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Palacký University Olomouc, Czechia

REVIEWED BY

Nazli Khodayari,
University of Florida, United States
Alexis Hipólito Garcı́a,
Central University of Venezuela, Venezuela

*CORRESPONDENCE

Carmen Mazzuca

c.mazzuca@policlinicocampus.it

RECEIVED 03 June 2024
ACCEPTED 29 July 2024

PUBLISHED 19 August 2024

CITATION

Mazzuca C, Vitiello L, Travaglini S, Maurizi F,
Finamore P, Santangelo S, Rigon A,
Vadacca M, Angeletti S and Scarlata S (2024)
Immunological and homeostatic
pathways of alpha -1 antitrypsin:
a new therapeutic potential.
Front. Immunol. 15:1443297.
doi: 10.3389/fimmu.2024.1443297

COPYRIGHT

© 2024 Mazzuca, Vitiello, Travaglini, Maurizi,
Finamore, Santangelo, Rigon, Vadacca,
Angeletti and Scarlata. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 19 August 2024

DOI 10.3389/fimmu.2024.1443297
Immunological and homeostatic
pathways of alpha -1 antitrypsin:
a new therapeutic potential
Carmen Mazzuca1,2*, Laura Vitiello3, Silvia Travaglini1,
Fatima Maurizi 1, Panaiotis Finamore1, Simona Santangelo1,
Amelia Rigon4, Marta Vadacca4, Silvia Angeletti5

and Simone Scarlata1

1Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy,
Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy, 2Pediatric
Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy, 3Department of Human
Sciences and Promotion of the Quality of Life, San Raffaele University, Rome, Italy, 4Clinical and
Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario
Campus Bio-Medico, Rome, Italy, 5Unit of Clinical Laboratory Science, University Campus Bio-Medico
of Rome, Rome, Italy
a -1 antitrypsin (A1AT) is a 52 kDa acute-phase glycoprotein belonging to the

serine protease inhibitor superfamily (SERPIN). It is primarily synthesized by

hepatocytes and to a lesser extent by monocytes, macrophages, intestinal

epithelial cells, and bronchial epithelial cells. A1AT is encoded by SERPINA1

locus, also known as PI locus, highly polymorphic with at least 100 allelic

variants described and responsible for different A1AT serum levels and

function. A1AT inhibits a variety of serine proteinases, but its main target is

represented by Neutrophil Elastase (NE). However, recent attention has been

directed towards its immune-regulatory and homeostatic activities. A1AT exerts

immune-regulatory effects on different cell types involved in innate and adaptive

immunity. Additionally, it plays a role in metal and lipid metabolism, contributing

to homeostasis. An adequate comprehension of these mechanisms could

support the use of A1AT augmentation therapy in many disorders

characterized by a chronic immune response. The aim of this review is to

provide an up-to-date understanding of the molecular mechanisms and

regulatory pathways responsible for immune-regulatory and homeostatic
Abbreviations: A1AT, a -1 antitrypsin; NE, Neutrophil Elastase; A1ATD, a -1 antitrypsin deficit; hA1AT,

human a -1 antitrypsin; Pi, protease inhibitor; PiMM, protease inhibitor MM phenotype; PiZZ, protease

inhibitor ZZ phenotype; PR3, proteinase 3; IL, interleukin; TNF a tumor necrosis factor-alpha; ROS, reactive

oxygen species; NETs, neutrophils extracellular traps; sIC, soluble immunocomplexes; PBMCs, peripheral

blood mononuclear cells; DCs, dendritic cells; LTB4, leukotriene B4; TMPRSS2, transmembrane serine

protease 2; ACPA, anticitrullinated peptide antibodies; anti CarP anti-carbamylated; Hcy-A1AT,

homocysteinylated A1AT; ANCA, antineutrophil cytoplasmic antibodies; RA, rheumatoid arthritis; GPA,

granulomatosis with polyangiitis; MPA, microscopic polyangiitis; EGPA, eosinophilic granulomatosis with

polyangiitis; FM, fibromyalgia; GVHD, graft-versus-host disease; COPD, chronic inflammatory lung disease;

DM, diabetes mellitus.
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activities of A1AT. This knowledge aims to support the use of A1AT in therapeutic

applications. Furthermore, the review summarizes the current state of

knowledge regarding the application of A1AT in clinical and laboratory settings

human and animal models.
KEYWORDS

serine protease inhibitor superfamily (SERPIN), anti-inflammation, autoimmune disease,
infectious disease, Severe Acute Respiratory Syndrome Coronavirus2 (SARS-CoV-2)
Highlights
• a - 1 a n t i t r y p s i n h a s a n t i - i n fl amma t o r y a n d

immunomodulatory properties.

• a-1antitrypsin has the ability to regulate the metabolism of

metals and lipids.

• In vivo models of enzyme deficiency demonstrate the

therapeutic potential of a-1antitrypsin in modulating

immune system.

• a-1antitrypsin is a potential treatment option for

pulmonary, autoimmune, and infectious diseases.
1 Introduction

a -1 antitrypsin (A1AT) (Alpha-1 Proteinase Inhibitor, a1-Pi)
belongs to the serine protease inhibitor superfamily (SERPIN).

A1AT is a 52 kDa acute-phase glycoprotein and it is encoded by

SERPINA1 locus, also known as Pi locus, located on the long arm of

chromosome 14 (14q31-32.3). It exhibits significant polymorphism,

to date at least 100 allelic variants of A1AT have been described.

The classification is based on their phenotypic expression and

isoelectric mobility during isoelectric focusing; the three most

common phenotypes are: PiM (medium), PiS (slow), and PiZ

(very slow) (1). Among these variants, the M- type allele is

considered the common and functional form of A1AT.

Homozygosis for the M-type allele results in the PiMM

phenotype, which represents the well- working functioning

protein phenotype. In contrast, some alleles lead to reduced

synthesis or dysfunctional protein production, or both.

Severe A1AT deficiency (A1ATD) is associated with specific

variants, such as Z- or S- types, which can result in the early onset

and sever development of emphysema, liver disease, and, rarely,

multiorgan vasculitis and necrotizing panniculitis (2).

A1AT is abundant in the plasma with a mean concentration of

1.3 g/L and a plasma half-life of 4-5 days. It is primarily produced by

hepatocytes, although minor amounts are also synthesized by

monocytes, macrophages, intestinal epithelial cells, and bronchial

epithelial cells (3). It acts as an inhibitor of various serine
02
proteinases, including proteinase 3 (PR3) (a potent elastase

produced by neutrophils), cathepsin G, plasmin activator,

thrombin, trypsin and chymotrypsin. It is primary target is

Neutrophil Elastase (NE) (4), a serine protease released by

activated neutrophils during inflammation. Its elastolytic burden

can cause damage to the structural components of the wall and lead

to lung tissue injury and destruction if not properly balanced by

A1AT activity (5).

A1ATD is primarily characterized by two clinical conditions

resulting from a pathophysiological mechanism that leads to either

gain or loss of function defects. This occurs due to the

polymerization of the protein A1AT and its subsequent

accumulation in the endoplasmic reticulum of hepatocytes, which

causes liver damage and lung dysfunction. In the lungs, the loss of

A1AT’s antiprotease function against NE, caused by a significant

reduction in A1AT serum levels, results in the destruction of

emphysematous lung tissue. This imbalance between proteinase

and antiproteinase, along with the increased inflammation observed

in A1ATD (mediated by LTB4, CXCL8, and TNFa), is the primary

mechanism leading to lung disease. In addition to the liver and lung

issues mentioned, there is also a link between the A1AT PI Z variant

and antineutrophil cytoplasmatic antibody (ANCA)- associated

vasculitis. The antiproteinase-3 (C-ANCA) marker is highly

sensitive and specific for diagnosing granulomatosis with

polyangiitis, GPA. C-ANCA recognizes and reduces PR3

proteolytic activity and can interfere with the PR3/A1AT bond. It

has been suggested that the reduced inhibition of PR3 due to

A1ATD may lead to increased production of PR3-directed C-

ANCA autoantibodies. Additionally, A1AT may have a

diminished ability to bind PR3 and counteract its proteolytic

effect on vessels. A rare form of panniculitis related to A1ATD

also exists, occurring in 1 in 1,000 individuals with the PI ZZ

genotype. It has been proposed that the PI Z variant may aggregate

into polymers that precipitate and accumulate in cutaneous soft

tissues, leading to inflammation and necrotizing skin lesions (6, 7)

A1AT is the most abundant serum serine protease inhibitor

with anti-protease property (8) but it also exhibits immune-

regulatory activities. Several studies suggest that A1AT carries out

these actions independently of each other (9). Under normal

conditions, A1AT expression is regulated by promoters, while

during inflammatory responses, it is stimulated by various factors.
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Its expression is modulated by enhancers, like interleukin-6 (IL-6)

and related to cytokines (e.g. oncostatin M, OSM) (Figure 1) (10).

