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Introduction: Influenza virus infection can cause a range of clinical symptoms,

including respiratory failure (RF) and even death. Themechanisms responsible for

themost severe forms of the disease are not yet well understood. The objective is

to assess the initial immune response upon admission and its potential impact on

infection progression.

Methods: We conducted a prospective observational study of patients with

influenza virus infection who required admission to a tertiary hospital in the

2017/18 and 2018/19 flu seasons. Immune markers, surrogate markers of

neutrophil activation, and blood levels of DNase I and Apolipoprotein-H

(ApoH) were determined in the first serum sample available during hospital

care. Patients were followed until hospital discharge or death. Initially, 792

patients were included. From this group, 107 patients with poor evolution were

selected, and a random control group was matched by day of admission.

Results: Patients with poor outcomes had significantly reduced ApoH levels, a

soluble protein that regulate both complement and coagulation pathways. In

multivariate analysis, low plasma levels of ApoH (OR:5.43; 2.21-13.4), high levels

of C- reactive protein (OR:2.73: 1.28-5.4), hyperferritinemia (OR:2.83; 1.28-5.4) and

smoking (OR:3.41; 1.04-11.16), were significantly associatedwith a worse prognosis.
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RF was independently associated with low levels of ApoH (OR: 5.12; 2.02-1.94),

while high levels of IL15 behaved as a protective factor (OR:0.30; 0.12-0.71).

Discussion: Therefore, in hospitalized influenza patients, a dysregulated early

immune response is associated with a worse outcome. Adequate plasma levels of

ApoH are protective against severe influenza and RF and High levels of IL15

protect against RF.
KEYWORDS
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1 Introduction

Influenza is a contagious disease due to influenza viruses

characterized by involvement of the respiratory tract that appears

in seasonal epidemics and annually affect between 8 and 10% of the

population (1, 2). Clinical manifestations present a wide spectrum

of clinical profiles, from a self-limited mild infection to

complications such as severe pneumonia, respiratory failure (RF),

multiple organ failure or even death, reported in 20% of serious

infections (3, 4). The mechanisms and factors associated with poor

outcomes are not yet well understood.

Variables associated with complications have been identified that

could serve as possible prognostic factors, including age, delay in the

administration of antiviral treatment, pneumonia, thrombocytopenia,

lymphopenia and PaO2/FiO2<200 mmHg (5–8).

As has already been reported in other infections, the evolution

of the pathology based on the immune response established around

the infection by influenza virus could be a determining factor in the

evolution of patients (9–11). The secretion of cytokines by

respiratory epithelial cells during infection is a determining factor

in the disease's prognosis. An imbalance of cytokines can lead to

ineffective and exaggerated adaptive immune responses (12–14),

which could result in multi-organ failure and lung tissue

damage (15).

Neutrophil extracellular traps (NETs) are a form of immediate

response against any type of infection that consists of the release of

DNA and molecules from the neutrophil cytoplasm, mainly

antimicrobial peptides and proteases, which are organized in a

network where pathogens are trapped and destroyed (16). Although

NETs can prevent the spread of the infectious disease, their release

and degradation by DNases after infection must be tightly regulated

to effectively control the infection but avoiding excessive

inflammatory reactions (17, 18). High levels of NETs causes

tissue damage due to the activity of enzymes associated with

NETs, such as mieloperoxidase (MPO) and elastases and

correlates with poor prognosis of severe Influenza A infection

(19). Dysregulation of the NETs formation process has been

associated with the initiation and progression of autoimmune and

autoinflammatory diseases (20). Various soluble proteins of the
02
innate immune system such as C-reactive protein (CRP), ferritin,

DNase-I and apolipoprotein H (ApoH) could play an important

role, both systemically and locally, in the early stages of infection, to

contain it, until a specific response is developed (21–23). During

this early immune response, there is an increase in hepatic synthesis

and in the plasmatic concentration of a group of proteins, which are

involved in the inflammatory process as immune regulators

(24, 25).

ApoH, also known as Beta 2 Glycoprotein 1 (b2GPI), is a

soluble protein that regulates both complement and coagulation

(26–28). ApoH also plays an important role as an opsonin: it can

bind to microvesicles containing phosphatidylserine, such as

microorganisms, viruses, vesicles or apoptotic bodies with

proinflammatory activity (29). ApoH mediates virus and debris

clearance (30) and is especially known to be the main antigenic

target of antiphospholipid antibodies, present in patients with

antiphospholipid syndrome (28).

