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Antiretroviral therapy is the standard treatment for HIV, but it requires daily use

and can cause side effects. Despite being available for decades, there are still 1.5

million new infections and 700,000 deaths each year, highlighting the need for

better therapies. Broadly neutralizing antibodies (bNAbs), which are highly active

against HIV-1, represent a promising new approach and clinical trials have

demonstrated the potential of bNAbs in the treatment and prevention of HIV-1

infection. However, HIV-1 antibody resistance (HIVAR) due to variants in the HIV-

1 envelope glycoproteins (HIV-1 Env) is not well understood yet and poses a

critical problem for the clinical use of bNAbs in treatment. HIVAR also plays an

important role in the future development of an HIV-1 vaccine, which will require

elicitation of bNAbs to which the circulating strains are sensitive. In recent years, a

variety of methods have been developed to detect, characterize and predict

HIVAR. Structural analysis of antibody-HIV-1 Env complexes has provided insight

into viral residues critical for neutralization, while testing of viruses for antibody

susceptibility has verified the impact of some of these residues. In addition, in

vitro viral neutralization and adaption assays have shaped our understanding of

bNAb susceptibility based on the envelope sequence. Furthermore, in vivo

studies in animal models have revealed the rapid emergence of escape variants

to mono- or combined bNAb treatments. Finally, similar variants were found in

the first clinical trials testing bNAbs for the treatment of HIV-1-infected patients.

These structural, in vitro, in vivo and clinical studies have led to the identification

and validation of HIVAR for almost all available bNAbs. However, defined assays

for the detection of HIVAR in patients are still lacking and for some novel, highly

potent and broad-spectrum bNAbs, HIVAR have not been clearly defined. Here,

we review currently available approaches for the detection, characterization and

prediction of HIVAR.
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Introduction

Human immunodeficiency virus (HIV) remains a global health

challenge, with an estimated 38 million people living with the virus

worldwide (1). Although antiretroviral therapy (ART) has

significantly improved the management of HIV, there is still a

need for more effective approaches for treatment and prevention.

Antiretroviral therapy (ART) can effectively suppress HIV-1

replication and disease progression to AIDS but requires lifelong

daily medication that comes with long-term toxicities. Although

effective ART has been available for about 20 years now, there are

still 1.5 million new HIV infections and 700,000 AIDS-related

deaths each year (1). Antiretroviral therapy has not only

significantly improved the health and well-being of individual

HIV-1 infected patients in recent years but has also played a

pivotal role in effectively combating the HIV pandemic on a

global scale. However, the ongoing pandemic, the lack of

a vaccine and the fact that there is still no cure for HIV-1

underscore the urgent need for next-generation therapies to treat,

prevent or even cure HIV-1 infection.

Only a few HIV-1-infected individuals (1-5%) develop

exceptionally high titers of HIV-1 neutralizing serum activity.

From these so-called ‘elite neutralizers’ broadly neutralizing

antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein

(HIV-1 Env) have been isolated from several B cell lineages. This

resulted in a wide range of bNAbs with a coverage (defined by the

number of HIV strains neutralized) of up to 100% and high potency

(defined by the inhibitory concentration (IC) that neutralizes the

virus). Several bNAbs targeting different epitopes of the HIV-1 Env

have been well characterized, such as 3BNC117, VRC01, VRC07-

523LS, 1-18, N6, IOMA and N49P7 targeting the CD4-binding site

(CD4bs) (2–8), CAP256V2, PG9, PGDM1400 and PGT145 specific

for the V1/V2-glycans (9–12), 10-1074, PGT121, DH270.6 and

BG18 that are specific for V3-glycan (13–15), 10E8, DH511.2_K3
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and LN01 specific for MPER (16–18), 8ANC195, VRC34.01,

ACS202 and PGT151 which target the gp120/gp41 interface

region (3, 19–21) and SF12 and VRC-PG05 which target the so-

called ‘silent face’ region on HIV-1 Env (Figure 1) (22, 23). In

addition to their antiviral activity, these bNAbs have several

advantages over currently available ART. HIV-1 reactive bNAbs

have a half-life of 14-21 days which can even be prolonged by FC

domain modifications, they contribute to the active clearance of the

pathogen through the engagement of innate effector responses (FC-

mediated effects such as antibody-dependent cellular cytotoxicity

(ADCC)), and they enhance immunity against HIV-1 (24–27).

The available evidence from in vivo experiments in non-human

primates and humanized mice strongly supports the promising role

of bNAbs in both the future prevention and treatment of HIV-1.

HIV-1 reactive bNAbs have shown potent antiviral activity in viremic

HIV-1 infected humanized mice as well as in simian-human

immunodeficiency virus (SHIV) infected non-human primates (28,

29). In addition, bNAbs have been shown to protect against viral

challenge in these animal models (30–33). HIV-1 reactive bNAbs

have already been tested in many clinical trials in recent years, where

they demonstrated safe suppression of viremia and delay of viral

rebound after ART interruption in HIV-1-infected individuals (34–

36). Having established their efficacy in patients, researchers then

tested on to test combinations of bNAbs, targeting different epitopes,

and found improved suppression of plasma viremia and a prolonged

time to viral rebound after an analytical treatment interruption

compared to bNAb monotherapies (37, 38). In addition, a large

multicenter study showed that intravenous infusion of the bNAb

VRC01 can protect humans against infection with VRC01-sensitive

HIV-1 isolates (39, 40). This study demonstrated that bNAbs can

prevent infection by bNAb-sensitive strains in humans and that the

bNAb serum titer can be a useful indicator of protection. Therefore,

the induction of bNAbs has become an important goal for vaccine

development (41, 42). Overall, antibodies have already been
FIGURE 1

HIV-1 reactive Broadly Neutralizing Antibodies. Overview of a selection of broadly neutralizing antibodies against HIV-1 and their corresponding
epitopes on the HIV-1 Env protein. IF, Interface; HIV-1 Env, HIV-1 envelope glycoprotein; MPER, membrane-proximal external region.
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groundbreaking in the treatment of autoimmune diseases and cancer.

And with the identification of new, highly potent HIV-1 broadly

neutralizing antibodies (bNAbs) in recent years and increasing

evidence of their beneficial properties, bNAbs will also play a key

role in future HIV-1 treatment and prevention strategies.

However, as with any drug against HIV-1, viral resistance, and

escape are formidable challenges for future approaches to HIV-1

treatment, prevention and cure involving bNAbs (39, 40, 43). RNA

viruses, such as HIV-1, are characterized by exceptionally high rates

of spontaneous mutations (44–46). This results in a large diversity

of viral strains and their ability to rapidly escape humoral or cellular

immune pressure by selecting viral variants with amino acid

mutations that block detection or binding by immune cells or

antibodies (47). While numerous studies have demonstrated the

extraordinary potential of bNAbs and bNAb-inducing vaccines,

HIVARs that are pre-existed in patients or develop de novo during

treatment have significantly impaired bNAb activity.

Since the introduction of effective antiretroviral drugs about 30

years ago, viral resistance has played a critical role in selecting the

appropriate treatment for each individual. HIV drug resistance to

conventional antiretroviral treatment (ART) can be either acquired or

transmitted (48). Acquired HIV drug resistance occurs after initial

effective suppression of wild-type HIV variants during ART; some

mutated and drug-resistant strains are selected during the viral

replication process, leading to viral rebound. Transmitted drug

resistance occurs when drug-naive HIV-infected patients are

initially infected with drug-resistant variants, resulting in an

ineffective response to ART. During the introduction of ART in the

1990s, studies showed that the combination of ARTs targeting

different steps of the HIV-1 life cycle could prevent the rapid

emergence of escape variants (49, 50). Today, combination

regimens of two to three antiviral drugs are the gold standard for

HIV-1 treatment (51). Compared to ART resistance, HIVARs are

much more common in patients, most likely as a result of the

humoral immune response that naturally targets the HIV-1 Env

after infection. The large number of patients harboring HIVARs and
Frontiers in Immunology 03
the rapid emergence of viral escape variants after monotherapies

forced the field to develop better strategies to overcome viral escape.

And similar to the development of today’s effective combination

ART, researchers began to use multiple bNAbs to increase the

percentage of strains covered (37, 38). In addition, newer, broader

and more potent bNAbs have been identified in recent years, some of

which have even been able to limit viral escape and/or resistance

mechanisms in vivo (5). Although HIVARs are a critical issue for the

future use of bNAbs in the clinic, only a few studies have specifically

focused on a better identification, characterization and understanding

of HIVARs and their evolution.

Most importantly, the field currently lacks thoroughly clinically

validated assays that can detect HIVARs in circulating and/or

proviral strains. Novel and improved methods and assays are

urgently needed to detect HIVARs in patients in a feasible and

timely manner, as HIVARs may significantly interfere with the

activity of bNAbs and thus significantly impact the efficacy of future

bNAb-mediated treatment and prevention approaches. Scenarios in

which the detection of HIVARs would be required include, but are

not limited to, the detection of HIVARs: i) in circulating strains of

naive patients prior to initiation of bNAb treatment, ii) in

replication-competent proviruses of virologically suppressed

patients prior to switching from classical antiretroviral treatment

to bNAb treatment, and iii) in HIV-1 infected populations for the

development of novel vaccines that elicit bNAbs capable of

protecting against prevalent strains (Figure 2).