A1AT is now widely recognized as an immunomodulatory factor,

exerting its effect on different cell types involved in both innate and

adaptive immunity, primarily by dampening inflammation.

Emerging evidence suggests that A1AT is involved in regulating

metal and lipid metabolism. These alternative biological effects have

sparked speculation regarding its potential use in A1AT

augmentation therapy, as still observed in a range of conditions.

Data on the safety of A1AT replacement therapy remain limited

due to the rarity of the underlying condition, which currently has

only one approved indication for treatment. Nonetheless, evidence

from randomized clinical trials comparing A1AT therapy to

placebo indicates a strong safety and tolerability profile. Over

90% of reported side effects were mild or moderate, primarily

including respiratory tract infections, gastrointestinal issues, and

general constitutional disorders. The incidence of adverse events

(AEs) was 28.9% in the treatment group, with serious adverse events

(SAEs) occurring in 26.3% of cases, showing no statistically

significant difference compared to the control group. Further

supporting this safety profile, the RAPID study reconfirmed these

findings, reporting that only one patient (1%) experienced a severe

adverse event leading to study dropout and subsequent death from

respiratory failure. These results underscore the relative safety of

A1AT replacement therapy, despite the severity of the underlying

condition and the limited population of patients receiving this

treatment. Existing studies, including those comparing the

treatment with placebo, have focused primarily on evaluating the

general safety and tolerability of the treatment, reporting

predominantly mild or moderate adverse effects. There have been
Frontiers in Immunology 03
no significant increases in the incidence of opportunistic infections

or reactivation of autoimmune diseases in patients undergoing

A1AT replacement therapy. Continued monitoring and additional

studies are essential to fully understand the long-term safety and

efficacy of this therapy (11, 12).

In this review, we provide an up-to-date understanding of the

molecular mechanisms and regulatory pathways involved in A1AT

immunomodulatory actions, as well as its homeostatic functions in

metal and lipid metabolism. Furthermore, we present a summary of

the existing knowledge on the application of A1AT in human

clinical settings (Table 1) and laboratory experiments on animal

models (Table 2).

To gather the most current knowledge, we conducted a review

of the literature using PUBMED, Google Scholar and the Cochrane

Library Databases. Our search strategy utilized appropriate generic

terms to ensure a comprehensive coverage of relevant studies.
2 Discussion

2.1 Anti-inflammatory and
immunomodulatory properties of A1AT

Several studies, both in preclinical models and in clinical trials,

have been conducted to verify whether A1AT could be exploited in

chronic inflammation diseases (25, 30). Interestingly enough, some

reports evidence a role in sustaining immune response to pathogens

(31) and an enhancer effect on secretion of lipopolysaccharide

(LPS)-induced tumor necrosis factor-alpha (TNF a), interleukin
(IL)-6, and IL-8 from monocytes and neutrophils (32). This
FIGURE 1

A1AT pulmonary production is due to tissue macrophages and bronchial epithelial cells, under IL 6, oncostatin M stimuli. The main target of A1AT is
neutrophil elastase, NE, released by neutrophils recruited by IL -8. Other serin- proteases, responsible of lung tissue injury, target of A1AT are
proteinase 3 (PR3), cathepsin G, plasmin activator and thrombin.
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apparent contradiction can be explained as, being by the fact that

A1AT is an acute phase protein and A1AT can have opposing

effects depending on the cytokine milieu and, above all, on the time

of their release during the inflammation. As described by

Janciauskiene and colleagues, short term stimulation of

monocytes and neutrophils with LPS and A1AT results in a

higher release of proinflammatory cytokines compared to

stimulation with LPS alone; conversely, 18 hours stimulation with

LPS in the presence of A1AT induces an increase in the production

of the anti-inflammatory cytokine IL-10 (8). However, most of the

literature highlights the immunosuppressive and protolerogenic

effects of A1AT. In the following sections, we will briefly explore

the activity of A1AT on innate and adaptive immunity (Figure 2).

2.1.1 Effects on innate immune system
Neutrophils are the most abundant leukocytes population in

peripheral blood, and they exert their activity early during

inflammation, releasing cytokines, proteases, producing reactive

oxygen species (ROS), and creating neutrophils extracellular traps

(NETs) (33) Neutrophils represent the main targets of A1AT

action: being an anti-protease, its primary effect is to inhibit serine

proteases deriving from degranulating neutrophils including NE,
Frontiers in Immunology 04
cathepsin G and PR3 (34). A1AT can impair neutrophil migration

towards inflamed tissues through two different mechanisms,

affecting both IL-8-induced chemotaxis and chemotaxis induced

by soluble immune complexes (sIC) (35). A1AT binds IL-8, and

the resulting complex is not able to engage the CXCR1 receptor

(IL-8 receptor) and inhibits downstream calcium flux and

cytoskeleton rearrangements. At the same time, A1AT can

associate to lipid rafts on neutrophils membrane, where it can

interact with disintegrin/metalloproteinase 17 (ADAM-17), a

membrane protein that controls the shedding of FCgRIIb
(CD16b), an event a process that is necessary for neutrophils

chemotaxis (35).

Alpha-1-antitrypsin (A1AT), beyond its role as a serine

protease inhibitor, exhibits significant antioxidative properties,

playing a crucial role in the neutralization of reactive oxygen

species (ROS) through sophisticated mechanisms. A1AT contains

methionine residues that are highly susceptible to oxidation by

ROS, particularly singlet oxygen and hydroxyl radicals, resulting

in the formation of methionine sulfoxide. This oxidation not only

neutralizes ROS but also prevents the methionine residues from

inducing further cellular damage. Methionine sulfoxide can be

subsequently reduced back to methionine by specific reductases,
TABLE 1 Human model.

AUTHOR,
YEAR

DISEASE TREATMENT RESULTS

Mcelvaney
et al.,
1991 (13)

Cystic Fibrosis Aerosol therapy Complete inhibition of NE activity within respiratory epithelial lining fluid

Griese et al.,
2007
(14)

Cystic Fibrosis Aerosol therapy After 4 weeks, decrease of NE activity, neutrophil count, levels of pro-inflammatory cytokines (IL8, IL1beta,
TNF alpha, LTB4) in sputum

Martin et al.,
2006
(15)

Cystic Fibrosis Aerosol therapy A phase II trial on 39 patients: reduction in NE activity and sputum NE/AAT complex and MPO levels;
clinically the treatment showed an improvement in number of exacerbations in absence of adverse effect

Eden e et al.,
2003 (16)

Asthma – Data from the National Heart, Lung, and Blood Institute Registry on 1052 subjects with A1ATD showed no
more efficacy of the augmentation treatment in reducing FEV1 decline in the asthma groups compared to
asthma-free groups; the subgroup analysis showed better efficacy in the FEV1 35 to 49% category

Blanco I et al.,
2008 (17)

Severe
Persistent
Asthma

Intravenous
administration
of hA1AT

Case report about a 27-year-old woman affected by Widal triad with a severe and resistant asthma. The
treatment significantly reduced the number of emergency consultations and hospital admissions, it decreased
the need for steroid therapy and it progressively improved the quality of life.

Dowd s.k
et al., 1995
(18)

Chronic
cutaneous
vasculitis-
A1ATD
associated

Intravenous
administration
of hA1AT

Case report about a 49-year-old white man with A1AT deficiency affected by chronic cutaneous vasculitis
refractory to colchicine and prednisone. The augmentation treatment totally resolved the cutaneous lesions
within 48 hours.

Giannoni l
et al.,
2020 (19)

Steroid- resistant
gastrointestinal
GVHD

Intravenous
administration
of hA1AT

16 patients in advanced-stage gut SR-GVHD treated with hA1AT: overall response rate (ORR) was 44%, with
a complete response (CR) rate of 27%, gastrointestinal response was observed in 61% of patients, with a
median time to best response was 21 days.