The activity of the molecules involved in early immune

responses must be strictly regulated to guarantee infection control

and avoid triggering excessive inflammatory reactions that can lead

to multiple organ failure or favour the appearance of numerous

pathologies such as systemic lupus erythematosus (SLE) (17, 31,

32). In the present work we study the presence of the main plasma

markers related to the innate immune response in the first moments

of influenza infection and their relationship with patient's evolution.
2 Materials and methods

2.1 Study design

A prospective observational study enrolled adults (>18 years)

with confirmed influenza at Hospital 12 de Octubre (Madrid, Spain)

during 2017/18 and 2018/19 seasons (December to March in both

periods). For inclusion, it was mandatory that a serum sample

drawn within 24 hours of admission was available. Patients were

followed up until hospital discharge or death. Demographic and

clinical data were collected from electronic records. Collection of

demographic and clinical laboratory data was obtained from the
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electronic medical record. Laboratory parameters included the

absolute number of leukocytes, lymphocytes, platelets, C-reactive

protein (CRP) and ferritin. Admission occurred with a median of 2

days after symptom manifestation.
2.2 Patients

From a total of 792 patients that were recruited, 107 had a poor

evolution (see definition below) and the rest had an uneventful

evolution until discharge.

Due to the impossibility of evaluating the early immune

response in all patients, a two-cohort study was carried out. In

this way, it was possible to study all the patients with poor evolution

and compare them with a similar number of patients with

good evolution.

In the first cohort, all patients with severe complications were

incorporated. The second cohort was formed by a control group

built with 107 patients with good evolution. For each patient with

severe flu, a control was randomly selected from among the mild

patients with sample availability who were admitted on the same

day as the severe patient. In 8 of the 107 patients with poor

evolution the serum sample was insufficient to be able to carry out

an adequate immunological study, so they were discarded

although their corresponding control remained in the study.

Finally, 206 patients with influenza were part of the study, 99

with poor evolution and 107 with good evolution. See

arrangement and algorithm in Figure 1.

In addition, a reference group made up of 41 anonymous blood

donors was created to compare the profile of cytokines and other

factors of innate immunity between healthy people and patients.

This control group included healthy people who went to our

hospital to donate blood. All of them tested negative for influenza

virus and signed a questionnaire declaring that they did not suffer

from any disease.
Frontiers in Immunology 03
2.3 Study definitions

Severe Influenza (bad evolution) included RF, Intensive

Care Unit (ICU) admission, or death during hospitalization.

Good evolution was defined as the absence of any of

these complications.

Respiratory failure (RF) was defined as PaO2/FiO2 ratio <200

mmHg or the need for mechanical ventilation, including those

patients who had a clinical indication for ventilatory support but for

any reason were finally not ventilated. If PaO2 was unavailable,

estimated PaO2/FiO2 ratio was calculated using SpO2/FiO2

ratio (33).

The cut-off points used for the haematological abnormalities

were as follows:

Leukocytosis (leukocytes >11,000/µL), leukopenia (leukocytes

<4,000/µL), lymphopenia (lymphocytes <1,000/µL), severe

lymphopenia (<500/µL), and thrombocytopenia (platelet

<140,000/µL).

Obesity was defined as a Body Mass Index (BMI) >30.
2.4 Samples

Serum samples were collected and processed during the first 24

hours after admission to the emergency department. Admission

occurred with a median of 2 days after the manifestation of clinical

symptoms, without significant differences between patients with

good or poor evolution (p=0.803).
2.5 Immune parameters

Cytokine determination assays Serum cytokine profile,

including IFNa, IFNg, IL-2, IL-6, IL-10, and IL-15, was

determined by the Human Cytokine Magnetic Beads Panel Kit

(EMD Millipore Corporation, St. Charles, MO, 63304, USA)

using a LABScan ™ 100 Luminex. The results were analyzed

with the Luminex xPONENT42 v3.1 software. In addition, serum

IL-8 was assessed by Flex ELISA: Human IL-8 CXCL8 (Mabtech

AB, Nacka Strand, Sweden). The experimental procedure was

carried out following the manufacturer's recommendations and

automated in a Triturus® Analyzer (Diagnostics Grifols SA,

Barcelona, Spain).

Consideration of elevated or decreased immune-markers levels

(cytokines, DNase, ApoH and MPO) for dichotomization and use

as potential biomarkers was performed using the mean ± 2 standard

deviation (STD) of each marker in a group of 41 healthy blood

donors as the cutoff. The cutoff points for cytokines are described in

Supplementary Table S1).