In summary, while bNAbs hold great promise for future HIV-1

treatment and prevention approaches, de novo and pre-existing

HIV-1 antibody resistance (HIVAR) pose significant barriers to the

clinical use of bNAbs and potential future bNAb-inducing vaccines.

Therefore, the field needs a deeper understanding of the impact of

envelope resistance mutations on bNAb activity. In addition, assays

for the rapid detection of HIVAR in circulating patient viruses and

proviruses are urgently needed. In this review, we discuss the recent

advances in the identification and characterization of HIVAR and

their potential impact on the future clinical use of bNAbs. As the
FIGURE 2

Scenarios that require detection of HIVARs. Left panel: HIV-1 infected patients need to be screened for bNAb susceptibility prior to treatment. For
this purpose, circulating viruses or proviral sequences would have to be tested for HIV-1 antibody resistance (HIVAR). Right panel: Pre-existing HIVAR
may hinder the future use of bNAbs for prevention, either by passive administration or by bNAb-eliciting immunogens. Pre-existing HIVARs (red
patient) in the population that challenge the immunized individuals can significantly hamper the efficacy of and, more importantly, the efficacy of
bNAb-inducing vaccines that will only protect against viral strains that are sensitive to the induced bNAb. ART, antiretroviral therapy.
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majority of patients are now on effective antiretroviral therapy

(ART), we will also focus on the identification of HIVAR in the

proviral reservoir of patients. We also provide insights into

computational approaches to predict the sensitivity of HIV

variants to bNAbs for clinical settings.
Structural analyses can inform on
residues critical for sensitivity to
viral neutralization

The HIV Env trimer consists of three heterodimers, the surface

gp120 and the transmembrane gp41, formed after cleavage of gp160

by furin (52–55). After infection with HIV-1, the vast majority of

patients develop antibodies that bind to HIV-1 Env, while only a

small subset develop antibodies that are neutralizing, as the process of

inducing such broadly neutralizing antibodies (bNAbs) faces

significant challenges. The Env protein has robust defenses that

impede the development of bNAbs (56). The trimer exhibits

conformational dynamics, considerable sequence variability -

especially in regions accessible to antibodies on the envelope - and

is sparsely distributed throughout viral particles (57). In addition, it is

highly glycosylated, with tightly packed glycans obscuring much of

the underlying protein surface (58). Immunological decoys, such as

non-functional envelope proteins like gp41 stumps, monomeric

forms of gp120, and non-functional protomers (e.g., uncleaved

trimers) that expose non-neutralizing epitopes typically hidden in

the trimer, add another layer of complexity (59). HIV-1 Env tends to

be inherently unstable, transitioning into non-functional

configurations over time (59, 60). In certain cases, gp120 subunits

can dissociate from gp41, leaving in the latter remaining as stumps on

the virion surface (58, 59). An alternative view is that the spike is not

inherently unstable but originates from the plasma membrane of the

infected cell in an early form, exposing immunological epitopes that

are not present in the later mature HIV-1env (61). This instability of

HIV-1 Env required various sequence modifications, fixations by

truncated CD4 and stabilizations with antibodies in order to solve the

first gp120 structure by X-ray crystallography (62).

Since its initial in-depth structural characterization, further

analysis of bNAb-HIV-1 Env complexes has provided

information on residues that may be critical for binding and/or

neutralization (62). While imaging techniques have evolved over

time, trimers mimicking native-HIV-1 Env have also contributed

significantly to the structural understanding of bNAb-HIV-1 Env

interactions. For example, the introduction of SOSIP trimers,

named after the mutations that result in a stable and soluble

recombinant HIV-1 Env trimer, has contributed tremendously to

the understanding of bNAbs binding to vulnerable sites on the

native HIV-1 Env trimer (63). Since then, several stable trimers

have been generated using isolates different from BG505, and also

novel approaches to stabilize trimers that do not use the SOSIP

mutation have been developed to better characterize the binding

kinetics of bNAbs to native-like Env trimers (64–66).

Following the identification of a novel bNAb with an unknown

binding site, a competition ELISA assay, in which the novel bNAb
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competes with antibodies with known targets for binding to HIV-1

Env, can often provide information about the target site of the

particular bNAb (5, 9, 13, 16, 23, 67). However, only structural data,

as described above, can provide information on the antibody-

envelope interaction at the atomic level. Thus, cryo-EM data of

bNAbs bound to either HIV-1 gp120, gp140 or SOSIP trimers were

used to identify the exact binding sites of each antibody (3, 5, 6, 18,

68–71). Subsequently, several studies mutated the amino acids on

the envelope that were found to be in contact with the tested

antibody in order to confirm their relevance in binding and/or

neutralization. And in several cases, high-resolution HIV-1 Env-

antibody complexes suggested contact sites for bNAbs that did not

appear to be critical in vitro for neutralization when these amino

acids were mutated in pseudoviruses (5, 16, 23). Thus, structural

analysis alone cannot discriminate between the importance of an

antibody-envelope amino acid interaction and may not always

provide a complete understanding of the functional significance

of specific amino acid residues within the antibody-epitope

interaction. While structural studies reveal the spatial

arrangement of antibody and epitope residues at atomic

resolution, they do not account for potential allosteric effects.

Mutations at sites distal to the direct antibody-epitope interface

can induce conformational changes that alter the dynamics of the

epitope and indirectly affect antibody binding or neutralization.

Such effects may modulate the accessibility or stability of the

binding site without disrupting the direct contacts identified by

structural analysis. This highlights the need for functional assays to

evaluate the broader impact of specific residues on antibody binding

and neutralization efficacy. In summary, structural data alone

cannot provide a complete picture of the amino acid residues that

are critical for antibody activity, and additional in vitro and in vivo

analyses are needed to provide a more nuanced understanding of

antibody functionality.
Env conformational flexibility impacts
viral resistance to bNAbs

Recent studies highlight different methods to study Env

conformational flexibility and antibody resistance, shedding light

on the mechanisms underlying Env conformational flexibility and

resistance to bNAbs. Single-molecule Förster resonance energy

transfer (smFRET) is one of the most frequently used techniques

to study conformational changes and dynamics of biomolecules.

The smFRET approach has provided insights into the

conformational transitions between different Env states (72–74).

By analyzing conformations such as the pre-triggered (closed) (state

1), intermediate (state 2), and fully CD4-bound (state 3) states,

smFRET analysis links HIV-1 Env flexibility to differences in

antibody sensitivity. The identification of state 2 as a functional

intermediate provides a clearer picture of the stepwise

conformational changes required for HIV-1 entry (74). This

intermediate state serves as a critical checkpoint in the HIV

fusion process. Additional binding studies with bNAbs revealed

minor differences in the antigenic profiles between states 1 and 2,
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while a marked disparity was observed between states 1 and 3, with

predicted root mean square deviations (RMSDs) between epitopes

in state 1 and states 2 and 3 of ~2 Å and >30 Å, respectively (73).

Interestingly, HIV-1 Env mutants enriched in state 2 show

increased sensitivity to CD4 mimetics but greater resistance to

certain bNAbs (74). Another study using the smFRET approach

showed that CRF01_AE Env adopts an intermediate state 2

conformation, making it inherently more susceptible to ADCC

than other subtypes such as clade B (72).

In support of the smFRET approach, further work structurally

characterized the interaction between HIV Env trimers and CD4

molecules on target cells using cryo-electron tomography (cryo-ET)

(75). Binding of HIV Env trimers to the CD4 molecule restructures

Env from a closed to a partially open conformational state. This

stepwise process involves first binding of the Env trimer to a single

CD4 receptor on target cells and subsequent binding to a second

and third CD4 molecule (75–77). Thus, Env trimers require binding

to multiple CD4 molecules for effective viral entry. Cryo-EM studies

of unliganded 1059-SOSIP Env further revealed asymmetry,

increased flexibility, and “breathing” motions, supporting

previous molecular simulations and structural hypotheses (78).

The authors showed that some transmitted/founder HIV-1 strains

harbor Env glycoproteins that exhibit incompletely closed

conformations. This incompletely closed conformation of the

HIV Env trimer allows the exposure of internal epitopes, which

affects the susceptibility of Envs to bNAbs. For example, analysis of

intermediate state Envs revealed different resistance profiles to

VRC01-like CD4 binding site (CD4bs) bNAbs and V3 glycan-

targeting bNAbs such as PGT121. Further analysis attributed the

breadth and potency of bNAb N6 to its efficacy in neutralizing Env

trimers with tightly closed and intermediate conformational states.

Despite these interesting findings, these studies are limited to SOSIP

and require further investigation of a substantial number of mutant

HIV strains by cryo-EM (78).