Marcondes m
et al.,
2016 (20)

Steroid-
Refractory Acute
GVHD
(SR-aGVHD)

Intravenous
administration
of hA1AT

A phase I/II open-label single-center study:12 patients with SR-aGVHD who received A1AT as salvage
therapy. Clinical manifestation improved in 8 of 12 subjects of which 4 had a complete response, in absence of
relevant toxicities

Magenau jm
et al.,
2018 (21)

Steroid-
Refractory Acute
GVHD
(SR-aGVHD)

Intravenous
administration
of hA1AT

A multicenter clinical study: forty patients with SR-aGVHD received intravenous A1AT as first-line treatment.
By day 28 the 35% of subjects had a complete response and at day 60 responses were sustained in 73%
without immunosuppression.
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thereby restoring A1AT’s functionality and enabling continuous

ROS scavenging (4, 36).

Beside the described scavenging effect, however, oxidation of

methionine residues leads to a decrease in the protective effect of

A1AT as a protease inhibitor (37). Taggart et al. identified two of

the nine methionines as particularly susceptible to oxidation,

specifically methionine 358, whose oxidation is already known to

result in loss of antielastase activity, and 358 (38).

For this reason, an increasing number of studies reports the

development of engineered forms of A1AT, with amino acid

substitution at methionine 351 and 358, designed to keep the

anti-protease activity, even in a oxidative microenvironment

(39, 40).

Additionally, the cysteine residues in A1AT may undergo

oxidation, which decreases ROS levels. The oxidation of these

cysteine residues can prevent the formation of disulfide bonds,

which otherwise might lead to protein misfolding and aggregation.

This antioxidant mechanism of A1AT further emphasizes its role in

mit igat ing oxidat ive stress and mainta ining cel lu lar

homeostasis (41).

Hydrogen peroxide (H2O2) is another ROS that A1AT can

directly reduce. By converting H2O2 into water, A1AT prevents its

participation in harmful oxidative reactions. The precise molecular

mechanism remains partially elucidated. Hydroxyl radicals are

among the most reactive and damaging ROS. A1AT is capable of

directly scavenging these radicals, thereby protecting proteins,

lipids, and DNA from oxidative damage. This interaction is
Frontiers in Immunology 05
believed to involve direct electron transfer mechanisms,

neutralizing the hydroxyl radicals and attenuating their

deleterious effects.

The interaction between AAT and the expression of

endogenous antioxidant enzymes such as catalases and

superoxide dismutase (SOD) has been known and studied for

some time (42).

Recent studies have demonstrated that patients with PI ZZ

genotype exhibit reduced expression of catalase and glutathione

reductase, indicating an indirect role of alpha-1 antitrypsin (A1AT)

in modulating reactive oxygen species (ROS) and reactive nitrogen

species (RNS) levels. Specifically, increased levels of H2O2 have

been observed in neutrophils isolated from asymptomatic ZZ

children, attributed to decreased expression of the antioxidant

enzyme catalase. Catalase catalyzes the dismutation of H2O2 into

water and oxygen, maintaining intracellular H2O2 concentrations

at optimal physiological levels for cellular signaling.

The deficiency of catalase in ZZ- A1ATD patients leads to an

accumulation of H2O2, which in turn induces increased expression

of glutathione peroxidase (GPx). GPx is a selenium-containing

antioxidant enzyme that converts H2O2 and lipid peroxides into

water and lipid alcohols, reducing potential oxidative damage.

Concurrently, reduced expression of glutathione reductase

impairs the regeneration of reduced glutathione (GSH), essential

for maintaining the antioxidant activity of GPx.

Furthermore, ZZ-A1ATD patients exhibit altered levels of

reactive species: a decrease in superoxide (O2-) and an increase in
TABLE 2 Animal model.

AUTHOR,
YEAR

DISEASE MODEL TREATMENT RESULTS

Churg et al.,
2003
(22)

Cigarette smoke-
induced
emphysema

Mice
model

Intraperitoneal administration
of prolastin

After 6 months, treatment provided 63% protection against increased
airspace size and it decreased neutrophils and macrophages in BAL,
approximately 75% and 50%

Churg et al.,
2007
(23)

Cigarette smoke-
induced
emphysema

Mice
model

Intraperitoneal injection of prolastin, Reduction of smoke-induced production and release of macrophage
metalloelastase (mmp-12) and TNF-alpha, in a dose response fashion

Kakimoto k
et al.,
1995 (24)

Collagen-induced
arthritis (CIA)

Rats and
mice
models

Ono-5046, a specific neutrophil
elastase inhibitor

The treatment suppressed the development and severity of CIA in
animal models.

Grimstein c
et al.,
2011 (25)

Collagen-induced
arthritis (CIA)

Mice
model

hA1AT therapy vs recombinant
adeno-associated virus (raav8)-
mediated gene therapy

Both treatments significantly delayed onset and ameliorated disease
development of arthritis in CIA mouse model.

Cantin am
et al.,
1999 (26)

Chronic
pseudomonas
aeruginosa
lung infection

Mice
model

Aerosol therapy Aerosolized prolastin significantly decreased elastase activity, lung
neutrophil counts and bacterial colony counts.

Zhang et al.,
2006 (27)

Type 1 diabetes Mice
model

Intramuscular injection of
recombinant adeno-associated virus
(raav1)-mediated gene therapy

A1at gene therapy attenuated cell-mediated autoimmunity, it altered the
t cell receptor repertoire, and it efficiently prevented type 1 diabetes in
the nonobese diabetic mouse model.

Lewis e c
et al.,
2005 (28)

Type 1 diabetes in
nonobese diabetic
(nod) mice

Mice
model

Injection of hA1AT Haat monotherapy prolonged islet graft survival and normoglycemia in
transplanted allogenic diabetic mice, lasting until the development of
anti-haat antibodies

Pileggi a et al.,
2008 (29)

Type 1 diabetes in
nonobese diabetic
(nod) mice

Mice
model

Intraperitoneal prolastin Haat monotherapy achieved a prolongation of islet allograft survival in
the stringent autoimmune diabetic nod mouse model.
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hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and nitric

oxide (NO) are observed. This imbalance suggests that A1AT

may play a crucial role in cellular redox regulation, influencing

the equilibrium between ROS and RNS. The accumulation of H2O2

and ONOO- can contribute to oxidative and nitrosative stress,

potent ia l ly leading to ce l lu lar damage and immune

dysfunction (43).

Superoxide anions (O2−) are primary ROS generated during

cellular respiration and various metabolic processes. A1AT

significantly reduces the activity of NADPH oxidase in activated

neutrophils, the enzyme responsible for transferring electrons from

NADPH to molecular oxygen, thereby generating superoxide

anions. By inhibiting this enzyme, A1AT decreases the

production of superoxides, contributing to a reduction in the

overall ROS burden in tissues and helping to limit oxidative

damage (44)

Furthermore, A1AT binds to metal ions such as copper (Cu)

and iron (Fe), which catalyze ROS production via the Haber-Weiss

and Fenton reactions. By sequestering these metal ions, A1AT

prevents these catalytic reactions, thus reducing ROS levels. The

Haber-Weiss reaction involves the interaction of superoxide anions

with hydrogen peroxide to produce hydroxyl radicals, while the

Fenton reaction involves the reduction of hydrogen peroxide by

ferrous iron, also generating hydroxyl radicals (42, 45).

In addition to the aforementioned role through which A1AT

acts with antioxidant action by increasing endogenous antioxidant
Frontiers in Immunology 06
enzymes, such as superoxide dismutase and catalase, it also exerts

indirect mechanisms of protection against oxidative stress.

Secondly, A1AT inhibits apoptosis by regulating the activity of

caspase-3, a key enzyme in the execution of the apoptotic process.

By reducing caspase-3 activation, A1AT prevents programmed cell

death, which is often induced by oxidative stress (46).

Finally, A1AT regulates the activity of proteases, enzymes that

degrade components of the extracellular matrix. By inhibiting these

proteases, A1AT prevents the destruction of the extracellular matrix

and the consequent release of additional ROS, thus helping to

maintain tissue integrity and limit oxidative damage (47).