ApoH determination assay Serum b2GPI levels were quantified
using ELISA Pro Human ApoH (Mabtech AB, following the

manufacturer's instructions. The ELISA procedures were carried

out in a Triturus® Analyzer (Diagnostics Grifols SA). Low levels of

b2GPI were considered to be values ≤86 mg/l, corresponding to the

mean levels previously described in healthy people (178 ± 46 mg/l)

minus twice the STD (34).
FIGURE 1

Algorithm of the distribution of patients. From the total group of 792
patients, 107 presented poor evolution. For each patient with severe
influenza, a control was randomly selected from among the mild
patients group.
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2.6 DNase activity assay

Serum DNase activity was measured with a functional

technique that assesses DNA hydrolysis in a semisolid medium.

The plates were prepared with PBS Buffer (with Ca and Mg, pH

7.4) to which 10 mg/mL of agarose, 0.13 mg/mL of DNA and 0.2

mg/mL Syber Green (Invitrogen, Carlsbad, California, USA) were

added. Small cylindrical holes (2 mm diameter) were created in

which 10uL of the serum sample were placed and incubated for

16h at 37°C. The halos resulting from DNA hydrolysis were

evaluated in a Syngene™ LED Blue Light transilluminator

(Syngene, Bangalore, India). DNase levels were calculated by

relating them to the activity of pure DNase (Manufacturer

Invitrogen, Carlsbad, California, USA) diluted to known

concentrations. Serum DNase activity levels ≤ 12 ng/ml were

considered low.
2.7 MPO determination assay

Human myeloperoxidase (MPO) is the main biocidal protein in

NETs (35). For this reason, we determined levels of MPO in serum

as an indirect measurement of NETosis activity using Human MPO

Quantikine ELISA kit (R&D Systems, Minneapolis, MN, USA). The

procedure was performed following the manufacturer's

instructions. Briefly, samples were diluted 50-fold in assay diluent

and incubated for 2 hours at room temperature. Subsequently, the

samples were then washed, the conjugate was added to the plate and

incubated for 2 hours. After new washes, substrate solution was

added and incubated for 30 minutes. Samples were read at 450 nm.

Elevated levels of MPO in the blood were considered to be values >

1783 ng/mL (mean value + 2 STD observed in a sample of 41

blood donors).
2.8 Microbiological methods

For influenza molecular diagnosis, the Allplex™ respiratory

Panel 1 (Seegene, Seoul, South Korea) was utilized. This panel

enables the simultaneous detection of Flu A, Flu B, RSV A, RSV B

and Flu A subtypes H1, H1pdm09 and H3. Nucleic acid extraction

(200 ml assay volume) was carried out using the MicrolabStarlet

IVD with the STARMag 96 x 4 Universal Cartridge Kit (Seegene,

Seoul, South Korea). The rRT-PCR, was performed on the CFX96™

system (Bio-Rad Laboratories, Hercules, CA, USA). Analysis of the

results was done using Seegene viewer software.
2.9 Ethics statement

This study was carried out in accordance with the principles of

the Declaration of Helsinki and was approved by the Clinical

Research Ethics Committee of Hospital Universitario 12 de

Octubre (reference numbers 20/117, 18/182 and 18/009). The

patients signed informed consent.
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2.10 Statistical analysis

The results of the scaled variables were expressed as median with

interquartile range (IQR) in brackets. For comparisons between two

groups, the Wilcoxon-Mann-Whitney test was used. To compare the

variability in the continuous variables between cohorts, the Hodges-

Lehmann median difference and the relative difference of the Hodges

Lehman medians (RMD) were used. The RMD was calculated by

dividing the Hodges Lehman median difference by the highest value of

the cohort medians. This index varies between 0 and 1, with the values

closest to zero indicating very small (irrelevant) differences. When more

than two groups were compared, the Kruskal–Wallis test was used.

The results of the qualitative variables were expressed in absolute

frequency and percentage. The association between variables was

determined using the Chi-square test or Fisher's exact test, when

appropriate. The relative size of an effect is expressed as an odds ratio

(OR). Multivariate analyzes were performed using a logistic

regression model. Data were analyzed with MedCalc for Windows

version 20.1 (MedCalc Software, Ostend, Belgium), Microsoft Excel

(Microsoft Corp, Redmond, WA, USA), and GraphPad Prism

version 9 (GraphPad Software,Boston, MA, USA). Probabilities less

than 0.05 were considered significant.
3 Results

3.1 Characteristics of the patients
and controls

Analysing the whole group of influenza patients, the median age

was 75.5 (IQR: 62-85) years with a balanced distribution by gender

(women 54.4%). The most prevalent comorbidities were ex-smoking

habit (25.2%), Diabetes Mellitus (23.8%) and obesity (22.3%)

(Supplementary Table S2). In 94% of cases, the infection was caused

by influenza A, while influenza B accounted for the remaining 6%.