In conclusion, studies using smFRET and Cryo-ET have

revealed the critical role of intermediate Env conformations in

HIV-1 entry and bNAb resistance, with state 2 serving as a key

checkpoint. These findings highlight the link between HIV-1 Env

flexibility and antibody susceptibility, although further research in

diverse HIV-1 strains is needed to fully understand the implications

for vaccine and therapeutic development.
In vitro approaches to detect and
characterize HIV-1 antibody resistance

The humoral response exerts selective pressure on the viral

envelope, resulting in changes in the amino acid sequence of the

HIV-1 envelope genome (HIV-1env) and thus increasing resistance

to neutralizing antibodies over time in the HIV-1-positive

population (43, 79). Moreover, at the individual patient level, the

detection of mutations in HIV-1env that render a virus resistant to a

given humoral immune response is of great importance. Certain

single or combined amino acid mutations in HIV-1 Env can confer

resistance to bNAbs. Therefore, knowledge of these mutations is
Frontiers in Immunology 05
crucial for the future clinical use of bNAbs in novel prevention and

treatment strategies (80, 81).

A commonly used approach to test single or combined HIV-

1env amino acid mutations for their impact on antibody sensitivity is

the use of mutant pseudoviruses. In this so-called phenotypic

resistance test, which is analogous to the phenotypic testing of

viral resistance to classical antiviral drugs, a backbone pseudovirus

is used and amino acid mutations are induced by site-directed

mutagenesis or similar methods. Subsequently, the effect of a

specific mutation in the HIV-1env on its neutralizing activity can

be assessed using in vitro assays such as the TZM-bl cell

neutralization assay (82). This assay uses HeLa-derived TZM-bl

cells expressing CD4, CXCR4, CCR5, and tat-reporter genes for

luciferase and b-galactosidase (83, 84). These cells can be infected

with HIV-1 Env pseudotyped viruses and infection rates can be

determined using the luciferase or b-galactosidase reporter

function. Thus, the neutralizing activity of polyclonal or

monoclonal antibodies can be assessed by comparing the

infection rates with and without the presence of the respective

antibodies (85).

However, this assay is not without limitations. The concept of

this approach only works if the critical amino acid sites of a given

antibody are already known. This knowledge must be obtained

from previous assays, such as the structural analyses mentioned

above, similar data from bNAbs of the same class, or in vivo

experiments in which escape mutations have been detected after

treatment. However, in some cases, e.g. where structural assays can

only indicate the contacted amino acids, it is still unclear whether

only some of the other possible amino acids at the site may lead to

impaired neutralization. Most groups use alanine scans for this

approach, mutating all residues of interest to alanine before testing

the mutant HIV-1 Env for antibody sensitivity (86). While alanine

is chosen for its simple structure and non-polarity, there may be

residues where this amino acid still retains bNAbs activity while

others may render the virus resistant (17, 87). This approach is

laborious and, while it may be possible to induce single amino acid

mutations at different sites, it is impossible to test all possible

combinations of mutations since even if only 3-4 sites are thought

to be critical, the potential number of possible mutations easily goes

into the hundreds or thousands. Moreover, some mutations

induced in vitro may prove detrimental to the viral fitness in vivo,

preventing their emergence.

Finally, studies have reported that the use of HIV-1 Env

pseudotyped viruses may overestimate the breadth and potency of

bNAbs (88–90). To circumvent this problem, the comparison of in

vitro data using Env pseudotyped viruses and primary HIV-1

isolates is crucial before making clinical trial decisions. In

particular, for the screening of a patient’s bNAb sensitivity prior

to treatment trials, the use of viral outgrowth cultures has been

shown to be feasible, effective, and to be able to predict a patient’s

clinical response to bNAb treatment. However, the process of T-cell

activation and culture can take up to several weeks, and some

patients that were found to have a sensitive viral outgrowth culture

still had no virologic response to the bNAb treatment (35–37). The

latter may be explained by the finding that these cultures do not
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reflect the large diversity of replication-competent proviruses in a

patient’s viral reservoir (91).
In vitro viral evolution and
adaption assays

To test viruses for possible escape mutations without any prior

knowledge of the antibody being tested, novel approaches such as the

Mutational Antigenic Profiling (MAP) assay have been developed in

recent years (92, 93). This assay allows for the highlighting of viral

escape pathways by generating 19 amino acid mutations at 670

different HIV-1 Env sites, resulting in 12,730 individual HIV-1 Env

mutations. The corresponding libraries of viral quasispecies are then

incubated with human polyclonal IgGs or bNAbs. Humoral immune

pressure then selects for a swarm of resistant quasispecies, which

subsequently allows identification of fractions of mutant viruses that

survived antibody neutralization by each bNAb by deep-sequencing

the HIV-1env of strains that were able to infect cells in viral outgrowth

assays in the presence of antibodies. The authors further revealed

different mechanisms of viral resistance to bNAbs: (i) viral escapes to

clonal variants of bNAbs are quite different, despite shared contact

sites; (ii) mutations in Env trimers induce alteration of electrostatic

charges and thus mediate bNAb resistance; (iii) alteration of

glycosylation sites near or distal to epitopes of CD4bs bNAbs

affects their neutralizing activities (92–94). Of note, viral resistance

to neutralizing antibodies may develop more rapidly in vivo than in

vitro (95) (92). Although antibody resistance induced by point

mutations in this experimental approach correlates with those in

human studies (35–37, 96), the majority of these mutations may not

occur naturally in HIV-1-infected individuals (97), as they are

detrimental to the viral replication capacity, the so-called ‘viral

fitness’. Another caveat of this assay is its inability to determine the

effect of combined mutations on the neutralization sensitivity to a

given bNAb. The introduction of multiple mutations in well-defined

epitopes on HIV-1 Env in a soft randomization approach has been

shown to rapidly identify viral antibody escape (98). With soft

randomization, HIV-1 Env libraries with multiple mutations in a

single Env can be generated to investigate how diverse mutations in a

single HIV Env affect viral sensitivity and fitness. Compared to MAP,

soft randomization is relatively inexpensive and less labor-intensive

for library generation. Focusing on bNAbs targeting the conserved

CD4 binding sites on HIV-1 Env, Otsuka, and colleagues reported

that viral escape from a single bNAb may increase viral resistance to

other bNAbs in the same class (98). Thus, the design of combination

bNAb therapies or multispecific bNAbs targeting different epitopes is

critical to combat viral escape. Recently, Radford et al. developed the

deep mutational scanning (DMS) approach, which can also

determine the escape to polyclonal or monoclonal antibodies that

may only be mediated by combinations of mutations (99).

In conclusion, testing large panels of pseudoviruses for their

neutralization sensitivity, using pseudoviruses with specific amino

acid mutations and developing novel assays such as the MAP and

DMS assays are helpful in understanding viral escape pathways.
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Bioinformatic prediction of viral
drug resistance

Computational methods have previously been successfully used

for prediction in various settings. For example, several tools for

predicting HIV drug resistance and treatment success have been

implemented and are available as web applications. The Stanford

Algorithm (https://hivdb.stanford.edu/hivdb/by-patterns/ (100))

and HIV-GRADE (https://www.hiv-grade.de/cms/grade/ (101))

are rules-based, which is one of the simplest approaches. The idea

is to define escape mutations, also called resistance-associated

mutations (RAMs), and relevant rules for predicting a virus as

resistant or susceptible to a drug. In the of HIV-1 drug resistance,

the mutations are most often found in the viral protease, reverse

transcriptase or integrase genes for each drug or class of drugs that

target that region. The Stanford algorithm uses a list of RAMs for

each drug class with associated resistance scores ranging from -15 to

60 (102). The scores of all observed mutations are summed and the

final score places the virus in one of five categories from susceptible

(<10) to highly resistant (>60) to the drug.

While computational methods for HIV antibody research have

recently been reviewed by Dănăilă et al. we focus here on the

applicability of the different methods, their availability, and

usability (103). We provide a brief description of the methods

reviewed in Table 1, and a schematic overview of a machine

learning pipeline for bNAbs is shown in Figure 3.
Rules for neutralization capacity
of antibodies

One of the more computationally simple approaches is rule-

based. In the case of bNAbs, Gnanakaran et al. have introduced a

rules-based system for HIVAR and mutations on the HIV-1

envelope (104). Gnanakaran et al. used a signature consisting of

seven positions of the viral proteome, and amino acids associated

with susceptibility or resistance to antibody b12. If the signature

includes at least four amino acids associated with susceptibility and

at most one amino acid defined as resistance-associated, the virus is

predicted to be sensitive to b12 and otherwise resistant. The

signatures were identified by phylogenetic analysis of sequences

and by identifying positions where mutated amino acids are

enriched in resistant sequences. Other studies have also focused

on the computational and non-computational identification of

amino acid residues at mutated positions that predict sensitivity

to antibody neutralization (105–108).

A rule-based algorithm can be complex involving many

mutations and containing sophisticated rules that take into

account the interactions of multiple mutations. For example,

the Stanford algorithm mentioned above includes additional

scores for combinations of up to four different mutations.

