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Shared genetic architecture
between COVID-19 and irritable
bowel syndrome: a large-scale
genome-wide cross-trait analysis
Xianqiang Liu 1,2†, Dingchang Li1,2†, Wenxing Gao1,2†, Hao Liu2,3,
Peng Chen1,2, Yingjie Zhao1,2, Wen Zhao2,3*

and Guanglong Dong2*

1Medical School of Chinese PLA, Beijing, China, 2Department of General Surgery, The First Medical
Center, Chinese PLA General Hospital, Beijing, China, 3School of Medicine, Nankai University,
Tianjin, China
Background: It has been reported that COVID-19 patients have an increased risk

of developing IBS; however, the underlying genetic mechanisms of these

associations remain largely unknown. The aim of this study was to investigate

potential shared SNPs, genes, proteins, and biological pathways between

COVID-19 and IBS by assessing pairwise genetic correlations and cross-trait

genetic analysis.

Materials and methods: We assessed the genetic correlation between three

COVID-19 phenotypes and IBS using linkage disequilibrium score regression

(LDSC) and high-definition likelihood (HDL) methods. Two different sources of

IBS data were combined using METAL, and the Multi-trait analysis of GWAS

(MTAG) method was applied for multi-trait analysis to enhance statistical

robustness and discover new genetic associations. Independent risk loci were

examined using genome-wide complex trait analysis (GCTA)-conditional and

joint analysis (COJO), multi-marker analysis of genomic annotation (MAGMA),

and functional mapping and annotation (FUMA), integrating various QTL

information and methods to further identify risk genes and proteins. Gene set

variation analysis (GSVA) was employed to compute pleiotropic gene scores, and

combined with immune infiltration algorithms, IBS patients were categorized

into high and low immune infiltration groups.

Results: We found a positive genetic correlation between COVID-19 infection,

COVID-19 hospitalization, and IBS. Subsequent multi-trait analysis identified nine

significantly associated genomic loci. Among these, eight genetic variants were

closely related to the comorbidity of IBS and COVID-19. The study also

highlighted four genes and 231 proteins associated with the susceptibility to

IBS identified through various analytical strategies and a stratification approach

for IBS risk populations.
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Conclusions:Our study reveals a shared genetic architecture between these two

diseases, providing new insights into potential biological mechanisms and laying

the groundwork for more effective interventions.
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1 Introduction

Since January 2020, the coronavirus disease 2019 (COVID-19)

pandemic, driven by the highly contagious severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), has affected nearly 600

million individuals worldwide, exerting substantial strain on global

healthcare systems (1–3). SARS-CoV-2, an RNA virus, gains entry into

host cells through the angiotensin-converting enzyme 2 (ACE2)

receptor and its spike protein (4). Although ACE2 receptors are

predominantly expressed in the lung parenchyma, they are also

distributed in various other cell types, including those in the oral and

nasal mucosa, gastrointestinal tract, pancreas, liver, and vascular

endothelium (5). Upon infiltrating these cells, SARS-CoV-2 triggers

an inflammatory response, leading to the activation of immune cells

(4). Persistent or emerging symptoms following SARS-CoV-2

infection, such as lung damage, mental health issues, gastrointestinal

symptoms, and systemic conditions, are collectively known as “long

COVID-19” (6, 7). Given the expression of ACE2 receptors in the

gastrointestinal epithelium, COVID-19 can substantially impact

gastrointestinal function (5, 8, 9). Recent research (10) indicates a

higher prevalence of irritable bowel syndrome (IBS) within a year post-

infection compared to uninfected controls defined as COVID-negative

according to theWHO criteria. IBS, a chronic gastrointestinal disorder,

is characterized by symptoms such as bloating, abdominal pain, and

changes in bowel habits (11). This condition notably compromises the

quality of life and social capabilities of those affected, with its global

prevalence estimated to be between 9% and 23% (12, 13). A thorough

investigation of the relationship between COVID-19 and IBS could aid

in developing effective policies and personalized treatments, thus

controlling the spread of the pandemic and reducing the societal

healthcare burden.

Research limited to a single disease may fail to identify critical

genetic loci and molecular regulatory mechanisms. Thus, adopting
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multi-trait analysis methods is necessary to expand the phenotype

spectrum under investigation, identify associated risk loci, and delve

into the shared genetic etiologies among different diseases (14).

Shared genetic etiologies indicate potential pleiotropy, which often

represents genetic confounding factors linking traits (15, 16).

Hence, it is suggested to implement cross-trait analysis, which

utilizes the correlation between the genome-wide association

studies (GWAS) data of COVID-19 and IBS to explore

pleiotropic genetic variations or loci across multiple traits (17,

18). These pleiotropic loci could serve as potential intervention

targets, offering opportunities for simultaneous prevention or

treatment of these diseases.