Among cases of influenza A, the most common subtype was H3N2

(79%), with the remaining 21% caused by subtype H1N1pmd09.

Comparing all influenza patients with healthy population

(Supplementary Table S3), influenza patients presented a lower

concentration of alpha and gamma interferons (IFN a: 1.3 vs 7.0

pg/mL p<0.001; IFNg: 0.5 vs 4.8 pg/mL, p=0.002) and a higher

concentration of IL-10 (10.8 vs 0.9 pg/mL, p<0.001) and IL-15 (2.3

vs 0.2 pg/mL, p<0.001). MPO levels were higher in patients with

influenza: 1154 (486-2379) vs 396 (266-708) ng/ml, p<0.001.

Influenza patients presented a decreased DNase activity

compared to healthy controls: 8 (4-8) vs 108 (77-138) ng/mL,

p<0.001 and a slightly lower ApoH concentration although the

differences were not significant: 177 (103-281) vs 209 (168-256) ug/

mL, p=0.079 (Supplementary Table S3).
3.2 Patients with influenza according to
the severity of the disease

The comparison of the demographic data of patients with

severe influenza with those who had a favourable evolution
frontiersin.org
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showed that patients with severe influenza were younger: 71 (57-

83) vs 80 (68-86) years old (p=0.004) having also a higher smoking

prevalence (16.2% vs 4.7%. p=0.007) and a lower obesity

proportion, (15.2% vs 28.9%. p=0.017). Additionally, severe

patients showed a higher number of leukocytes per µL: 9500
Frontiers in Immunology 05
(6900-13100) vs 7700 (5825-10900; p=0.012), CRP: 13 (5.3-

26.25) vs 7 (3-13) µg/mL (p<0.001), ferritin: 452 (186-959) vs

235 (149-428), ng/mL (p<0.001), MPO: 1571 (673-2884) vs. 1038

(473-1733) ng/ml (p=0.017) and IL-8: 22 (3.5-61.5) vs 3.5 (3.5-

24.4), pg/mL, (p= 0.001) (Table 1).
TABLE 1 Comparison of the input parameters of patients with influenza who had a poor outcome versus those who had a course without
serious complications.

BAD EVOLUTION
N=99

GOOD EVOLUTIONN=107
p-value OR 95% CI

CONDITION N/median IQR/% N/median IQR/%

Sex (women) 54 (54.5%) 58 (54.2%) 0.961

Age (years) 71 (57-83) 80 (68-86) 0.004

BMI 25 (23-31) 29 (26-32.5) 0.009

Days hospitalized 12 (9-21) 6 (4-9.75) < 0.001

IFNa (pg/mL) 1.31 (1.1-1.6) 1.6 (1.3-2.2) 0.107

IFNg (pg/mL) 0.4 (0.4-3.6) 0.5 (0.5-5.7) 0.075

IL-8 (pg/mL) 22 (3.5-61.5) 3.5 (3.5-24.4) 0.001

IL-10 (pg/mL) 12.96 (5.06-43) 8.3 (0.9-19) 0.022

IL-15 (pg/mL) 3.09 (0.3-7.3) 0.3 (0.23-8.8) 0.002

IL-2 (pg/mL) 0.02 (0.01-0.1) 0.1 (0.02-0.1) < 0.001

IL-6 (pg/mL) 14.5 (3.6-51.5) 9 (2.2-24.1) 0.101

MPO (pg/mL) 1571 (673-2884) 1038 (473-1733) 0.017

APOH (ug/mL) 144 (82-230) 205 (130-338) < 0.001

DNase (ng/mL) 8 (8-8) 8 (4-8) 0.080

Leukocytes/uL 9500 (6900-13100) 7700 (5825-10900) 0.012

Lymphocytes/uL 629 (390-1150) 742 (504-1238) 0.055

Platelets (*103/uL) 200 (136-269) 201 (158-276) 0.330

Ferritin (ng/mL) 452 (186-959) 235 (149-428) < 0.001

CRP (ug/mL) 13 (5.3-26.3) 7 (3-13) < 0.001

Biomarkers with possible association

Smoker 16 (16.2%) 5 (4.7%) 0.007 3.93 (1.38-11.18)