Such complex rules do not currently exist for antibody

resistance prediction.
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Machine learning for HIVAR prediction

Machine learning approaches to HIVAR prediction build

predictive statistical models directly from data, avoiding the

manual process of designing rules. Despite their simplicity, rule-

based algorithms can still be quite predictive and in some situations

more accurate than machine learning methods such as logistic

regression and decision trees (104). In the Gnanakaran et al. study,

the logistic regression approach replaced the binary influence of the
Frontiers in Immunology 07
signature positions with a continuous weight to more accurately

account for the influence of each position on the prediction. A

straightforward extension of a rule-based algorithm to a subset of

mutations leads to a method that includes all positions in envelope

region. Defining rules for all 857 amino acid positions of the

envelope protein and possible mutations is difficult. Not enough

is known about each individual position. We also do not assume

that every mutation is relevant to the prediction, or rather that the

contribution of the mutation may be very small but still relevant in
FIGURE 3

Bioinformatic workflow for model learning. The raw input consists of (1) nucleotide sequences of the ENV region, here the beginning of the D-loop
part, paired with an IC value, e.g. IC50. The nucleotide sequences are aligned to a reference and (2) converted to amino acid sequences. The amino
acid sequences are (3) converted to binary sequences by hot coding. The IC50 values are converted to binary class labels. The hot-coded
sequences and class labels are (4) divided into a training set and a test set. The training set is used to rank different models by their cross-validation
accuracy. The best model (5) is trained on the full training set and (6) validated on the test set.
TABLE 1 Overview of reviewed approaches.

Reference Method Data Complexity Interpretability Accuracy*

Gnanakaren et al.,
2010 (104)

Rule-based few amino acid positions low high medium

Gnanakaren et al.,
2010 (104)

logistic regression few amino acid positions medium high low to medium

Gnanakaren et al.,
2010 (104)

ensemble of
classification trees

all amino acid positions medium medium low to medium

Hake and Pfeifer
2017 (126)

support vector machine all amino acid positions medium to high medium to high medium

Rawi et al., 2018 (128) gradient
boosting machine

all amino acid positions high medium medium to high

Williamson et al.,
2021 (129)

ensemble approach all amino acid positions high medium medium to high

Dănăilă and Buiu
2016 (136)

recurrent neural
network (GRU)

all amino acid positions high low medium to high

Igiraneza et al.,
2023 (142)

recurrent neural
network (LSTM)

all amino acid positions high low medium to high
*Accuracy is not directly comparable due to different accuracy measures and differing amounts of data available.
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some cases. A more refined approach is needed to handle this

situation. In a third approach Gnanakaran et al. used decision trees

considering all sequence positions combined with subsampling of

the training set to avoid overfitting. Sensitivity or resistance was

predicted by majority voting over all trees. Possibly due to the

structure and relatively small size of the training and test sets, 251

and 56, respectively, logistic regression and the decision trees did

not generalize as well as the rule-based approach.
Analogy to previous drug
resistance prediction

The use of alternative state-of-the-art machine learning

algorithms is becoming increasingly relevant, especially since the

amount of data for this problem has increased significantly since

2010. Machine learning algorithms have already been successfully

implemented for HIV drug resistance prediction, for example in the

geno2pheno system (https://geno2pheno.org/) (48). The procedure

is to use available data and train a prediction model. More

specifically, the model is trained on a set of viral genome

sequences annotated as either susceptible or resistant (to a

specific drug) with the goal of classifying a new sequence as either

susceptible or resistant. No manual intervention is required during

training, unlike with the rule-based approach and the logistic

regression used by Gnanakaran et al., which are restricted to a

subset of preselected mutations.
Data availability and processing

Usually, one of the critical issues is the availability of annotated

sequences. A large collection of sequences and their respective 50%

inhibitory antibody concentration (IC50) and 80% inhibitory

antibody concentration (IC80) values is available from CATNAP

[Compile, Analyze and Tally NAb Panels (109)]. This database

contains 162,679 neutralization assays for 2075 viruses (only 1846

viruses with matching envelope sequences) and 966 antibodies (619

heavy chain and 593 light chain sequences). IC50 and IC80 values are

available for 158,640 and 68,028 assays, respectively (accessed

January 2024). CATNAP is therefore a very important source of

annotated sequence and neutralization data. However, even in

CATNAP, data for some of the most recently discovered

antibodies are still rare. Furthermore, it should be noted that

most of the models reviewed here are trained on data available

through the CATNAP database as there is currently no other

established source or comparable dataset that allows the training

of novel prediction models and machines. The CATNAP database

also provides several in-house tools for analysis. The most basic

analysis allows the user to individually select antibodies and

envelope sequences contained in CATNAP, which are then

visualized, described and summarized. For each antibody and

sequence, the corresponding IC values are displayed, encoded by

their amino acids, and color-coded by their degree of resistance.

The user can also select the data by studies/publications. The same

analysis is available for user-provided input (antibody, IC value,
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sequence). In a hybrid analysis, the user-provided data is put into

context with the data from CATNAP. In addition, multiple criteria

can be used to select specific antibodies. Criteria include

neutralization strength and breadth, virus subtype, and the

antibody binding regio. The result lists all antibodies relevant to

the regarding input criteria.

A recently developed alternative to CATNAP is the HIResist

database (110). HIResist uses CATNAP as a resource, among

others, e.g., GenBank (109, 111). HIResist currently provides two

computational tools that allow the user to search the database and

select specific criteria for the antibodies. The results present the

virus panel color-coded in resistant and sensitive with the

corresponding IC value and amino acid sequence. Alternatively,

the user can select a virus strain and obtain information on which

antibodies the viral strain is resistant and sensitive to, again for a

selected criterion, e.g., IC threshold. A third tool of HIResist

provides insight into cross-sensitivities for user-selected pairs of

antibodies. Again, the user selects thresholds and the tools visualize

the sensitivity of the viral strains to both antibodies in a scatter plot.

This allows the user to identify viral strains that are resistant or

sensitive to both antibodies, or resistant to one and sensitive to

the other.

The most common way to represent a viral sequence is the one-

hot (or orthogonal) encoding used for categorical variables. For

example, position 1 of the sequence is represented by 20 binary

variables or features, one for each amino acid (112). Each variable

indicates whether the respective amino acid or feature is observed at

the position (1) or not (0) (Table 2). This theoretically extends the

857 amino acid long envelope to 17,140 features. However, not all

amino acids are observed at all positions. In practice, depending on

the antibodies and available sequences, we calculated that between

2500 and 7000 features are needed. This depends on the antibody

and the matching viruses, i.e., if an amino acid at a position never

occurs in any virus or the amino acid at a specific position is the

same for all viruses, these features can be excluded without losing

information. In addition to mutations, insertions and deletions can

also be included as features. A simpler alternative to one-hot

encoding is to code each position of the sequence that does not

match a reference sequence as 1 and otherwise as 0, i.e., to code only

the presence and absence of mutations, including insertions and

deletions, without identifying the residue. The choice of reference is

of secondary importance, since it is only used to compare the virus

sequences. For example, suppose that reference A has amino acid X

at position p, but reference B has Y at position p. Suppose further

that half of the viruses have X at position p and the other half have
TABLE 2 Example for one-hot encoding.

A R N … M … W Y V

1M: 0 0 0 … 1 … 0 0 0

1Y 0 0 0 … 0 … 0 1 0
frontier
The first row encodes the first position of the envelope sequence of the HXB2 reference
(Human immunodeficiency virus type 1 (HXB2), complete genome; HIV1/HTLV -
Nucleotide - NCBI (nih.gov)). The amino acid at position 1 is Methionine (M) denoted by
1 at columnM and 0 in all other columns. The second row encodes a potential sequence with a
mutation leading to Tyrosine (M1Y).
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Y. In this case it is irrelevant whether we use reference A or B. It may

be relevant if we use reference C with Z at position p, because the

two virus populations would be indistinguishable if we encoded

only for the presence of a mutation and not for the specific amino

acid. This type of encoding is called mutational encoding. The loss

of information caused by mutational encoding can be avoided by

using one-hot encoding for all positions and amino acids including

wild type and all possible mutations. Thus, mutational encoding

reduces model complexity at the cost of information loss. Another

advantage of one-hot encoding over this simpler alternative is that

the data can be represented as a sparse matrix due to the abundance

of zeros. This can lead to significant improvements in

efficiency (113).

Embedding is a technique to reduce the dimensionality of the

sequence input while trying to minimize information loss (114).

Methods used in text mining are transferred to amino acid sequence

encoding. First, the amino acid sequence or document is slit into k

sets or words each containing non-overlapping k-mers, e.g.

AMINQACID is split into AMI,NQA,CID, and MIN,QAC, and

INQ,ACI (3 sets of 3-mers). Methods like doc2vec use neural

networks to learn a numerical vector with continuous values for

each sequence, which captures the similarity of the sequences

(documents) based on their k-mer representation (115). For

example., AMI,NQA,CID, and MIN,QAC, and INQ,ACI are

transformed into a vector like [0.1,0.5,0.2]. This can drastically

reduce the dimensionality, especially compared to one-hot

encoding. However, embedded sequences suffer from a loss of

feature information. Instead of a feature like 1M, Methionine at

position one, we have abstract features that are harder to interpret

and harder to relate to the original input. Improved approaches

have been proposed to address this drawback (116).

