickel, Tretinoin,

Calcitriol, Methotrexate, and Antirheumatic Agents are significant

relevant substances. These findings demonstrate closely associated

networks of actions with hub genes in both diseases.
FIGURE 4

Identifying potential shared disease diagnostic CGs. (A, B) LASSO algorithm screening for potential diagnostic CGs in GSE33000 and GSE100927,
respectively. (C) Venn diagram shows the intersection of potential diagnostic CGs for AD and AS. (D-G) Expression patterns of potential shared
diagnostic CGs in GSE33000, GSE44770, GSE100927, and GSE43292 for AD and AS. (H-K) ROC curve analysis demonstrates the disease prediction
ability of shared diagnostic CGs in GSE33000, GSE44770, GSE100927, and GSE43292. ***p < 0.001; ****p < 0.0001.
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3.9 Identification and characteristic
analysis of subtypes in two disease types
based on CGs

Finally, to comprehensively understand the impact of CGs

expression on AD and AS, we identified subtypes of CGs through

consensus clustering analysis for each disease. Consensus clustering

analysis of CGs expression profiles in AD identified two subtypes,

C1 and C2, among AD patients in GSE33000 (Figures 9A–C).

Similarly, consensus clustering analysis of CGs expression profiles

in AS also identified two subtypes, C1 and C2, among AS patients in

GSE100927 (Figures 9E–G). Heatmaps were generated to illustrate

the expression patterns of CGs in the two subtypes of AD and AS

(Figures 9D, H). Subsequently, we performed immune infiltration
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analysis and enrichment score calculation of disease-related

pathways using the CIBERSORT algorithm and GSVA algorithm

for the subtypes of both diseases. Results indicated that, compared

to the C1 subtype, the C2 subtype in both AD and AS largely

exhibited expression patterns of immune cell infiltration consistent

with the inherent immune infiltration characteristics of the diseases,

particularly in macrophage infiltration features (Figures 10A, B).

Calculation of enrichment scores (Figures 10C, D) revealed a

significant immune activation state in the C2 subgroups of both

diseases, including activation of various immune cells and

regulation of inflammatory cells. Furthermore, in their respective

disease mechanisms, pathways such as amyloid precursor protein

biosynthesis and positive regulation of neuroinflammatory

responses in AD, as well as positive regulation of macrophage-
FIGURE 5

Construction of disease prediction models related to diagnostic CGs. (A, B) ROC curves demonstrate the predictive ability of the AD diagnostic
model in GSE33000 and GSE44770. (C, D) ROC curves demonstrate the predictive ability of the AS diagnostic model in GSE100927 and GSE43292.
(E, F) Calibration curves of the AD diagnostic model in GSE33000 and GSE44770. (G, H) Calibration curves of the AS diagnostic model in GSE100927
and GSE43292. (I, J) Clinical decision curves of the AD diagnostic model in GSE33000 and GSE44770. (K, L) Clinical decision curves of the AS
diagnostic model in GSE100927 and GSE43292. (M, N) Disease prediction scoring models established based on diagnostic CGs for AD and AS.
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derived foam cell differentiation in AS, showed significant

activation in the C2 compared to the C1 subtype. Overall, these

consistent pieces of evidence suggest a key role of CGs in the

pathogenesis of AD and AS, indicating important connections

between AD and AS at their core disease level.
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4 Discussion

Alzheimer’s disease (AD) and atherosclerosis (AS), as two

major diseases in the world today, pose significant challenges to

human society due to their progressive courses and increasing
FIGURE 6

Construction of PPI network and identification of hub CGs. (A) PPI network of CGs. (B) Hub CGs determined by MCC, Degree, MNC, and EPC
algorithms. (C–F) Expression patterns of hub CGs in GSE33000, GSE44770, GSE100927, and GSE43292, respectively. ****p < 0.0001.
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prevalence (43, 44). Although they are different diseases, there are

important associations and interactions between them. AD patients

often have a higher risk of cardiovascular diseases, such as

hypertension, high cholesterol, and diabetes, which may be

related to the development of AS (45). AS may accelerate the

progression of AD by damaging the vascular endothelium,

allowing harmful substances to enter the brain (46). Additionally,

some pathophysiological changes in AD, such as amyloid plaques

and abnormal tau protein deposition within neurons, may be

associated with blood supply insufficiency and disrupted neuronal

energy metabolism caused by AS (47). It is important to note that

both diseases are related to chronic low-grade inflammation caused

by aging, and shared inflammatory responses and immune

dysregulation mechanisms may be key links between them (34).

Given the intricate interaction mechanisms between them, a
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thorough understanding of their potential comorbid mechanisms

is crucial for the prevention of both diseases.

This study identified 31 CGs between AD and AS, and

functional analysis results showed significantly enhanced immune

and inflammatory responses in both diseases compared to healthy

patients. Previous research on neurodegenerative diseases has

shown that inflammation is not only a result of these diseases but

also a key participant in the process (48). In the case of AS, chronic

inflammation of the arterial wall has long been considered a key

cause of its pathogenesis (33). Nowadays, there has been significant

progress in understanding the inflammatory and immune responses

in AD and AS, and targeted treatments for long-term immune and

inflammatory responses have gained increasing consensus (49, 50).