Former smoker 27 (27.3%) 25 (23.4%) 0.519

Obesity 15 (15.2%) 31 (28.9%) 0.017 0.44 (0.22-0.87)

COPD 26 (26.3%) 17 (15.9%) 0.067

Diabetes Mellitus 25 (25.3%) 24 (22.4%) 0.635

IFNa elevated 9 (9.1%) 13 (9.1%) 1.000

IFNg elevated 12 (12.1%) 7 (6.7%) 0.180

IL8 elevated 45 (62.5%) 31 (39.2%) 0.004 2.58 (1.34-4.98)

IL10 elevated 28 (28.3%) 19 (18.1%) 0.084

IL15 elevated 25 (25.3%) 34 (32.4%) 0.262

IL2 elevated 1 (1%) 7 (6.7%) 0.038 0.14 (0.02-1.18)

(Continued)
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Comparing the cytokine profile between patients with severe

form and those with good evolution, it was detected that those with

severe form presented an altered immune serum-proteins

profile (Table 1).
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Severe patients showed a marked reduction of ApoH

levels compared to those with good evolution: 144 (82-230) vs

205 (130-338) µg/mL (p<0.01) and compared with healthy controls:

209 (168-256) µg/mL (p=0.001) (Figure 2). The proportion of
TABLE 1 Continued

BAD EVOLUTION
N=99

GOOD EVOLUTIONN=107
p-value OR 95% CI

CONDITION N/median IQR/% N/median IQR/%

Biomarkers with possible association

IL6 elevated 18 (18.2%) 11 (10.5%) 0.115

MPO elevated 28 (43.1%) 19 (23.2%) 0.010 2.51 (1.23-5.1)

ApoH low 30 (30.3%) 9 (8.4%) < 0.001 4.73 (2.11-10.6)

DNase low 91 (91.9%) 91 (85.8%) 0.169

CRP elevated 31 (32%) 13 (12.1%) 0.001 3.4 (1.65-6.98)

Ferritin elevated 45 (47.4%) 22 (21%) < 0.001 3.4 (1.83-6.31)

Leucocytosis 34 (35.1%) 26 (24.3%) 0.092

Leucopenia 5 (5.2%) 5 (4.7%) 0.874

Lymphopenia 68 (70.1%) 65 (60.7%) 0.162

Severe lymphopenia 39 (39.8%) 27 (25.2%) 0.026 1.96 (1.08-3.55)

Thrombopenia 25 (25.5%) 16 (15%) 0.059
BMI: body mass index; MPO: myeloperoxidase; COPD: chronic obstructive pulmonary disease; CRP: C-reactive protein.
FIGURE 2

Blood levels of Apolipoprotein H in the blood (mg/L) of healthy people, mild and severe patients. **: p-value ≤ 0.01; ***:p-value ≤ 0.001; ns: not
significant. p-value > 0.05.
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patients with low ApoH levels was higher in patients with severe

form than in those with good evolution (30.3% vs 8.4%, p <0.001,

Table 1). No significant differences were observed in the levels of

DNase activity and in the proportion of patients with low DNase

between patients with severe or mild forms of the disease.

A first multivariate analysis was performed with those variables

associated with poor outcome that had shown a p value < 0.05 in the

previous univariate analysis (Table 2A), in which, elevated levels of

IL8, MPO and ferritin did not behave as independent variables.

Since these three variables are associated with the formation of

NETs and increase together in its formation (would be

interdependent), it was performed a new multivariate analysis in

which only one of the variables associated with NETs was assessed:

ferritin levels (see discussion below). In this second multivariate
Frontiers in Immunology 07
analysis, smoking habit (OR 3.41), low levels of ApoH (OR 5.43)

and high levels of Ferritin (OR 2.63) and CRP (OR 2.73) behaved as

independent risk factors associated with poor outcome (Table 2B).

Besides, although not significant in the multivariate study, there

was a higher incidence of the H1N1pmd09 subtype in patients with

a worse prognosis (27% vs 13%, p<0.001) (Supplementary

Table S4).
3.3 Patients with respiratory failure

Sixty-one patients suffered RF. Patients with RF were younger

than the rest: 70 (57-80) vs 79 (66-86) years, (p<0.001) and had

higher rates of smoking (23% vs 4.8%, p<0.001) and COPD (32.8%

vs 15.9%, p=0.006). Also had a higher prevalence of high levels of

CRP, IL8, IL10 and MPO than in those with normal ventilatory

function (OR 2.42, 2.69, 2.36 and 2.33 respectively). Patients with

RF presented higher proportion of patients with low ApoH levels

(OR: 4.25, p <0.001) (Table 3).