A third alternative for encoding amino acid sequences is to use a

set of seven different interpretable features that are unique to each

amino acid: ster ic parameter , polarizabi l i ty , volume,

hydrophobicity, isoelectric point, helix probability and sheet

probability. I.e., each amino acid position is extended to seven

continuous values (117). Meiler et al. train a symmetric neural

network (autoencoder) on this seven-parameters-per-position

encoding to further reduce the dimensionality (118). The

autoencoder transforms the n-dimensional raw data into an m-

dimensional embedding (m << n). This embedding is optimized by

learning to retrodict the input data from the embedding.

All of these methods are limited by the fact that ENV is a highly

mutated region of the HIV-1 genome (119). Especially, when

compared to regions of interest for drug resistance (PR, RT, IN),

the increased mutation rate of the ENV region poses an increased

challenge for alignment prior to any amino acid sequence

processing (120). In addition to the higher average number of

mutations, insertions and deletions are common (121). In contrast,

insertions and deletions in PR, RT, and IN regions are generally not

observed. In practice, this could lead to entire regions being marked

as low quality, and subsequently discarded, due to a high

mutation rate.
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Support vector machines for
resistance prediction

Support vector machines [SVM (122)] are a state-of-the-art

method used for classification, in this case into two classes of

sensitive and resistant virus variants, respectively, based on the

amino acid sequence of the envelope protein. Each sequence or

sample is represented by a vector of numbers, in our case about

2500 to 7000 of them. These are called features. In so-called one-hot

encoding each feature represents an amino acid at a particular

position in the sequence, and its value is 1 if we see that amino acid

at that position and 0 otherwise. Each vector represents a point in a

high-dimensional Euclidean space, where the number of numbers

in the vector being the dimension of the space. Support vector

classification (SVC) aims to divide the set of all points into two

classes, in our case of sensitive and resistant samples, respectively,

by a linear hyperplane, see Figure 4 (here, the classes are indicated

by the colors green and blue). In the SVM approach, we choose the

(unique) hyperplane that has the greatest distance to the nearest

data point. This distance is called the margin. The sample vectors

closest to the hyperplane are called support vectors. In Figure 4,

they are arranged along the dashed lines, both of which are at the

margin distance of the margin to the hyperplane. The support

vectors define the hyperplane in the sense that if you move one of

them a little bit, the hyperplane will move, as well. Thus, these

points are the only inputs that go into the linear equation that

defines the separating hyperplane. New samples are then predicted

based on which side of the hyperplane the points representing them

are on, with each side representing one of the two classes. Typically,

training data sets cannot be completely separated in this way, e.g.,

some points end up on the wrong side of the hyperplane. To deal

with this problem, a modified so-called “soft-margin” support-

vector machine (SVM) has been developed that allows for such

violations but tries to minimize them. This also results in a larger set

of support vectors (123). Training the SVM determines the

hyperplane by calculating multiplicative weights for each feature,

which are summed and added to an intercept value to compute the

SVM score of the point. This score is equal to its (signed) distance

from the hyperplane. The sign of the SVM score determines which

side of the hyperplane the point is on and thus the class to which the

point is assigned (sensitive or resistant). Alternatively, decision

values can be transformed into probabilities for the class label

(124), i.e., the probability that a virus is resistant to the antibody.

A characteristic element of SVMs is that not the data points

themselves but only the inner product between pairs of them enter

the equation of the hyperplane (125). Since the inner (dot) product

can be understood as a measure of the similarity between the points

in the pair, this allows for a powerful generalization of SVMs to

nonlinear classification: Instead of the inner product, we can use

other kernel functions that implement other notions of similarity

between points, such as polynomial, radial, and sigmoid kernels

(123). The dot product, called a linear kernel in this context, has the

advantage that the feature weights are easily interpreted: The sign of
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the weight indicates which class the feature supports for the data

point. The sign of the weight indicates the class the feature supports

for the data point. The absolute value of the weight indicates its

importance relative to other features. Especially in the case of binary

features, a feature with twice weight of another feature is twice as

important for the classification of the data point.

The only hyperparameter that needs to be either set or learned

when training an SVM is a regularization parameter denoted by C.

A large C will result in a better fit to the data used to train the model,

which may come at the expense of the model’s ability to generalize,

i.e, its classification accuracy on new data. In contrast, a smaller C

can increase the generalization ability. C is typically optimized using

cross validation.

Hake and Pfeifer used an SVM with an oligo kernel, which has

already been introduced for sequence analysis (126, 127). This

kernel can be interpreted as an extension of the linear kernel in

two ways. First, the oligo kernel does not only compare single amino

acids, but also k-mers, i.e. subsequences of length k. Second, the

same k-mer does not only contribute to the similarity, if it is located

at exactly the same position in both sequences. Rather, the oligo

kernel still detects similarity, even if the k-mer is a few positions

apart in both sequences. This allows for uncertainty, modeled by a

Gaussian distribution, in regards to the position of the k-mer in

both sequences. In addition to the penalty C the oligo kernel

introduces k and the standard deviation of the Gaussian

distribution as new hyperparameters to be optimized. Hake and

Pfeifer evaluated the performance of the SVM with the oligo kernel

by cross validating models learned from the CATNAP database.

They trained one model for each antibody. Accuracy ranged from

approximately 65% (35O22) to 84% (10–996) for eleven different

antibodies targeting the V1/V2 loop, V3 loop, CD4bs and gp41-

gp120. While the accuracy of the models for different antibodies

showed considerable variation, the model for each individual

antibody showed a prediction accuracy with little deviation.
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Ensemble approaches leverage several
statistical models for prediction

Rawi et al. proposed to use an extension of the decision tree

ensemble method called gradient boosting machine (GBM) and

named their method bNAb-ReP (128). In this additive approach,

the model is extended iteratively by modeling residual differences

between the current model prediction and the response. A weak

learner is added at each iteration. A regularization parameter is used

to avoid overfitting. Rawi et al. make the final models more

interpretable by computing feature importance scores. These

scores correspond to the increase in prediction error after

permuting the values of single feature. However, these feature

importance scores are not part of the prediction model and do

not directly convey a feature’s contribution to the prediction.

Comparisons by Rawi et al. on test sets unrelated to the

CATNAP database show higher performance of bNAb-ReP

compared to Hake and Pfeifer’s oligo kernel. Rawi et al. did not

compare the performance with Hake and Pfeifer on the CATNAP

database. A comparison of the results in both articles would be

compromised by the different dates of data access (2017 vs. 2019).

Ensemble approaches, such as the decision tree ensemble

mentioned above, have the advantage of being less prone to

overfitting as easily. In addition, instead of ensemble approaches

based on subsampling that use essentially the same method each

time, one can also use an ensemble of different methods to predict

sensitivity to an antibody (129). Williamson et al. offer a software

suite called Super LeArner Prediction of NAb Panels (SLAPNAP).

SLAPNAP combines random forests (130), boosted regression trees

(131) and the elastic net (132) into a single prediction model with

cross-validated ensemble weights. Williamson et al. argue that it is

not easy to identify the optimal model for each antibody. Therefore,

the super-learner using multiple models is preferred (133).

Williamson et al. encode the amino acid sequence indicating
FIGURE 4

Schematic of a soft-margin Support vector classification (SVC). The SVC optimizes the separation of the two classes, colored green and blue, by a
hyperplane, here projected in two dimensions. The two dotted lines represent the margin of separation for each class. The samples along the dotted
lines and the two samples on the “wrong” side of the hyperplane are the support vectors that define the separating plane.
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mutations, frameshifts, gaps, stops or sequons with respect to the

reference HXB2. In addition, they encode the geographic region of

origin of the respective sample (one-hot), the HIV-1 subtype (one-

hot), the length and number of sequons, and the number of

cysteines in different genomic regions, e.g., the envelope. For the

classification task SLAPNAP’s performance is similar to bNAb-ReP,

on average (81% vs. 84%). SLAPNAP is also designed to predict the

continuous neutralization values (IC50 and IC80) (129). However,

this task seems to be much more difficult, and the performance

shows a high variance. Correlation values of 0.65 (IC50) and 0.52

(IC80) show at least a better performance than a random guessing

approach. Williamson et al. argue that the lack of data, especially for

IC80 values, is one reason for the relatively low performance. Of

course, this could be improved in the future. SLAPNAP addresses

the prediction of combinations by an additive or Bliss-Hill

model (134).
Neural networks for
resistance prediction

With the ever-increasing amount of data, deep learning

approaches such as neural networks (NNs) are a logical choice

for modeling of antibody resistance prediction (103, 135, 136). NNs

have an input layer and an output layer of computational units

called neurons or nodes. Here the input layer receives the

representation of the virus sequence and the output layer

provides the resistance phenotype. Between the input and output

layers are one or more additional so-called hidden layers of neurons

(Figure 5). Each node calculates an output value from the values of

inputs. These are provided by the outputs of the nodes in the

previous layer (feed-forward). At each node, an affine function is

applied to the input values, the result of which is then fed into a

nonlinear activation function to produce the output value.