These combined mechanisms highlight the importance of

A1AT in protecting against oxidative stress and preserving

cellular and tissue function.

A1AT influences neutrophils activity by regulating apoptosis in

different ways. Apoptosis is a crucial event in the resolution of

inflammation, as reduction of activated neutrophils action protects

host tissues from injury. A1AT has been shown to reduce in vitro

apoptosis of neutrophils, by inhibiting the proteasomal degradation

of the antiapoptotic protein Mcl-1 (48); conversely, the mutated

form of A1AT found in A1AT deficiency increases apoptosis of

neutrophils as it accumulates in their cytoplasm, leading to

endoplasmic reticulum stress and the expression of proapoptotic

signals, including TNF-a (49). Mild inflammation has been

demonstrated in the airways of individuals with AATD, despite

normal lung function. A tendency for pulmonary function decline
FIGURE 2

Immunomodulatory functions of A1AT acts on different cell types, both of innate and adaptive immunity. Innate cells: Neutrophils are involved
through inhibitory mechanisms on the degradation products as well as tissue migration process and cellular apoptosis; the cytokine milieu
influences Monocytes through different mechanisms: 1) impairing of the ATP-gated P2X7 receptor, that activates the NLPR3 inflammasome; 2)
increasing expression of Nf-kB inhibitor IkB and reducing translocation of Nf-kB to the nucleus; 3) regulating CD14 expression on cellular
membrane; Dendritic cells, at the interface between innate and adaptive immunity, in the presence of A1AT, present a semi-mature profile, in which
there is a reduction in the expression of MHC II, CD40, CD86. Adaptative cells: the extracellular milieu and semimature dendritic cells reduce the
activation of effector cells and sustain the proliferation of regulatory T cells (Tregs).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1443297
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mazzuca et al. 10.3389/fimmu.2024.1443297
in AATD patients has been noted, correlated with a pro-

inflammatory phenotype of the lower respiratory tract.

Specifically, a threefold increase in neutrophil count, a twofold

increase in protease levels, and 2-4 times higher levels of IL-8, IL-6,

IL1b, and leukotriene B4 have been observed in the epithelial lining

fluid compared to healthy controls (50).

Again, its main effect on cells of the monocyte/macrophages

lineage is anti-inflammatory and pro-tolerogenic activity: first of all,

in vitro studies on human monocytes or total PBMCs (peripheral

blood mononuclear cells) evidenced a reduction in the production

of proinflammatory cytokines (i.e. IL1-b, TNF-a) as an increase in

IL-10 production (51) and IL-1Ra (52). These effects are achieved

through different mechanisms: 1) impairing of the ATP-gated P2X7

receptor (one on the main “danger signal” sensors on cells), that

activates the NLPR3 inflammasome; a recent work proposed that

A1AT could signal through CD36 (a scavenger receptor expressed

on monocytes, macrophages and dendritic cells), activating a

phospholipase (PLA2) that in turn induces the expression of a

small factor with a cholinergic activity that binds acetylcholine

receptor in an autocrine manner thus eventually inhibiting the

opening of the P2X7 channel (53); 2) increase of intracellular cAMP

levels, through activation of adenylate cyclase and induction of

cAMP-dependent protein kinase (PKA) (8); 3) increased expression

of Nf-kB inhibitor IkB and reduced translocation of Nf-kB to the

nucleus (54); 4) regulation of the expression of CD14, a coreceptor

for bacterial endotoxin, on cellular membrane (55). As observed in

neutrophils, notably the anti-inflammatory effects are described

only for long time stimulation, while short term (<2 hours)

stimulation results in a synergic effect of A1AT with

proinflammatory stimuli (55). The protolerogenic effect of A1AT

is evident on dendritic cells (DCs): these cells, at the interface

between innate and adaptive immunity, are responsible for antigen

presentation to T lymphocytes and priming of naive T cells. In the

steady state, DCs patrol tissues and present immature phenotype.

After pathogen (or danger) recognition, DCs undergo maturation

and express on their membrane a panel of molecules that enable

antigen presentation (MHC class II), T lymphocytes costimulation

(i.e., CD40, CD80, CD86), and migration to lymph nodes (CXCR4,

CCR7). DC maturation in the presence of A1AT leads to a semi-

mature profile (smDC), in which there is a reduction in the

expression of MHC II, CD40, CD86 compared to LPS stimulated

DC, decrease of IL6, increase of IL-10 production (56). This

phenotype favors the expansion of regulatory T cells (Figure 2).

2.1.2 Effects on adaptive immune system
As for adaptive immunity, there is a general consensus that

A1AT reduces the activation of T effector cells and sustains the

proliferation of regulatory T cells (Tregs). It is very likely that the

effect of A1AT is not direct on lymphocytes, but it is mediated by

the alteration in the extracellular milieu (i.e. reduction of IL-1b,
TNF-a and IL-6, increase in IL-10) and in DCs maturation. Indeed,

there is a lack of evidence of A1AT activity on T lymphocytes in

vitro, but analysis in murine models of autoimmunity or

allotransplant demonstrate that treatment with A1AT determines

a reduction of T lymphocytes migration to inflamed tissue and an

alteration of Treg versus T effector ratio (57). This effect is also
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favored from the production of IL-2, that sustain Tregs expansion,

in unaffected by A1AT (58).

The potent immunoregulatory role of A1AT may support its

therapeutic use in several diseases other than A1AT deficit,

particularly in immune- related disorders.

A1AT also has an effect on B lymphocytes, reducing their

proliferation and function, as demonstrated in murine models of

autoimmune diseases mediated by autoantibodies, such as

rheumatoid arthritis, indicating a possible exploitation of A1AT

as a therapeutic agent in autoimmune diseases (59) As for the effect

on T cells, also the effect of A1AT on B lymphocytes seems to be

indirect, mediated by the alterations in the extracellular

milieu (Figure 2).
2.2 Effects on metal and lipid homeostasis

A1AT exhibits the ability to influence metal and lipid

homeostasis in addition to its immunomodulatory functions.

Observations have indicated a potential association between

proteases and iron concentration, suggesting the involvement of

antiproteases like A1AT.

In patients with cystic fibrosis (CF), who experience elevated

elastase levels in the airways, increased iron and ferritin

concentration have been observed in sputum and bronchoalveolar

lavage samples (56). Animal studies have demonstrated that the

intratracheal instillation of NE is associated with an increase in

ferric iron-containing macrophages in the lung airspaces (60).

In individuals with A1AT deficiency, with Z and S

polymorphisms, there is a significant accumulation of iron in the

liver (61). This suggests that A1AT deficiency may lead to

disruptions in iron metabolism and storage.

Studies have also reported significant differences in plasma

ferritin concentrations between individuals with different A1AT

genotypes. For instance, individuals with the PiZZ genotype,

associated with severe A1AT deficiency (A1ATD), have been

found to have higher iron and ferritin values compared to those

with the PiMM genotype. These differences in iron and ferritin

levels cannot be solely attributed to inflammation, as indicated by

C-reactive protein levels, suggesting a direct involvement of A1AT

in iron metabolism (62).

The ability to influence the iron homeostasis appears to affect

the development of neurodegenerative diseases, where disruptions

in iron regulation have been observed. Some studies have reported

that S or Z polymorphism is present in 25% of patients with anxiety

disorders, in 42% of people with bipolar disorder and 10% with pre-

existing affective disorders (63, 64).

In addition to iron metabolism, A1AT also affects the

metabolism of other metals, such as copper and zinc.

Patients with S and Z polymorphisms have significantly lower

values of free copper, not bound to ceruloplasmin, as well as an

alteration of zinc homeostasis. In central nervous system, decreased

copper stores may result in tissue damage or a reduced response to

injury due to a mitochondrial dysfunction. The Z polymorphism

has shown an association with demyelinating and hypomyelinating

conditions, potentially explaining the higher frequency of
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demyelinating diseases in individuals with A1AT pathological

polymorphisms (65).

Furthermore, A1AT has been implicated in lipid metabolism.

Previous research has identified apolipoprotein B-100, a major

protein component of low-density lipoprotein (LDL) and very

low-density lipoprotein (VLDL), as a binding partner to A1AT.

This interaction suggests a potential link and it has been proposed

that A1AT may play a role in modulating lipid homeostasis and

lipid-related processes through its interaction with apolipoprotein

B-100.