In our subsequent research, three biomarkers (C1QA, MT1M, and

RAMP1) were finally identified and demonstrated good diagnostic
FIGURE 7

Immune cell infiltration analysis of AD and AS. (A, D) Analysis of the proportions of various immune cell infiltrates in GSE33000 and GSE100927 using
the CIBERSORT algorithm. (B, E) Comparison of levels of various immune cell infiltrates between disease and normal groups in GSE33000 and
GSE100927. (C, F) Analysis of the correlation between hub CGs and various infiltrating immune cells, as well as among infiltrating immune cells. The
upper panel represents AD, and the lower panel represents AS. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 8

Building the interacting network of hub CGs. (A) Gene-miRNA interaction network, TF-gene interaction network, and TF-miRNA co-regulatory
network. (B) Protein-chemical association, protein-drug association, and gene-disease association networks.
FIGURE 9

Identification of AD and AS disease subtypes related to consensus clustering of CGs. (A, B) Changes in the values of CDF and the corresponding area
under the CDF curve in GSE33000 for k = 2-6. (E, F) Changes in the values of CDF and the corresponding area under the CDF curve in GSE100927
for k = 2-6. (C) Consensus matrix heatmap of AD subtype at k = 2. (G) Consensus matrix heatmap of AS subtype at k = 2. (D) Expression heatmap of
different subtype CGs in AD cohort. (H) Expression heatmap of different subtype CGs in AS cohort.
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capabilities for both diseases. C1q is an important component of the

complement system, playing a crucial role in maintaining immune

homeostasis (51). The A-chain peptide of serum subcomponent

C1q is encoded by the C1QA gene, and research has shown that

C1QA may promote synaptic loss and be associated with

progressive neurodegeneration (52, 53). Furthermore, clinical

research results confirm the involvement of C1q in the

development of atherosclerosis, plaque instability, and obstructive

coronary artery disease (54, 55). Metallothionein 1M (MT1M) is a

zinc-binding protein belonging to the metallothionein family, rich

in cysteine, and plays an important role in regulating oxidative

stress (56, 57). It is widely expressed in various tissues and protects

cells from oxidative stress damage by scavenging free radicals and

releasing zinc into the cytoplasm (58, 59). Interestingly, previous

studies have also shown the involvement of MT1M in the

inflammatory process, as pro-inflammatory factors can increase

MT1M expression (60). RAMP1 belongs to the receptor activity-

modifying protein (RAMP) family, best known for its role in

modulating the activity of the calcitonin receptor (CLR), which

has significant implications in the treatment of migraines (61, 62).

Recently, there have also been reports of a close association between

RAMP1 and tumors (63). Although research on RAMP1 is limited,
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increasing evidence suggests that RAMP1 plays important roles in

the nervous, immune, endocrine, and circulatory systems, making it

a potential new hotspot for disease development (64–67).

Subsequently, the disease risk prediction model based on C1QA,

MT1M, and RAMP1 was thoroughly validated using a verification

database, suggesting that these three biomarkers are worthy of

further in-depth study.

In studying the CGs that play a central role, we incorporated

four topological analysis methods to jointly identify four hub CGs

(C1QB, CSF1R, TYROBP, and FCER1G). C1QB is a polypeptide

chain of the serum complement subcomponent C1q, and the effects

of C1q on the nervous system and atherosclerosis have already been

described earlier. CSF1R is a transmembrane receptor that initiates

signal transduction pathways within cells by binding with ligands

CSF-1 and IL-34 (68–70). Studies have indicated that CSF1R

signaling is involved in regulating the activity of immune cells,

promoting cell survival, proliferation, and differentiation, especially

in macrophages, microglia, osteoclasts, and bone marrow dendritic

cells (71). Moreover, excessive CSF1R signaling can sustain

microglial activation, leading to the occurrence of chronic

neuroinflammation and subsequent neurodegenerative changes

(72, 73). TYROBP, also known as DAP12, is a transmembrane
FIGURE 10

Relevant features of AD and AS disease subtypes. (A, B) Analysis of immune cell infiltration levels of C1 and C2 subtypes in AD and AS using the
CIBERSORT algorithm. (C, D) GSVA demonstrates the enrichment status of different functional pathways in C1 and C2 subtypes. *p < 0.05; **p <
0.01; ***p < 0.001; ****p < 0.0001.
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adaptor protein widely expressed on immune cells, serving as a

downstream adapter and presumed signaling partner for various

receptors associated with AD, notorious for its role (74).

Additionally, research suggests that TYROBP can promote lipid

deposition and plaque inflammation during the AS process (75).