Common activation functions are the sigmoid function, and the

ReLU function, both of which project produced values in the range

of [0,1]. Recurrent neural networks (RNNs) break the strict feed-

forward mechanism and allow nodes in downstream hidden layers

to be inputs of nodes in upstream hidden layers, allowing feedback

loops (recurrent edges) (137). This is particularly relevant for

longitudinal data, where recurrent edges facilitate the reuse of the

same hidden layer multiple times to represent consecutive time

points. Due to parameter sharing, model complexity is independent

of the number of time points. Neural networks are trained using the

gradient-descent method, which iteratively reduces an appropriate

error function, also called a loss function. Providing recurrent edges

can lead to the problem of exploding or vanishing gradients, which

means that, for an error from a previous time point, the derivative

of the loss function can reach zero or very large values exponentially

fast. The actual behavior depends on the activation function and

whether the absolute weight of the recurrent edge is less or greater

than 1. Several methods like gated recurrent units (GRU) or Long

Short-Term Memory (LSTM) have been introduced to prevent

vanishing or exploding gradients (138–140). This is done by

adding a more complex structure that is used to determine

whether input from previous hidden states should be included in
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the current hidden state. LSTM are more effective than GRUs, but

GRUs are easier to train.

Dănăilă and Buiu explored several bidirectional RNN

configurations, but the inherent complexity of RNNs prevented

them from an exhaustively exploring model and parameter

combinations. Instead of learning the resistance from the virus

sequence alone, they added the sequences of the antibody’s heavy

and light chains as input. This has the advantage of learning a

single model that covers all the antibodies, so that those with only

few samples can benefit from the additional power of the other

antibody-sequence pairs. The basic structure of each explored NN

consists of two parts. The first is an antibody type prediction RNN.

This NN learns an embedding for the antibody sequence (heavy

and light chain) during training. The second part is the actual

resistance prediction. The input is the virus sequence and the

previously learned antibody embedding. The output in each NN is

computed by a fully connected layer or dense layer, which means

that all nodes from the previous hidden layer are connected to one

node in the next layer, here the output. The dense output layer is

combined with drop-out to reduce overfitting (141). In a layer

with drop-out a percentage of edges is removed in each training

iteration, i.e., all connections to and from a subset of the nodes are

ignored. The final trained layer will be fully connected, but should

be less prone to overtraining due to the randomization during

training. RNNs have the problem that amino acids are considered

more closely related if they are positionally close in the sequence.

Only the hidden state of the last sequence position is included in

the output. However, sometimes amino acids that are further

apart improve the prediction when considered in context.

Including attention in the RNN means that all hidden states of

all previous positions are included in the next output. But before

the output is produced, the hidden states are assigned weights, and

these weights are normalized, usually using softmax to compute a

probability distribution for the hidden states. In this way, the

trained NN is able to pay more attention to relevant amino acids

further away in the sequence. Overfitting is again controlled by

drop-out learning. The hidden layers in the RNNs are

bidirectionally connected. To avoid aforementioned gradient

vanishing/exploding problem, the authors used GRUs in all

recurrent layers. As an alternative to RNNs Dănăilă and Buiu

also trained a transformer. A transformer is a NN with multi-head

attention, which means that not only one weight vector is learned

for all previous hidden states, but several. This makes the NN

more flexible. In addition, the transformer includes position

encoding because, unlike RNNs, the whole sequence is

processed in parallel, which improves the training time, and

without positional encoding the sequence information would be

lost. As before the output is computed by a dense layer. For the

comparison with other methods Dănăilă and Buiu fine-tuned their

model to each antibody. To do this, they trained a model using all

the samples without the specific antibody. They then used cross-

validation to learn the hyperparameters based on the samples with

the antibody. The RNN method using amino acid properties as

input of Dănăilă and Buiu outperformed both bNAb-ReP (88% vs

84%) and SLAPNAP (83%), on average, but not for all antibodies.

In particular, for antibodies targeting gp41 MPER, the gp41-gp120
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interface, and fusion peptide bNAb-ReP and, to a lesser extent

SLAPNAP outperform the RNN. Dănăilă and Buiu also

investigated multi-task learning by predicting the class of the

antibody together with the viral resistance, but observed no

significantly different performance. The transformer also showed

no significant improvement.

Similar performance was observed for RNNs using LSTM

instead of GRU for the hidden layers (142). Igiraneza et al. train a

language-based universal model (LBUM) to address two challenges.

The first challenge is the potential influence of the virus subtype and

the underrepresentation of some subtypes in the training data. This

has only been partially addressed by including subtype as a
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covariate in the model (129). The second challenge is to predict

of outcome of potential antibody combinations. On average LBUM

performs similarly to GBMs and random forests with sometimes

large differences between individual antibodies. Accuracy ranged

from 59% (35O22) to 94% (DH270.1) (142). Similar to the previous

RNNs of Dănăilă and Buiu the performance was lowest for the

classes targeting gp120-gp41 and MPER. However, the ensemble

approach, which combines all three methods by averaging the

prediction probability, was the most accurate. Igiraneza et al. also

showed that subtype bias is present in unbalanced data and that it

can be partially corrected by using data on non-broadly neutralizing

antibodies (non-bNAbs) by balancing the dataset. In contrast to
FIGURE 5

Schematic of small neural networks with only one hidden layer. (A) A neural network with a dense hidden layer of size three and a single output, as
in binary classification or regression. Each input node corresponds to a position paired with an amino acid. For example, there are 20 input nodes for
position one, one node for each amino acid. In this visualization, the first two amino acids at position one are different from V, so the first two inputs
are 0. Only the 17th input is 1, because the 17th amino acid is V. (B) Schematic of an unrolled recurrent neural network. Inputs are shown in blue on
the left, outputs are shown in green on the right. Hidden layers are shown in gray and are unrolled from top to bottom. At each time point or
position, we feed 20 zeros and ones into the input node, one for each amino acid. In this visualization, the sequence shows amino acid N at position
two, which means that only feature N, the 12th feature, in the one-hot encoded sequence is 1, while all others are 0. The weights for the (horizontal)
edges from inputs to any hidden layer, the (vertical) edges from hidden layer to next hidden layer, and the (horizontal) edges from any hidden layer
to outputs are the same for each position. In the case of binary classification or regression, the output layer would be another hidden layer
connected by a dense layer to a single output.
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Dănăilă and Buiu, Igiraneza et al. did not use the antibody

sequences as input for each independent antibody model but

learned a randomly initialized antibody vector based on

neutralization data and virus sequences. This vector (or context)

was intended to capture the resistance pattern for each antibody,

i.e., a vector of continuous values encoding the resistance of the

available viruses to the antibody. Igiraneza et al. showed that this

pattern is similar for antibodies targeting the same epitope. This

pattern showed that antibodies of similar classes clustered together.

New antibodies were predicted with an accuracy of 72% by

assigning the class of the closest antibody in the training set.

Some antibodies did not cluster within their respective classes,

which Igiraneza et al. could explain by different mechanisms in the

action of the antibodies.

In summary, previous research has shown that relatively simple

approaches, such as defining rules for resistance-associated

mutations, can help to distinguish between sensitive and resistant

viruses. The growing amount of data now allows the use of much

more complex and precise machine learning algorithms to be

employed (103, 126, 128, 129). Support vector machines, even

with a linear kernel, are still competitive and have the added

advantage of being interpretable (128). Algorithms using neural

networks (103, 142) show high prediction accuracy which may

increase in the future as more data becomes available. However, due

to their complexity, such approaches need additional technology for

to become interpretable (128). While the prediction accuracy of the

leading classification methods is relatively high (around 80%),

regression of the actual IC50 or IC80 values remains a greater

challenge. In addition, the accuracy is highly dependent on the

bNAb under consideration, reaching accuracies above 90% for

some and some as low as 60% for others. In conclusion, there is a

need for further research in this area.
Animal models for detecting de novo
HIVAR that emerge during treatment

Most in vivo data on the antiviral effects of bNAbs have been

generated using HIV-1 infected humanized mice and non-human

primates (NHPs) that have been infected with chimeric simian-

human immunodeficiency virus (SHIV). Humanized mice that

have received human cells, such as CD34+ human cord blood, are

able to develop and maintain human B, T, and dendritic cells (143).

Thus, they can be infected with replication-competent HIV-1 and

maintain high viral loads for several weeks (28). To use NHPs as a

model for HIV research, SHIV, a chimeric virus that contains

elements of both simian and human immunodeficiency viruses,

has been used and shown to result in sustained viremia in infected

NHPs (29, 144).