Studies have identified the presence of A1AT – LDL (low

density lipoprotein) complexes in coronary arteriosclerotic

lesions, with A1AT expressed by macrophages in the inner layers

of coronary arteries. This suggests that A1AT, produced and

oxidized by macrophages, contributes to lipid accumulation in

artery wall cells during the early stages of atherogenesis (66).
2.3 A therapeutic potential of the use
of A1AT

The most appropriate in vivo model to understand the anti-

inflammatory activity of A1AT administration is enzyme deficiency

(A1ATD) condition itself.

Augmentation therapy, which involves the intravenous infusion

of purified A1AT protein derived from human plasma, is a

treatment approach used to supplement the deficient or

dysfunctional A1AT in individuals with A1ATD. By restoring

A1AT levels, augmentation therapy aims to slow down the

progression of lung disease and reduce the risk of developing

complications such as emphysema and increase survival. Real-

world data from three national registries (Switzerland, Ireland,

and Austria) have recently been published, comprising a total of

615 patients with alpha-1 antitrypsin deficiency (97.7% with the ZZ

genotype). The data from this registry demonstrates a survival

advantage associated with intravenous A1AT administration,

which develops independently and decoupled from the

FEV1 decline (67). Alpha-1 antitrypsin (A1AT) augmentation

therapy has been shown to impact inflammatory markers such as

C-reactive protein (CRP) in patients with Alpha-1 antitrypsin

deficiency (AATD). This therapy primarily aims to stabilize lung

function and prevent further progression of lung disease,

particularly in patients with established emphysema or significant

respiratory symptoms.

A1AT augmentation therapy involves intravenous infusions of

purified A1AT, which helps to increase the levels of this protein in

the blood and lungs. This therapy has been associated with a

reduction in inflammation markers, including CRP, which is

commonly elevated in inflammatory conditions like COPD.

Studies indicate that A1AT therapy can lead to a reduction in

systemic inflammation, as measured by lower CRP levels, thus

potentially decreasing the overall inflammatory burden on the

lungs (68)

Moreover, the reduction in inflammatory markers can also be

indicative of the therapy’s effectiveness in mitigating the proteolytic

damage caused by neutrophil elastase, which is typically unopposed
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in AATD patients due to low A1AT levels. By restoring the balance

between A1AT and neutrophil elastase, the therapy helps in

controlling the chronic inflammatory state that contributes to

lung tissue damage (69).

In the lungs of individuals with enzyme deficiency, the

overexpression of free neutrophil elastase stimulates the release of

leukotriene B4 (LTB4) by interacting with surface receptors on

alveolar macrophages. LTB4 is the predominant chemotactic

mediator for neutrophils, leading to their recruitment into the

lungs (70).

Purified human A1AT has been shown to inhibit neutrophil

chemotaxis by reducing NE levels, thus attenuating the recruitment

of neutrophils (62). Studies have demonstrated the impact of A1AT

therapy, such as with the product Prolastin, on neutrophil

chemoattractants. Prolastin administration (60 mg/kg weekly) was

found to rapidly reduce LTB4 levels, suggesting its central role in

airway inflammation in A1ATD (66).

In a hamster model of fibrosis bleomycin induced, A1AT

demonstrated to reduce neutrophil and lymphocyte migration

already after 7 days, with a further decrease in cell counts

(neutrophils, lymphocytes, and macrophages) after 30 days (71).

Panniculitis is a rare complication of A1ATD that occurs in

approximately 0.1% of cases. Nodular lesions with degenerative

changes of dermal collagen are the clinical manifestations and the

pathogenetic mechanism is likely related to neutrophilic

inflammation and an unopposed NE activity (72, 73). In recent

years, several cases of panniculitis A1ATD-related successfully

treated with augmentation therapy have been reported (74).

Intravenous A1AT infusion is considered the most effective

treatment, typically at a dose of 60 mg/kg weekly. The dose and

intervals of administration can be adjusted based on the individual’s

clinical response (75). Traditionally administered intravenously, a

method that has been extensively studied and approved,

demonstrating a good safety and efficacy. However, alternative

administration routes are being explored to improve convenience

and patient adherence to therapy. Inhalation administration, for

example, involves using a nebulizer to deliver A1AT directly to the

lungs. Preliminary studies suggest that this route could increase

A1AT concentration in the airways and reduce systemic side effects,

although further data are needed to confirm its efficacy and safety

(76, 77).

Another route under investigation is transdermal administration,

which involves applying A1AT through the skin demonstrating

effective diffusion through the epidermal layers in a concentration-

and time-dependent manner. The treatment did not cause any

significant morphological alterations or damage to the keratinocyte

layers. While promising for enhancing patient convenience, this

method still requires further research to fully assess its effectiveness

and safety (78).

The use of miRNAs to modulate the expression of the mutant

A1AT gene and reduce the associated toxic effects has also been

explored. By incorporating miRNA structures into gene therapy

agents, it aims to inhibit the production of the mutant Z-AAT

protein and promote the production of functional A1AT (79).

Therapeutic strategies to boost levels of protective antiproteases

such as A1AT in the lung remain an attractive research strategy to
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limit the damage from excess protease activity. microRNAs are

small non-coding RNA molecules that bind specific cognate

sequences to inhibit expression of target mRNAs. The inhibition

of miRNAs which target the SERPINA1 (A1AT-encoding gene)

mRNA represents a novel therapeutic approach for CF

inflammation. This could involve the delivery of antagomirs that

bind and sequester the target miRNA or target site blockers that

bind miRNA recognition elements within the target mRNA to

prevent miRNA interaction (80).

These findings highlight the potential of A1AT augmentation

therapy to modulate the inflammatory response in A1ATD, reduce

neutrophil-mediated damage, and improve clinical outcomes in

various manifestations of the disease, including lung inflammation

and panniculitis.

2.3.1 Anti-inflammatory effect of A1AT
administration in pulmonary disease
2.3.1.1 Anti-inflammatory effect of A1AT administration
in COPD

COPD is characterized by chronic inflammation in the airways

and lung tissue, leading to airflow limitation and respiratory

symptoms. Studies have shown that A1AT administration can

have anti-inflammatory effects in COPD by modulating various

aspects of the inflammatory response.

By inhibiting neutrophil elastase, A1AT helps to maintain the

balance between protease and antiprotease activity in the lungs,

reducing tissue damage and inflammation.

In addition, the A1AT ability to modulate the production of

pro-inflammatory cytokines and chemokines, such as TNF- alpha,

IL- 8, and LTB4 reduces the recruitment and activation of

inflammatory cells in COPD.

In a study conducted on transgenic mice expressing extremely

low levels of A1AT and exhibiting to daily cigarette smoke for up to

6 months, the use of augmentation treatment (Prolastin 20 mg

every 48 hours) resulted in a significant reduction in lavage

neutrophils and macrophages, approximately of 75% and 50%

respectively after 6 months. Additionally, the administration of

A1AT reduced airspace size (mean linear intercept [Lm]) by 63%

compared with smoke-exposed not treated (22).

Furthermore, the study demonstrated that A1AT therapy

suppressed the increase of TNF-alpha smoke-mediated in serum.

This observation prompted the authors to consider whether the

protective mechanism of A1AT involves not only the direct

inhibition of NE activity but also an anti-inflammatory effect that

prevents the release of TNF- alpha and subsequent infiltration of

inflammatory cells.

Subsequent research on murine model revealed that A1AT can

inhibit both macrophages metalloproteinase (MMP-12) production

and the release of TNF-alpha from alveolar macrophages, thereby

reducing smoke-induced inflammation and the influx of

inflammatory cells (23).

One proposed mechanism for the increased production of

MMP-12 is the activation of proteinase-activated receptor-1

(PAR-1) by serum constituents, such as plasmin/plasminogen and

thrombin, which leak into the lung after smoke exposure. Gearing
Frontiers in Immunology 09
and colleagues suppose that A1AT may prevent the release of

MMP-12 and TNF-alpha by inhibiting the activity of both

thrombin and plasmin (81). Overall, these findings indicate that

augmentation therapy has the potential to attenuate the

inflammatory response in the lungs of mice exposed to cigarette

smoke. The reduction in lavage neutrophils, macrophages, and

airspace size, along with the suppression of TNF- alpha and

MMP-12, suggests a multi-faceted anti-inflammatory effect of

A1AT treatment.