A first multivariate analysis was performed including the

variables that in a previous univariate analysis were significant.

Four variables were identified as independent, all with statistical

significance: smoking, COPD and low ApoH, behaved as

independent risk factors and high levels of IL15 behaved as a

protective factor (Supplementary Table S5). As eight variables

were analysed over 61 events, with a ratio of only 7.6 events per

variable (in the literature 10 are recommended) (36), a second

analysis was carried out, restricting to six variables. The variables

smoking, low levels of ApoH, high levels of CRP and high levels of

IL10 behaved as independent and significant risk factors (OR: 5.25,

5.12, 2.97 and 3.12, p<0.01) while high levels of IL15 behaved as an

independent protective factor (OR: 0.30, p<0.01) (area under the

ROC curve 0.788, 95%CI: 0.725-0.842) (Table 4).
4 Discussion

Our work would suggest that the initial state of innate immunity

during influenza infection may have a significant impact on clinical

progression. It is noteworthy that in our study, patients with severe

forms were younger and less obese than those who suffered a less

severe disease. These results contrast with those who reported that

age could be related to disease severity (37, 38). This discrepancy

may arise from potential biases in the hospital admission of older or

fatter people, who are admitted even if they suffer from very mild

forms because they have a greater risk of suffering complications, in

order to be able to act quickly if problems arise. These results could

suggest that elderly, who are supposed to present more

complications, are well monitored and controlled seasonally. In

this study, the decision on the need for hospital admission was

made by the Emergency Department physicians before the patient

was assessed and included by the research team.

CRP stands out as independent risk factor for disease severity

aligning with previous findings in both influenza and SARS-CoV-2

(34, 39, 40). In the same way high levels of ferritin have been

identified as an independent risk factor for disease severity, as
TABLE 2 Multivariate analysis of the markers that were associated with poor
flu outcomes detected in a first univariate analysis of influenza patients.

BAD
EVOLUTION

BAD
EVOLUTION

UNIVARIATE MULTIVARIATE

Biomarker
Odds
ratio

95% CI
Odds
ratio

95% CI
P

value

A. All significant variables

Age (per year) 0.98 (0.96-0.99) 0.97 (0.94-1) 0.054

Smoker 3.93 (1.38-11.18) Not evaluable

Obesity 0.44 (0.22-0.87) 0.17 (0.05-0.66) 0.010

IL8 elevated 2.58 (1.34-4.98) 1.20 (0.43-3.33) 0.723

MPO elevated 2.51 (1.23-5.1) 0.93 (0.32-2.73) 0.894

ApoH low 4.73 (2.11-10.6) 3.98 (1.01-5.66) 0.048

CRP elevated 3.40 (1.65-6.98) 4.26 (1.28-4.14) 0.018

Severe
lymphopenia

1.96 (1.08-3.55) 3.99 (1.4-1.32) 0.009

Ferritin
elevated

3.40 (1.83-6.31) 1.25 (0.41-3.77) 0.696

Area under
ROC curve

0.789 (0.706-0.858)

B. Excluding IL8 and MPO

Age (years) 0.98 (0.96-0.99) 0.98 (0.96-1) 0.050

Smoker 3.93 (1.38-11.18) 3.41 (1.04-11.16) 0.043

Obesity 0.44 (0.22-0.87) 0.50 (0.22-1.11) 0.090

ApoH low 4.73 (2.11-10.6) 5.43 (2.21-3.4) <0.001

CRP elevated 3.40 (1.65-6.98) 2.73 (1.2-6.21) 0.017

Severe
lymphopenia

1.96 (1.08-3.55) 1.98 (0.98-4) 0.058

Ferritin
elevated

3.40 (1.83-6.31) 2.63 (1.28-5.4) 0.008

Area under
ROC curve

0.790 (0.727-0.844)
MPO: myeloperoxidase; CRP: C-reactive protein.
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previously reported. The identification of high ferritin levels as an

independent risk factor for severe influenza is consistent with

previous studies (41). Ferritin is a key regulator in iron

homeostasis and it is considered an acute inflammatory reactant.