FCER1G has been identified as a marker for human aging and

neurodegenerative diseases in microglial cells (76). Recent studies

have also confirmed the significant role of FCER1G in promoting

immune cell infiltration into atherosclerotic plaques and

intraplaque hemorrhage (77). Overall, these four hub CGs are

intricately linked to both AD and AS.

The results of immune cell infiltration analysis show a significant

enrichment of M2macrophages in the AD environment. It is believed

that the recruitment of peripheral macrophages to the central nervous

system is likely a potential therapeutic target for AD (78). Currently,

activated macrophages are mainly divided into two subtypes: M1 and

M2. M1 macrophages primarily promote inflammatory responses,

while M2 macrophages mainly inhibit inflammatory responses (79).

An interesting study found that in AD model rats, transplantation of

M2 macrophages could reduce intracranial inflammatory responses,

decrease neuronal loss, and improve cognitive dysfunction,

suggesting that M2 macrophages have a protective role in AD (80).

The enrichment of M2 macrophages in the brains of AD patients is

hypothesized to be a form of self-protection by the body. How to

utilize this phenomenon may be worth further in-depth research by

future scholars. In the AS environment, M0 macrophages exhibit

more significant infiltration. This aligns with the pathogenesis of AS,

where macrophages engulf modified low-density lipoprotein particles

and form foam cells (a hallmark of atherosclerosis), leading to the

formation of early atherosclerotic lesions (81, 82). Nowadays, since

lipid-lowering therapy cannot completely halt the progression of AS

and macrophage polarization is involved in various stages of

atherosclerosis, an increasing number of AS treatment strategies are

focusing on targeting macrophages (83–85).

The construction of gene interaction networks provides a more

detailed illustration of the regulatory mechanisms of hub CGs and

their associated diseases, drugs, and chemicals, enhancing our

understanding of disease onset and aiding in the development of

treatment strategies. The regulatory factors TCF4, MYC, STAT3,

and SCLY play the most extensive co-regulatory roles in CGs.

TCF4, a member of the helix-loop-helix (HLH) protein family, is

expressed in various cell types and tissues throughout the body (86).

Research has shown that TCF4 is a key regulator of neural function

and is closely associated with neurodevelopmental disorders such as

intellectual disability and schizophrenia (87, 88). Recent studies

have also indicated that TCF4 influences IL-17RA/IL-17RE

signaling, which is involved in inflammatory feedback loops (89).

Current research on MYC primarily focuses on its role in cancer

(90). MYC is a super-transcription factor encoded by the MYC gene

located on chromosome 8q24.21, playing a crucial role in cell

growth, proliferation, and apoptosis (91, 92). STAT3 ’s

mechanisms have been confirmed in Alzheimer’s disease (AD)

model mice, where inhibiting STAT3 expression improves

pathological and behavioral abnormalities (93). Additionally,

STAT3 has been shown to promote the progression of ankylosing

spondylitis (AS) through mechanisms such as interference with the
Frontiers in Immunology 14
Akt/mTOR signaling cascade and pyroptosis (94–96). Studies on

SCLY indicate its involvement in selenium methionine metabolism

and its potential role in oxidative stress and cellular protection (97).

Chemical compounds such as Nickel, Tretinoin, Calcitriol,

Methotrexate, and Antirheumatic Agents have been closely linked

to pivotal CGs in analyses. These compounds may play significant

roles in future research.

Consensus clustering analysis based on CGs revealed two

distinct subtypes of immune and inflammatory activation

intensities within AD and AS. This finding highlights the crucial

role of CGs in the pathogenesis of AD and AS and underscores the

importance of immune and inflammatory dysregulation in the

occurrence and progression of these diseases.

Despite the aforementioned analyses, this study still has certain

limitations. Utilizing online databases, we analyzed and identified

CGs for both AD and AS; however, the database itself may not be

comprehensive, and we lack experimental validation in aspects such

as gene function and immune infiltration. Additionally, disease

prediction models and disease subtypes built based on CGs may

require further clinical validation before entering formal

applications. Therefore, in the future, we hope to see more

researchers joining this study.
5 Conclusion

In recent years, age-related diseases have garnered increasing

attention. We are dedicated to filling the gap in understanding the

interaction mechanisms between Alzheimer’s disease (AD) and

atherosclerosis (AS) and have identified crosstalk genes between

AD and AS. C1QA, MT1M, and RAMP1 have been identified as

potential diagnostic biomarkers, and predictive models for both

diseases have been constructed based on these genes. Additionally,

C1QB, CSF1R, TYROBP, and FCER1G have been recognized as key

genes in the crosstalk between AD and AS, showing close associations

with immune cells in immune infiltration analysis. By establishing a

gene interaction network, we have more clearly demonstrated the

regulatory mechanisms and related functions of these key genes.

Overall, we have identified seven important crosstalk genes, which

have been confirmed in extensive studies to play significant roles in

the immune process. However, the specific roles of these genes in AD

and AS still require further research. In the future, these findings are

expected to provide new clues for exploring targeted therapeutic

approaches for both diseases.
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