The clinical-functional impact of A1AT therapy in patients with

emphysema associated with A1ATD has been extensively

demonstrated through numerous clinical trials. The RAPID and

RAPID Open Label Extension (RAPID-OLE) studies represent the

largest multicenter randomized placebo-controlled trials conducted

on this therapy. The RAPID-OLE study, published in The Lancet in

2015, confirmed the efficacy of augmentation therapy on lung

density, measured by computed tomography (CT densitometry),

over a total observation and treatment period of four years. Already

in the initial RAPID-RCT study, a significant slowdown in lung

density loss was observed compared to placebo, indicating a marked

reduction in the progression of emphysema. This reduction is

crucial as it is associated with less lung tissue destruction and an

improved prognosis for patients with AATD. Moreover, the

RAPID-OLE study demonstrated that the lung density lost during

the two years of placebo treatment is not recovered with the

introduction of A1PI, thus highlighting the importance of early

therapeutic intervention with a highly purified A1PI product

(12, 82).

Despite recent studies favoring radiological monitoring, several

studies have evaluated the effect of therapy on lung function. In

particular, a systematic review of 5632 patients concluded that

augmentation therapy has a slight effect in reducing the decline in

lung function, showing a 23% slowdown in the decline of forced

expiratory volume in one second (FEV1) (13.4 mL/year, 95% CI

1.5-25.3 mL/year) in treated patients compared to the placebo

group (83).

Additionally, a longitudinal study on 96 patients with severe

AATD analyzed the rate of FEV1 decline before and after the

initiation of weekly augmentation therapy, showing a slower decline

in FEV1 in patients with mild airflow obstruction during

treatment (84).

Regarding long-term clinical trial data on patient outcomes

such as the frequency of exacerbations, quality of life, need for lung

transplantation, and mortality, these remain more limited (85, 86).

The effect of AAT therapy in reducing exacerbations has been

described in patients with severe COPD. In an observational study,

the rate of exacerbations decreased from 3-5 infections/year before

therapy to 0-1 infections/year after the initiation of therapy.

Although randomized studies have not shown an overall effect on

the frequency of exacerbations, a post-hoc analysis of a clinical trial

reported a decrease in their severity (87)

Overall, these results demonstrate that A1PI augmentation therapy

offers significant benefits in slowing the progression of emphysema and

improving clinical outcomes for patients with AATD, underscoring the

importance of timely and continuous treatment.
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2.3.1.2 Anti-inflammatory effect of A1AT administration in
cystic fibrosis

Cystic fibrosis, a genetic disorder that primarily affects the lungs

and digestive system, is caused by mutations in the cystic fibrosis

transmembrane conductance regulator (CFTR) gene, which leads to

the production of defective CFTR proteins. CFTR is responsible for

regulating the movement of salt and water in and out of cells, and its

dysfunction results in the production of thick, and sticky mucus in

various organs. In the lungs, the abnormal mucus obstructs the

airways and impairs the clearance of bacteria, leading to chronic

respiratory infections, inflammation, and progressive lung damage.

CF is characterized by sustained neutrophil recruitment and

neutrophil dominated inflammation from a very young age, then

the damage is also mediated by NE activity (13, 14).

Several studies have investigated the potential of A1AT as a

therapeutic intervention.

McElvaney and colleagues were the first to suggest the use of

aerosolized A1AT therapy. They demonstrated a complete

inhibition of NE activity within the respiratory epithelial lining

fluid (ELF), after only one week of aerosolization of 1.5mg/kg A1AT

every 12 hours. Importantly, A1AT therapy did not interfere with

the ability of neutrophil-mediated killing of Pseudomonas

aeruginosa, a common pathogen in CF (13).

These findings have been subsequently supported by other

studies. Griese et al. showed a decrease in sputum NE activity,

neutrophil count, levels of pro-inflammatory cytokines (IL- 8, IL-

1beta, TNF- alpha and LTB4) and the numbers of Pseudomonas

aeruginosa after 2 and 4 weeks aerosolized A1AT treatment.

However, they did not observe any significant improvement in

lung function (84).

A phase II trial aimed at assessing the clinical efficacy of

aerosolized A1AT demonstrated a significant improvement in the

time to the first pulmonary exacerbation and the total number of

exacerbations. Importantly, no significant differences in adverse

events were reported, indicating that the treatment was well

tolerated (15).

These studies highlight the potentials of aerosolized A1AT

therapy in reducing NE activity, neutrophil-mediated

inflammation, and the presence of bacterial pathogens in the

lungs of individuals affected by CF.

2.3.1.3 Immunomodulatory effects in resistant asthma and
atopic status

Asthma is a chronic inflammatory condition of the airways that

leads to airway hyperresponsiveness, bronchoconstriction, and

respiratory symptoms. This inflammation involves the activation

of various immune cells and the release of inflammatory mediators,

which contribute to the characteristic features of the disease.

Eosinophilic inflammation is the most common type of

inflammation seen in asthma. Eosinophils play a significant role

in allergic and eosinophilic asthma. However, in some individuals

with asthma, a different pattern of inflammation may be present. In

Th2 low phenotype a neutrophilic inflammation may drive the

inflammatory process (88).
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Several studies have reported a prevalence of asthma ranging

from 20 to 50% in individuals with homozygous (ZZ) and

heterozygous (SZ) A1ATD (16).

It is hypothesized that augmentation therapy could improve

inflammation, reduce bronchial hyperresponsiveness, and prevent

the development of chronic airway changes in these patients.

Data from of the National Heart, Lung, and Blood Institute

Registry suggest that the augmentation treatment is not more

effective in reducing the decline of forced expiratory volume in

one second (FEV1) in the groups with asthma compared to the

group without. However, subgroup analysis indicated better efficacy

in patients with FEV1 between 35 to 49% category (16).

In a case report published in 2008, Blanco et al. described a

successful treatment outcome with A1AT in a Caucasian 27-year-

old woman affected by Widal triad with a severe and resistant

asthma and an MZ phenotype. The patient exhibited a statistically

significant improvement in lung function, with an increase in FEV1

from 43% to 52%. The treatment regimen involved an initial dose of

60 mg/kg/week for two weeks, followed by 120 mg/kg/biweekly for

seven months. The therapy was well-tolerated without any drug-

related adverse effects. A1AT treatment reduced the number of

emergency consultations and hospital admissions, decreased the

need for steroid therapy, and progressively improved the patient’s

quality of life (17).

The association of A1ATD with allergies is estimated at 29%,

with elevated IgE levels observed in 17% of cases. Elevated IgE levels

are significantly associated with asthma symptoms and a history of

allergies (16).

Additionally, studies on nasal lavage fluid have shown a close

relationship between A1AT and eosinophil activation in patients

with allergic rhinitis, particularly after allergen stimulation (89).

Immunoelectron microscopy studies conducted by Johansson et al.

demonstrated the presence of A1AT in the specific granules of

eosinophils (90). These findings suggest a possible role for A1AT in

the treatment of atopic asthma and other allergic diseases, possibly

through its immunomodulatory effects on eosinophils.

Furthermore, He and coworkers sustained a protective role for

A1AT in mast cell associated disease, including allergy, due to its

inhibitory effect on IgE-induced histamine release from mast

cells (91).

However, to date, no studies have demonstrated the usefulness

of augmentation therapy in treating atopic manifestations.

In summary, while there is evidence suggesting the potential

benefits ofA1AT therapy in asthma, particularly in individuals with

lower FEV1 levels, further research is needed to establish its efficacy

and optimal application in the treatment of atopic manifestations

and allergic diseases.

2.3.2 Usefulness in autoimmune diseases
2.3.2.1 Rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disease

characterized by a complex and dynamic immunopathogenesis. The

development and progression of RA involve the intricate interplay

of various cell types, cytokine, and molecular pathways.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1443297
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mazzuca et al. 10.3389/fimmu.2024.1443297
In the last recent years, the association between low serum levels

of A1AT and the development of RA has been identified,

particularly in relation to specific A1AT genotypes. RA patients

with the A1ATD PiMZ phenotype have been found to exhibit van

increased prevalence and higher titers of anticitrullinated peptide

autoantibodies (ACPA), indicating a distinct subset with greater

disease severity (92). Furthermore, the presence of antibodies

targeting carbamylated A1AT (Ca-A1AT), identified as a

potential target of anti-carbamylated (anti CarP) antibodies, has

been detected in the synovial compartment, suggesting a

contribution to synovial inflammation (93).