Nowadays it is suggested that ferritin is an important modulator of

the innate and adaptive immune system (42–44).

Severe patients presented significantly higher levels of IL-8 as

previously reported (15). The measurement of IL-8 during the acute

phase proves crucial, as it correlates strongly with clinical

complications. IL-8 is a potent chemoattractant and activator for

myeloid leukocytes and neutrophils which acts through CXCR1,

CXCR2 and NF-kB (15, 45). IL-8 is implicated in neutrophils'

recruitment to infectious or tumorigenic areas, promoting either
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protective or harmful immune responses (45). During respiratory

viral infections, epithelial respiratory cells secrete a vast number of

cytokines including IL-8 (46).

One of the main causes of NETosis is the potent activation of

neutrophils via IL-8. Inside their granules exists a weaponry of

antimicrobial molecules. Bacterial, viral or fungal infection are able

to activate neutrophils, favouring the secretion of NETs (16).

Although NETs are beneficial for the clearance of infections, they

have been related to pathological conditions like pulmonary

diseases, immunothrombosis or autoimmunity (47).

Recently it has been described that ferritin induces the

formation of NETs in a way mediated by Macrophage Scavenger

Receptor 1 (Msr1). Ferritin acts as a MSr1 ligand and trigger the
TABLE 3 Characteristics of influenza patients with respiratory failure versus those who did not have respiratory complications.

Respiratory Failure
N=61

No Respiratory failure
N=145 p-value OR 95% CI

CONDITION N/median IQR/% N/median IQR/%

Sex (women) 33 (54.1%) 79 (54.5%) 0.960 1.01 (0.59-1.75)

Age (years) 70 (57-80) 79 (66-86) < 0.001

BMI 26 (24-31) 28 (24.7-32) 0.213

Days hospitalized 12 (9-21) 6 (4-9.75) < 0.001

Treated at ICU 32 (52.5%) 15 (10.3%) < 0.001 9.56 (4.59-19.92)

Smoker 14 (23%) 7 (4.8%) < 0.001 5.87 (2.24-15.43)

Former smoker 17 (27.9%) 35 (24.1%) 0.574

Obesity 10 (16.4%) 36 (24.8%) 0.185

COPD 20 (32.8%) 23 (15.9%) 0.006 2.59 (1.29-5.19)

Diabetes Mellitus 13 (21.3%) 36 (24.8%) 0.588

IFNa elevated 2 (3.3%) 2 (1.4%) 0.265

IFNg elevated 7 (11.5%) 12 (8.4%) 0.488

IL8 elevated 29 (67.4%) 47 (43.5%) 0.008 2.69 (1.28-5.65)

IL10 elevated 21 (34.4%) 26 (18.2%) 0.012 2.36 (1.2-4.65)

IL15 elevated 11 (18%) 48 (33.6%) 0.025 0.44 (0.21-0.91)

IL2 elevated 0 (0%) 8 (5.6%) 0.055

IL6 elevated 10 (16.4%) 19 (13.3%) 0.561

MPO elevated 18 (46.2%) 29 (26.9%) 0.027 2.33 (1.09-4.99)

ApoH low 22 (36.1%) 17 (11.7%) < 0.001 4.25 (2.05-8.79)

DNase low 55 (90.2%) 127 (88.2%) 0.683

CRP elevated 20 (32.8%) 24 (16.8%) 0.011 2.42 (1.21-4.83)

Ferritin elevated 25 (42.4%) 42 (29.8%) 0.087

Leucocytosis 19 (31.7%) 41 (28.5%) 0.648

Leucopenia 3 (5%) 7 (4.9%) 0.273

Lymphopenia 44 (73.3%) 89 (61.8%) 0.116

Severe lymphopenia 23 (37.7%) 43 (29.9%) 0.272

Thrombopenia 15 (36.6%) 46 (28%) 0.285
BMI, body mass index; ICU, Intensive Care Unit; COPD, chronic obstructive pulmonary disease; MPO, myeloperoxidase; CRP, C-reactive protein.
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NET formation pathway (48). This mechanism explains why in our

study the biomarkers associated with NET activation (MPO or IL8)

do not behave as independent variables when the hyperferritinemia

variable is also present in the analysis. For this reason, in the

definitive multivariate analysis, NET markers were excluded and

represented with ferritin levels.

One of the major important regulators of NETosis is the DNase

I activity, which elicits the crumbling of the traps to recover

homeostasis (49). In influenza patients its activity is deficient

suggesting that it is a defense mechanism to increase the

persistence of NETs and, therefore, their microbicidal activity.