While the in vitro models and assays described above can

provide information on residues critical for neutralizing a specific

virus, these models cannot assess the impact of specific mutations

on the replication capacity of a virus that is also often referred to as

‘viral fitness’ (145). In vivo, however, the effect of a single mutation

or a combination of mutations on the viral fitness is crucial because
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it determines the extent to which that particular virus will be part of

the viral swarm (146). Thus, mutations that lead to a viral escape

from the humoral immune pressure but compromise viral fitness

may not be able to replicate sufficiently and may not be detectable

anymore in vivo after several days or weeks of infection. However,

the first in vivo experiments using single highly potent bNAbs for

treatment in animal models clearly showed that escape mutations

leading to viral resistance but allowing viral replication exist and

emerge rapidly after treatment (28, 29, 144). The viral kinetics of

rapid viral decline followed by a rebound viremia in these animal

models are highly comparable to the kinetics found later in clinical

trials with viremic patients. Moreover, sequencing of the

rebounding viruses revealed escape mutations to the respective

bNAbs at the same residues that were later found in patients that

were treated with these monoclonal antibodies (28, 29, 147).

In summary, in vivo animal models provide a critical platform

for studying HIV antibody resistance, providing insights into viral

escape mechanisms and aiding in the development of effective

interventions. While challenges remain, the continued refinement

of humanized models and the integration of findings into clinical

strategies hold promise for combating HIV antibody resistance.

Combining in vivo studies with in vitro experiments and clinical

observations offers a comprehensive approach to tackling the

challenge of HIV antibody resistance.
Escape mutations as detected during
bNAb treatment in clinical studies

Clinical studies have shown that passive infusion of bNAbs as

monotherapy can transiently suppress viremia. The CD4bs bNAb

3BNC117 as HIV-1 monotherapy effectively suppressed viremia in

infected patients between 0.8 and 2.5 log10 for up to 28 days (36).

Since this first clinical study, many bNAbs, targeting different

epitopes, have been applied to viremic individuals, to patients

before or during an analytical treatment interruption or to

healthy individuals for passive protection (148). In all of these

scenarios, one of the major hurdles for bNAb application to humans

were pre-existing bNAb resistance mutations or de novo viral escape

that developed during treatment (81).

This was first observed in trials using a single bNAb. Although

3BNC117 monotherapy was effective in suppressing viremia during

weeks 1 and 2 of treatment, rebound was observed in all patients

even though 3BNC117 was still present in the participants’ plasma

at sufficient levels. In this study, the majority of individuals treated

with higher doses were pre-screened for 3BNC117 sensitivity using

patient PBMC viral outgrowth assays (VOA). All patients with

3BNC117-sensitive viral outgrowth cultures showed a significant

decrease in viremia after bNAb treatment. However, among the

non-screened patients, one individual did not respond to 3BNC117

treatment and was later found to be completely resistant to this

bNAb. Data evaluating the efficacy of a single infusion of VRC01 in

suppressing HIV-1 infection showed a similar pattern of rapid

development of escape mutations at sites that were expected to be

critical for VRC01 neutralization (96). Following up on the CD4-
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binding-site bNAbs clinical studies, a rapid development of escape

mutations was also observed upon a single administration of bNAbs

targeting the V3-glycan. 10-1074 and PGT121 also lead to a viral

transient suppression of viremia in patients with a rapid viral

rebound after about 2 weeks (35, 149).

As shown earlier with classical antiretroviral treatment (ART),

combinations of drugs can establish long-term control of viremia in

people living with HIV (150, 151). And indeed, double

administration of bNAbs targeting two different epitopes on the

HIV-1 envelope trimer, 3BNC117 and 10-1074, demonstrated a

longer suppression of viremia (37). Among the four subjects

harboring viruses susceptible to dual antibodies, immunotherapy

resulted in a remarkable average reduction of viremia of 2.05 log10

copies/ml. This reduction was sustained for up to three months

after first infusion. However, while none of these individuals

developed resistance to both antibodies, de novo escape mutations

to either one of the applied antibodies were found in the rebounding

viruses. Most novel escape mutations were observed for antibody

10-1074, due to its longer half-life and a de factomonotherapy at the

end of the study, while antibody 3BNC117 was observed

subtherapeutic levels. Thus, this study also showed that screening

of patients via viral outgrowth assays might not be feasible for future

studies, as this method missed pre-existing 3BNC117 or 10-1074

resistant strains in several patients that were later found via single

genome analysis from pre-infusion samples (37). Pre-screening for

bNAbs-resistant viruses in patients may be critical for broader

clinical use of bNAbs in the future, as shown in the first triple bNAb

treatment study (152). When a combination of VRC07-523LS,

PGDM1400, and PGT121 was used to treat viremic individuals, it

was able to reduce an HIV RNA by a maximum mean of 2.04 log10

copies per ml. However, similar to the previous single bNAb

treatment studies, a rapid rebound was observed in the majority

of patients. Post-hoc analyses showed that 2 out of 4 of the viremic

patients treated with triple therapy already had circulating strains

that were resistant to one or two bNAbs, resulting in only one or

two active bNAbs. In addition, the other patients who were sensitive

to all bNAbs quickly developed a de novo escape to the majority of

the antibodies used (152).

Pre-existing resistant strains were also a major problem in

several analytical treatment interruption (ATI) studies, which

evaluated the effect of bNAb treatment on the time to viral

rebound after ART discontinuation. Several studies showed that

patients who received bNAbs during or before an analytical

treatment interruption rebounded faster if their pre-existing

strains were resistant to the single or combined antibody used

(38, 153–156).

In addition, these studies showed how difficult it can be to

screen patients on ART for pre-existing resistant viral strains. In

viremic patients, analyses of the circulating strains can easily

provide information about existing resistance, as large

proportions of circulating strains are replication competent (157).

In contrast, the vast majority of viruses in the viral reservoir of long-

term treated individuals are defective and thus, single genome

analyses of the envelope genome may detect resistant or sensitive

strains that could belong to non-replicative clones and are thus are

not part of the rebounding viral swarms (158). On the other hand,
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viral outgrowth cultures underestimate the diversity of the viral

reservoir (91).

Overall, these clinical trials have limitations to thoroughly

investigate HIVARs, given the small sample size of participants

and the different methods used to pre-screen individuals for their de

novo or pre-existing bNAb resistance mutations.

For future clinical trials, and especially for wider clinical use, it

would be important to develop a robust assay that can assess the

frequency of specific mutations to each bNAb and the resulting

HIVARs. There is a need to evaluate HIVARs in large cohort studies

consisting of different HIV clades to get a better idea of the

frequencies of resistant patients to each bNAb and to better

design future bNAb combination trials. The large pseudovirus

panels currently used to assess the potency and breadth of a

particular bNAb are mostly composed of sequences isolated more

than two decades ago (159, 160).

In conclusion, clinical trials testing single or combined bNAbs

in viremic patients or in patients undergoing ATI may reveal novel

escape mechanisms of HIV-1 that have not been predicted by other

in silico, in vitro or in vivo models. In addition, these studies

demonstrate how critical it will be for the future clinical use of

bNAbs to predict a patient’s bNAb sensitivity with accurate

methods that are rapid enough to be incorporated into daily

practice (37, 153, 154).
Antibody resistance in HIV-1 cell-to-
cell transmission

HIV-1 transmission can occur by infection of cells by free viral

particles or by interaction of infected cells with neighboring healthy

cells. Despite very high bNAb titers in the serum of bNAb-treated

patients, antibody resistance can develop due to the rapid transfer of

viral particles from one cell to another. Cell-to-cell transmission

spreads the virus faster than free-circulating viruses in the host

(161–163), and may be a primary driver of immune evasion and

establishment of the latent reservoir in memory T cells (164). HIV-1

reactive bNAbs prevent viral cell-to-cell transmission by interfering

with the fusion of infected and healthy target cells, thereby

intercepting the transfer of viral particles (165). How quickly HIV

env transitions from CD4 engagement to coreceptor binding on

target cells determines the neutralizing activities of bNAbs (166,

167). Thus, understanding the neutralizing breadth and potency of

bNAbs during the cell-cell transmission mode of a diverse HIV

strain is an important approach to determine novel immune

evasion pathways.

Several studies have accessed the efficacy of bNAb in the cell-cell

transmission mode (168–170). However, these studies failed to

accurately compare bNAb activities in cell-cell transmission mode

and free virus in the same experimental setting. Abela et al.

developed a more direct experimental approach to quantify free

virus and cell-cell transmission in a single setting (167). The authors

used a luciferase-tagged TZMbl cell line system in which free virus

released upon co-culture with JR-FL-infected PBMC does not infect

TZMbl cells in the absence of DEAE dextran. This approach allows

cell-cell transmission without TZMbl infection by free virus.
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However, this assay is limited to the study of cell-cell transmission

using engineered target cell lines.

Based on this model, studies have shown that CD4bs bNAbs

that are highly effective in neutralizing free virus spread may be less

effective during cell-to-cell transmission (167, 171). Further work

using the cell-cell transmission assay has shown that bNabs

targeting the V1/V2 (PGT145, PG16) and V3 loops (PGT121,

PG128, 2G12) retain their potency against free viruses during

cell-to-cell transmission. A slightly reduced neutralizing activity

for MPER-targeting bNAbs during cell-mediated transmission has

also been reported (167). One explanation for the resistance of

CD4bs bNAbs in the cell-to-cell transmission mode is that Env

crosslinks with CD4 with high avidity and thus requires a high

amount of neutralizing antibodies to disrupt this complex (172). In

addition, the use of the cell-cell transfer system has informed on the

vital impact of scFV in neutralizing viruses in cell-free and cell-cell

transfer modes (173).