There has been growing interest in other autoantibodies that

recognize post-translationally modified proteins. In this context,

Colasanti and coworkers have identified to homocysteinylated

A1AT (Hcy-A1AT) in 54.4% of seropositive RA, but not in

seronegative cases, indicating their potential relevance in the

disease (94).

Dysregulated activation of neutrophils is known to contribute to

the pathogenesis of RA, although the precise mechanisms governing

their activation remain largely unknown (131).

In various experimental animal models, the use of neutrophil

elastase inhibitor has been shown to reduce the incidence and

severity of collagen-induced arthritis (CIA) and mitigate

histologically demonstrated damage to articular cartilage (24, 95).

In this regard, Griemstein and colleagues have demonstrated

the potential utility of A1AT in RA using a murine model.

Administration of human A1AT (hA1AT) either as a protein or

through a recombinant adeno-associated virus-mediated (rA1AT)

gene therapy resulted in reduced levels of serum and autoantibodies

against bovine type II collagen and mouse collagen II. This

treatment significantly delayed disease onset and modified disease

progression at both macroscopic and histopathological levels (95).

2.3.2.2 Gout arthritis

Gout arthritis is characterized by a deposition of uric acid

crystals in the joint, which triggers an inflammatory response.

The pathogenesis of gout arthritis involves several key factors but

IL- 1beta is an important cytokine associated with the progression

of the disease. Uric acid stimulates human blood monocytes to

increase the production and the release of IL- 1beta, and the

activation is mediated by an enzyme, PR3.

A1AT is known to inhibit the function of PR3, reducing the

activity of IL-1 beta and consequently decreasing the inflammatory

response in gout (96).

In animal studies, transgenic mice expressing A1AT have

shown increased transcription and secretion of IL-1 receptor

agonist (IL-1Ra) which has anti-inflammatory effects. IL-1Ra acts

as a counterbalance to IL-1beta, mitigating its inflammatory actions

and promoting a more balanced immune response (96).

2.3.2.3 Systemic vasculitis

Granulomatosis with polyangiitis (GPA), microscopic

polyangiitis (MPA) and eosinophilic granulomatosis with

polyangiitis (EGPA) are associated with antineutrophil

cytoplasmic antibodies (ANCA). ANCAs can be direct against
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directly opposed proteinase 3 (PR3) and myeloperoxidase (MPO)

which are targets of antiproteinase activity of A1AT. In the light of

this, consideration deficiency in A1AT is a possible pathogenic

cofactor in ANCA-associated vasculitis (AAV) (97).

Although the clinical impact of AATD in AAV is not yet fully

understood, the American Thoracic Society/European Respiratory

Society recommends assessing A1AT levels in cases of anti-PR3

vasculitis (98). Studies have shown that the Z allele, associated with

A1ATD, is present in 5-27% of individuals with GPA (98).

Rahmattulla et al. found a significant association between both

the S and Z alleles and AAV, including perinuclear ANCA or MPO-

ANCA (99). To date, there are no studies showing the efficacy and

safety of augmentation therapy in systemic vasculitis but there are

case reports on its successful use in cutaneous vasculitis in

individuals with A1ATD, particularly with PiZZ phenotype (18).

2.3.2.4 Fibromyalgia

Fibromyalgia (FM) is a chronic disorder characterized by

widespread musculoskeletal pain, fatigue, sleep disorders, and

heightened sensitivity to pressure or touch. The exact cause is still

unknown, and it is generally considered a complex disorder that

arises from a combination of genetic, environmental, and

psychological factors.

Recent evidence suggests a potential association between FM

and A1ATD. In according to an epidemiological study, the

prevalence of MZ, SZ and ZZ polymorphisms is 2- 4 times higher

in FM than in general population. The A1ATD can be considered as

a predisposing factor for the development of early and severe onset

of FM in an individual with low A1AT serum levels (7% MZ, 0.5%

SZ and 0.2% ZZ) (100). Additionally, three reported cases have

shown raid and persistent control of fibromyalgia symptoms in

individuals treated with intravenous A1AT (101, 102).

Furthermore, a blinded immunohistochemical study of skin

biopsies revealed a significant increase in the number of mast cells

in the dermis of fibromyalgia patients compared to healthy subjects

(103). Considering this finding, exogenous A1AT could potentially

act as a mast cells stabilizer and neutralizer of mast cells mediators

in FM. However, larger trials are required to determine the clinical

efficacy of this therapy in FM patients.

2.3.3 Usefulness in graft-versus-host disease
Acute GVHD is a common complication in patients

undergoing hematopoietic stem cell transplantation, it occurs in

20-80% and approximately 40% of patients are refractory to first

line therapy. Currently, there is no established standard treatment

for acute and steroid-refractory GVHD (SR-aGVHD) (19,

104, 105).

Studies have shown that A1AT has the potential to induce

tolerance in pre-clinical models of GVHD, particularly

gastrointestinal steroid-refractory seems to be an optimal setting.

A1AT has been found to modulate the cytokine environment,

promote a tolerogenic shift of dendritic cells, and favor the

development of effector T-cells towards regulatory T-cell (19).

In a phase I/II open-label single-center study, A1AT was

administered as salvage therapy to 12 patients with SR-aGVHD.
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Clinical manifestation improved in 8 of 12 subjects of which 4 had a

complete response, in absence of relevant toxicities (20).

These positive findings were further supported by a multicenter

clinical study involving 40 patients with SR-aGVHD. The patients

received intravenous A1AT twice weekly for 4 weeks as a first-line

treatment. By day 28, the 35% of subjects achieved a complete

response, and at day 60, 73% of the responses were sustained

without the need for additional immunosuppression (21).

Notably, Giannoni et al. demonstrated a favorable response to

A1AT in patients with advanced-stage gut SR-GVHD, including

those who had previously failed other treatments for SR-GVHD

(19). Gastrointestinal response was observed in 61% of patients,

with a median time to best response of 21 days (19).

In a multicenter proof-of-concept trial, 30 patients high-risk

with high-risk of developing SR-GVHD received twice-weekly

infusions of A1AT for a total of 16 doses. Their outcomes were

compared to a control group of 90 high-risk patients from the

Mount Sinai Acute GVHD International Consortium (MAGIC)

study. The treatment was well tolerated with minimal side effects,

but it did not significantly reduce the incidence of SR GVHD

compared to the control group. Based on these findings, it can be

concluded that the specific dose and schedule of A1AT used in this

trial did not effectively decrease the occurrence of SR

GVHD (106).

Further research is needed to explore optimal dosing strategies

and identify potential predictors of treatment response in

SR-aGVHD.

2.3.4 Usefulness in diabetes mellitus
Type 1 Diabetes Mellitus (DM1) is a chronic condition

characterized by the autoimmune destruction of insulin-secreted

beta cells in the pancreas, severe insulin deficiency may result in

chronic hyperglycemia with many complications. Interestingly,

individuals with DM1 exhibit lower plasma concentrations and

decreased activity of A1AT compared to other people (107). These

findings were subsequently also confirmed in Type 2 DM (DM2)

(108). A1AT inhibits the activity of neutrophil elastase and other

proteases, reducing the inflammatory response. This is crucial in

diabetes, where chronic inflammation is a significant contributing

factor to insulin resistance and beta-cell dysfunction (68, 109). The

process of beta-cell death appears to be enhanced by A1AT

deficiency (28, 109). A1AT has also been shown to inhibit the

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

kB) pathway, which plays a critical role in the inflammatory

process. By reducing NF-kB activation, A1AT can decrease the

expression of pro-inflammatory genes, thus mitigating

inflammation-associated insulin resistance (110). A1AT can

protect pancreatic beta cells from apoptosis induced by

inflammatory cytokines and oxidative stress. This preservation of

beta-cell function is essential in maintaining insulin production and

secretion in diabetic patients (111). Furthermore, A1AT can reduce

endoplasmic reticulum (ER) stress in beta cells, which is a common

problem in diabetes that leads to cell dysfunction and death. By

alleviating ER stress, A1AT helps maintain beta-cell integrity and

function (112).
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By introducing additional A1AT through gene delivery using a

recombinant adeno-associated virus, researchers were able to

observe a significant reduction in insulitis and prevent the

development of hyperglycemia in non-obese diabetic mice (30).