High IL-8 levels and low DNase I activity would facilitate a

substantial influx of neutrophils to the lungs, forming long-stable

NETs that contribute to infection clearance but also collateral

damage to host cells due to the production of toxic molecules for

own cells like reactive oxygen species (15). This provokes the

destruction of alveolar epithelium and contributes to the

development of cytokine storm. In that tendency, the administration

of recombinant DNase or biological treatments against the IL-8 axis

have reported important benefits in the prognosis of acute respiratory

distress syndrome and cystic fibrosis (50, 51).

The analysis of blood levels of ApoH in influenza patients showed

that low levels were associated with severe forms, indicating that this

molecule behaves as a protective factor for the development of severe

forms of the disease, especially those related to RF and hospitalization

to ICU. Furthermore, ApoH levels in the entire cohort of influenza

patients were significantly lower than those observed in healthy

controls. These results are in line with previous publications from

our group, where a significant reduction in ApoH levels was observed

in COVID-19 and also demonstrated the role of this protein as a

protective factor for RF (34). The association of low ApoH levels with

severity in infectious disease has been previously described in patients

with COVID-19 (34) and sepsis (52). In the same way the presence of

ApoH has been identified as a protective factor for organ dysfunction

and mortality in sepsis (53). The causes of the reduction of ApoH

levels in infections are not well established yet. Among the known
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facts it stands out that ApoH expression is downregulated both in

patients with severe influenza and COVID-19 (54).

ApoH is a key factor in the clearance of apoptotic/necrotic cells

avoiding the inherent proinflammatory activity (55). Thus, the

consumption of ApoH in the elimination of cellular debris would be

added to the effect of the Virus-induced ApoH deregulation causing a

situation of partial ApoH deficiency, especially at the local level, which

could be related to poor control of proinflammatory cytokines.

The enhancement of the debris removal process has been

proposed as a possible therapeutic intervention in inflammatory

diseases (56). ApoH replacement therapy in patients with severe

influenza and very low levels of the protein may be a suitable

alternative. There is currently no possibility of administering

recombinant ApoH although fresh plasma (not convalescent) can

be used as an indirect way to replenish ApoH with good results in

COVID-19 (57, 58). Low levels of ApoH behaved as the

independent variable with the greatest statistical strength

associated with RF. High levels of IL15 behaved as an

independent protective variable. This finding is in contrast to the

observation in COVID-19, where elevated levels of IL15 are

associated with poor outcome (10), suggesting that the

deregulation of the immune response in COVID 19 is different to

influenza. Functionally, IL-15 is similar to IL-2 favouring the

activation and proliferation of cell-mediated immunity. It may

also play a role in the innate immune response to influenza

infection (59). If its expression is excessive or chronically

deregulated contribute to tissue damage and can be involved in

the pathophysiology of the disease (60).

This work presents several limitations. The number of patients

recruited is not large enough to confirm in a multivariate analysis

subtype-related prognosis differences. Elderly people were

considered at risk from a clinical point of view to consider

admission to the ICU, although they did not have objective risk

criteria. This bias was partially neutralized thanks to the

multivariate analysis that allowed the role of each variable to be

assessed independently of the age of the individual. The method

used for DNase I activity detection exhibits low sensitivity,

potentially explaining the lack of differences between severe and

non-severe patients. The mRNA expression of ApoH should be

assessed in parallel with the quantification of circulating molecule to

figure out the reason of the deficiency.
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TABLE 4 Multivariate analysis of the markers associated with respiratory
failure in the 61 influenza patients who had this evolution.

Respiratory
failure

Respiratory
failure

UNIVARIATE MULTIVARIATE

Biomarker
Odds
ratio

95% CI
Odds
ratio

95% CI
P

value

Smoker 5.87 (2.24-15.43) 5.25 (1.57-17.51) 0.007

COPD 2.59 (1.29-5.19) 2.24 (0.93-5.39) 0.073

IL10 elevated 2.36 (1.2-4.65) 3.12 (1.39-6.98) 0.006

IL15 elevated 0.44 (0.21-0.91) 0.30 (0.12-0.71) 0.007

ApoH low 4.25 (2.05-8.79) 5.12 (2.02-1.94) <0.001

CRP elevated 2.42 (1.21-4.83) 2.97 (1.33-6.64) 0.008

Area under
ROC curve

0.788 (0.725-0.842)
COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein.
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