In conclusion, the use of cell-cell transmission assay will be

beneficial in designing bNAb combination therapies or engineering

potent multispecific antibodies with bNAbs targeting different HIV

transmission modes.
The importance of detection of HIVAR
in the reservoir

HIV latency is established when infected long-lived CD4+ T

cells enter a dormant state (174). The HIV latent reservoir develops

at the early stage of infection (175, 176), with a half-life of the

participating proviruses of about four years (177, 178). However,

the field continues to develop new assays to detect, measure and

characterize the latent HIV reservoir in people living with HIV.

Even the most advanced assays can vary by several logs in their

estimates of the reservoir size of infected CD4 cells per million CD4

cells (179). In addition, the vast majority of proviruses are defective

and thus unable to produce replication-competent viruses (158,

174, 180, 181). It is well known that 97% of latently infected CD4+ T

cells in the HIV reservoir have defective integrated proviruses

characterized by hypermutation (GG → AG or GA → AA) and

large deletions, with only about 3% of the proviruses being intact

(158, 181–184).

Most available assays for measuring the size of the HIV

reservoir are limited to proviruses in blood samples. However, it

is widely recognized that human tissues serve as an HIV reservoir,

and proviruses in these tissues are quite different from circulating

proviruses (185). These hurdles make it difficult to develop assays

that not only accurately determine the size of the reservoir but also

provide single-genome sequence information about the identified

replication-competent proviruses. Sequence information on these

proviruses would be important for detecting HIVAR in the HIV

reservoir in order to better design and plan bNAb therapy and

prevention approaches. While there are some methods that can

obtain envelope genome sequences from complete and intact HIV-1

genomes, most of these assays are very expensive, labor-intensive

and time-consuming and are thus not feasible for larger clinical

trials or a wider clinical use (180, 186).
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PCR-based assays are the most commonly used technique for

measuring total HIV DNA. These assays measure the number of

copies and sequence information of proviral DNA in the HIV

reservoir using small samples, thus providing ‘surface level’ insight

into HIV-1 latency in a less laborious, rapid, and highly cost-effective

approach. However, most proviral DNA detected by conventional

PCR of specific HIV-1 genome segments belongs to defective

proviruses (158, 180, 184, 186). Most clinical trials to date have

used the ‘Phenosense’ assay developed by Monogram Biosciences to

screen patients for their bNAb susceptibility (187, 188). For this assay

bulk envelope amplicons from bulk CD4-cells are cloned into

reporter-pseudoviruses, which are then tested for their sensibility to

specific bNAbs. Thus, this method does not discriminate between

envelopes from intact and defective proviruses, making it likely that

the vast majority of envelopes tested are from defective envelopes.

However, when the sensitivity results of this assay were compared

with, for example viral outgrowth assays or genotypic assays, the

results of the PhenoSense assays and VOAs were comparable in terms

of the bNAb sensitivity of the patient samples tested (189, 190). Thus,

although this assay may phenotypically describe the bNAb sensitivity

of envelopes derived mostly from defective proviruses, its prediction

is mostly consistent with that assessed during VOAs. Whether such

predictions are also accurate enough for a later widespread clinical

use of bNAbs, e.g., during analytical treatment interruption, remains

to be determined in larger clinical trials. Several groups have

developed assays to detect intact proviruses from full-length

sequencing of proviral strains, which could be used to better

predict bNAb sensitivity from intact proviruses (180, 181, 186).

One of the most accurate techniques for determining the infectious

units per million (IUPM) of the replication-competent proviruses in

the HIV reservoir is the quantitative viral outgrowth assay (QVOA). In

this assay, latently infected CD4+ T cells derived from HIV-1-positive

patients are serially diluted in vitro and stimulated to reverse latency

and initiate the release of infectious virions to infect CD4+ T cells from

uninfected donors or cell lines such as SUPT1/CCR5 or MOLT-4/

CCR5. While most PCR-based methods described above tend to

overestimate the IUPM of the reservoir, the QVOA (191, 192) and

its variants (193–195) might underestimate the size of the reservoir.

This is because not all replication-competent proviruses can be induced

with a single round of stimulation or are able to replicate under the

specific in vitro conditions required for detection (158). In addition, the

outgrowth viral strains may have poor viral fitness in vivo and could

thus may be clinically irrelevant for future clinical trials. Although this

assay is laborious, time-consuming (14 - 21 days), and requires large

amounts of PBMCs, it is one of the few assays that not only detects

intact proviruses, but also results in cultures of replication-competent

viruses that can be used directly for phenotypic assays in downstream

analyses (191, 192, 196, 197). This feature was used by Lorenzi et al.

who developed a qualitative and quantitative viral outgrowth assay

(called ‘Q2VOA’). Here, the QVOA protocol was optimized to increase

the likelihood of identifying a large number of individual replication-

competent proviruses in the reservoir and to study their genetic and

phenotypic diversity. Replication-competent proviruses isolated by

Q2VOA can be further tested for their neutralization sensitivity or

resistance to bNAbs in vitro (91, 198).Thus, this assay may be the most

accurate assessment to date of a patient’s bNAb sensitivity to
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replication-competent quasispecies in the viral reservoir to date.

However, it is also time-consuming, extremely costly, laborious, and

requires large amounts of PBMCs that often require a leukapheresis

(91). In addition to these in vitro VOAs, mouse models have also

demonstrated their utility in identifying replication-competent

proviruses through in vivo outgrowth assays. In an adoptive transfer

study, researchers transferred PBMCs from SIV-infected monkeys and

HIV-infected patients on ART into NSG mice, resulting in measurable

viral loads in the recipient mice after 1-2 weeks (199). Future studies

could use the outgrown viruses to test bNAb sensitivity in

downstream assays.
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In conclusion, measuring the replication-competent reservoir for its

bNAb susceptibility will be a key factor for future cure trials and for future

clinical use, such as transitioning patients from effective daily ART to long-

term bNAb treatment. While several different and unique methods could

be used to test for HIV-1 antibody resistance in the viral reservoir, no

method is yet available that can accurately determine the bNAb sensitivity

of the viral reservoir with a small number of PBMCs and a short

turnaround time. Thus, while bNAbs have promising properties and are

likely to become part of the regular arsenal against HIV-1, novel assays

need to be developed that can test the viral reservoir forHIVAR in a timely

manner and through regular blood draws in routine clinical care.
FIGURE 6

Approaches and methods for detecting and assessing HIV-1 antibody resistance. Overview of the various approaches, assays and methods currently
used to detect, describe and characterize HIV-1 antibody resistance (HIVAR). AA, amino acid; bNAb, broadly neutralizing antibody; conc,
concentration; GMP, good manufacturing practice; PK, pharmacokinetics.
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Discussion

HIV-1 reactive bNAbs are promising novel agents for the

treatment and prevention of HIV infection. Moreover, with their

FC-mediated effector functions, they could be part of novel

strategies leading to functional cure of HIV-1 infections (81).

However, although bNAbs have several advantages over classical

antiretroviral therapies, they also have critical disadvantages.

Among other things, such as the need for subcutaneous or

intravenous injections to deliver bNAbs, their more complicated

storage due to the need for refrigeration, and their relatively high

production costs, one of the main hurdles to wider use of bNAbs in

the clinic is the occurrence of HIVAR (200). Unlike antiretroviral

therapy (ART), which is effective against nearly all strains and only

loses its activity with the emergence of resistance mutations that

develop in patients on sub-therapeutic levels of ART (often due to

factors such as non-adherence), broadly neutralizing antibodies

(bNAbs) often struggle to neutralize specific strains. This leads to

scenarios where multiple bNAb regimens functionally act as

monotherapies if only one of the administered antibodies can

effectively neutralize the virus in the patient, resulting in the rapid

emergence of viral variants that can escape monotherapy (152).

Thus, the identification and understanding of HIVAR is critical

for all future clinical applications of bNAbs for the treatment and

prevention of HIV-1. As summarized above, a variety of methods

and approaches are already available for detection and

characterization of HIVAR. Structural data on envelope-antibody

interactions can provide a first indication of residues that may affect

sensitivity to a given antibody. In vitro data from pseudoviruses can

reveal residues critical for neutralization. Large datasets of

annotated sequences with neutralization profiles can be used to

train machine-learning approaches that can predict bNAb

sensitivity based on envelope sequence data. Finally, sequencing

of rebound viruses from in vivo data from viremic animal models or

from clinical trials treating viremic individuals can be used to detect

viral escape variants that emerge after multiple rounds of viral

replication (Figure 6).

Despite this wide variety of different methods, none of them is

feasible for daily clinical use, for example to screen patients for

HIVAR before starting long-term treatment with bNAbs. Most of

the methods used and described here are either too inaccurate, too

laborious, too expensive, or too time-consuming. Therefore, new

approaches to characterize and identify HIVAR in patients are
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urgently needed to take full advantage of the novel features that

bNAbs bring to the treatment and prevention of HIV-1.
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