A notable finding in this context is the potential of A1AT to

extend the survival of transplanted islet cells and regulate the

immune response in a mouse model of islet cell transplantation

(27, 29, 113, 114).

The underlying mechanism of action appears to involve an

increase in insulin secretion that is dependent on glucose but also

potentiated by glucagon-like peptide-1 and forskolin. Furthermore,

A1AT has been shown to protect and rescue INS- 1E, a diabetic cell

line, from apoptosis induced by TNF-alpha. It also reduces the

levels of apoptosis induced by IL-1beta and IFN-gamma (115).

In summary, A1ATD contributes to beta-cell death in diabetes.

Using A1AT through gene delivery it is possible to reduce

inflammation and prolong the survival of transplanted islet cells

and modulate immune response. The mechanism of action involves

increased glucose-dependent insulin secretion, potentiation by

glucagon-like-peptide-1 and forskolin, protection against

apoptosis in diabetic cell lines, and reduction of apoptosis

induced by inflammatory factors.

By reducing systemic inflammation, A1AT can improve insulin

signaling pathways. This results in better glucose uptake by tissues

and improved glycemic control (116).

Finally, A1AT antioxidant properties can neutralize reactive

oxygen species (ROS), reducing oxidative stress that contributes to

both beta-cell dysfunction and insulin resistance.

2.3.5 Usefulness in infectious disease
Several studies have emphasized the therapeutic potential of

A1AT in the control of infection and the pathogenicity of microbes.

Specifically, research has revealed antimicrobial and anti-

inflammatory properties of A1AT that could provide defense

against bacterial lung infections (13).

Chan et al. discovered a higher occurrence of A1AT in

individuals with chronic lung disease caused by rapidly growing

mycobacteria (RGM). The incidence was approximately 1.6 times

more frequent compared to the general US population. This finding

suggested a potential role of A1AT in defense against such

pathogens. Subsequently, the researchers demonstrated in

laboratory experiments a suppression of mycobacterium abscessus

infection of monocyte-derived macrophages by up to 65% (115).

Interestingly, A1AT replacement therapy administered to

patients with A1ATD has shown potential in reducing the risk of

respiratory infections. As previously discussed, aerosolized A1AT

has a positive impact on neutrophil-mediated killing of P.

Aeruginosa in Cystic Fibrosis (13). In a rat model of chronic P.

Aeruginosa lung infection, aerosolized Prolastin significantly

decreased bacterial colonial counts, although it did not have a

direct bactericidal effect in laboratory tests. This observation

suggests a potential use of aerosolized A1AT as a non-antibiotic

adjunct in the treatment and control of infections in CF (26).

The role of A1AT extends beyond antimicrobial protection of

the airways, as demonstrated in the context of enteropathogenic
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Escherichia coli (EPEC) infection. It appears that A1AT interferes

with secretion protein B (EspB), which is responsible for pore

formation on the host cell membrane, thus responsible for

hemolysis of host red blood cells. It would appear that EPEC-

mediated hemolysis is strongly reduced by A1AT, in a

concentration-dependent way (117).

Other studies have also described a similar mechanism

involving the inhibition of human immunodeficiency virus type 1

(HIV-1). The virus enters cells through the interaction of its

glycoproteins, gp120 and gp41, with cell surface proteases. A1AT

has been hypothesized to disrupt the interaction between gp120 and

these proteases, thus interfering with the viral entry process (118).

Munch et al. identified a virus inhibitory peptide (VIRIP)

within the C-proximal region of A1AT, which acts as an

important inhibitor of a wide variety of HIV-1 strains, including

those resistant to current antiretroviral drugs. The mechanism

seems to be mediated to gp41 fusion peptide, it has antiviral

therapeutic potential (119).

Another highlighted mechanism involves the ability of A1AT to

suppress NF-kB activation, although the exact mechanism of action

remains still unknown (120).

The clinical implications of these laboratory findings are

exemplified by the description of unusually rapid declines in CD4+

T cell concentrations in HIV-infected individuals with A1ATD (121).

2.3.6 A1AT and SARS- CoV-2
As observed in the case of the Middle East Respiratory

Syndrome (MERS) caused by the coronavirus (122), A1AT has

been suggested to that A1AT plays a role in protecting against

SARS-CoV-2 infection.
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A1AT appears to inhibit viral infection by targeting two crucial

proteases involved in the pathophysiology of the virus: the

transmembrane serine protease 2 (TMPRSS2) and the ADAM17

(123, 124). Additionally, A1AT inhibits the activity of inflammatory

molecules such as IL-8, TNF-a, and NE. TMPRSS2 is essential for

facilitating the infection process, as it cleaves the spike protein of

SARS-CoV-2, enabling the virus to bind to its cell surface receptor,

angiotensin converting enzyme 2 (ACE2), and gain entry into cells.

ADAM17 involved in the release of ACE2, IL-6R, and TNF-a.
ACE2 is a key component for the balance of the renin angiotensin

system, inflammation, vascular permeability, and pulmonary

homeostasis (Figure 3) (122, 123). Neutrophil elastase (NE) plays

a significant role in the pathogenesis of SARS-CoV-2, particularly in

the development of severe lung disease such as acute respiratory

distress syndrome (ARDS). During SARS-CoV-2 infection,

neutrophils are recruited to the lungs and release NE, which

contributes to tissue damage and inflammation. This process is

exacerbated by the formation of neutrophil extracellular traps

(NETs), web-like structures composed of DNA, NE, and other

antimicrobial factors. NETs can trap and kill pathogens but also

cause local obstruction in the lungs, promoting mucin

overproduction and furthering inflammation and thrombosis,

contributing to severe lung injury and poor outcomes in COVID-

19 patients (125–127). In addition to its direct damaging effects, NE

can enhance the activation of the immune response, contributing to

a cytokine storm, a dangerous hyper-inflammatory condition seen

in severe COVID-19 cases. Clinical interventions targeting NE, such

as NE inhibitors like sivelestat, are being explored for their potential

to mitigate lung damage and improve outcomes in COVID-19-

induced ARDS (128). Understanding the dual role of NE in
FIGURE 3

Protective mechanisms of A1AT against Sars Cov2 infection: inhibition of virus entry into the cells through action on TMPRSS2 and ADAM 17; A1AT
antagonizes inflammatory cytokines with a reduction of neutrophils pulmonary influx; A1AT inhibits lung epithelial cell injury through direct action on
neutrophil elastase and vascular damage inhibiting fibrin clots formation.
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pathogen defense and tissue damage provides insights into potential

therapeutic strategies for managing severe COVID-19. By targeting

NE and its associated pathways, it may be possible to reduce lung

injury and improve survival rates in critically ill patients. Clinical

evidence suggests that A1AT levels may be important in

determining the outcomes of COVID-19 (6, 129, 130). An Italian

analysis of the A1ATD population highlighted a higher frequency of

SARS-CoV-2 infection compared to national data, approximately

3.8% (130). Another recent clinical analysis with a cohort of 40

COVID-19 patients demonstrated increased A1AT levels. Typically,

the rise in A1AT is directly proportional to the increase in IL-6,

indicating an anti-inflammatory function. Consequently, the

authors propose that A1AT augmentation therapy should be

considered and investigated as a potential treatment for COVID-

19. In this context, it is plausible to consider A1AT as a protective

host factor against COVID-19, not only decreasing SARS-CoV-2

entry, but also protecting from the main clinical complications,

such as acute inflammation and acute respiratory insufficiency (67).

However, further research is needed to fully understand

these aspects.
3 Conclusion

Considering the cumulative evidence supporting the beneficial

effects of A1AT in chronic inflammatory diseases, it is important to

conduct comprehensive clinical studies to ascertain its true clinical

efficacy in patient populations affected by each specific disease.

While in vitro studies and animal models have provided

positive indications, it is crucial to validate these findings in

human subjects to establish the relevance and applicability of

A1AT augmentation treatment.
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Intravenous infusions of purified alpha 1-antitrypsin effectively controls symptoms and
reverts muscle biopsy changes in an MZ-alpha-1 antitripsyn deficiency and
fibromyalgia syndrome patient. J Musculoske Pain. (2010) 18:167–72. doi: 10.3109/
10582452.2010.483962
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