In this genome-wide association study, large-scale GWAS

summary data were utilized to analyze IBS and COVID-19 datasets

from various sources using an array of statistical genetic methods.

The pleiotropic associations were examined sequentially at the single

nucleotide variant (SNV), gene, and protein levels, along with

biological pathways, to uncover potential shared genetic etiologies.

Initially, linkage disequilibrium score regression (LDSC) and high-

definition likelihood (HDL) were employed to evaluate genetic

correlations. Within the pleiotropic analysis framework, multi-trait

analysis of GWAS (MTAG) and genome-wide complex trait analysis

(GCTA)-conditional and joint analysis (COJO) were applied to

identify shared pleiotropic genetic loci at the SNV level for both

IBS and COVID-19. Subsequently, multi-marker analysis of genomic

annotation (MAGMA), polygenic priority scoring (PoPS), and

summary data-based Mendelian randomization (SMR) analyses

were conducted at the gene level to identify candidate pleiotropic

genes. At the protein level, BLISS was utilized to determine risk

proteins. Furthermore, gene ontology (GO) biological processes and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were

explored for enrichment. Finally, IBS transcriptome data were

integrated, and Gene Set Variation Analysis (GSVA) was used to

investigate the expression of pleiotropic genes in IBS subtypes,

identifying the immune characteristics of high- and low-risk IBS

groups. Figure 1 illustrates the overall study design.
2 Data sources and methods

A series of comprehensive GWAS summary data were utilized

in this study. Given the limited availability of GWAS data from
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non-European ancestries , GWAS summary data were

predominantly sourced from publicly available datasets of

European ancestry. IBS GWAS data were derived from

GCST90016564, encompassing 53,400 patients and 433,201

controls. An additional IBS GWAS dataset was obtained from

Finn-IBS, based on a Finnish database study that included

339,710 individuals (10,329 cases and 329,381 controls).

The most recent COVID-19 phenotype summary statistics,

which include susceptibility, hospitalization, and severe clinical

outcomes, were collected from the COVID-19 host genetics

initiative (HGI) GWAS meta-analysis (Round 7) (19). The

confirmation of COVID-19 cases was based on laboratory-

confirmed tests, electronic health records, diagnoses made by

physicians, or patient self-reports of SARS-CoV-2 infection.

Susceptibility results compared COVID-19 cases (N = 122,616)

with control individuals with no history of COVID-19 (N =

2,475,240). Individuals classified as hospitalized COVID-19 cases

were those with a laboratory-confirmed SARS-CoV-2 infection or

those admitted to the hospital due to COVID-19-related symptoms.

The study compared the hospitalization outcomes of these patients

(N = 32,519) with controls who were not hospitalized for COVID-

19 (N = 2,062,805). Individuals classified as severe COVID-19 cases

were those hospitalized who needed respiratory assistance,

including intubation, continuous positive airway pressure

(CPAP), bilevel positive airway pressure (BiPAP), continuous

external negative pressure, or high-flow nasal cannula. The

severity evaluations involved a comparison between these severe

COVID-19 cases (N = 13,769) and individuals who did not require

such severe medical interventions (including those without

COVID-19) (N = 1,072,442). The dataset from the COVID-19

GWAS was adjusted for variables such as age, sex, age × sex,
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principal components, and covariates specific to the study, as

outlined by the GWAS researchers (20). All GWAS data sources

were listed in Supplementary Table S1.

To elucidate the genetic architecture of IBS, quantitative trait

loci (QTL) data were integrated, including expression QTLs

(eQTLs) from 54 specific tissues such as gastrointestinal tissue

and blood, as well as plasma protein QTLs (pQTLs) from three

sources (decode, UKBPP, ARIC). The eQTL analysis included blood

eQTL information from the extensive eQTLGen consortium

database, which documented trait-associated SNPs in a cohort of

31,684 individuals (21). Furthermore, plasma pQTL information

was sourced from deCODE, which performed extensive protein

measurements in 35,559 Icelandic participants, focusing on 4,907

plasma proteins (22). The plasma pQTL data also included

information on 4,953 plasma proteins from the ARIC database

(http://nilanjanchatterjeelab.org/pwas/) and 2,923 plasma proteins

from the UKBPP project, which involved 54,219 participants from

the UK Biobank (23).
2.1 Statistical analysis

During the analysis phase of this study, we meticulously

excluded SNVs within the major histocompatibility complex

(MHC) region on chromosome 6 (25–35 Mb) to mitigate

potential confounding effects. In addition, we removed SNPs with

a minor allele frequency of <0.01 and those with duplicated or

missing reference cluster IDs from each GWAS summary dataset

for subsequent analysis. Data aligned to the GRCh38 reference were

converted to GRCh37 using the liftOver tool for consistency (24).
FIGURE 1

Overall study design. This study investigated the genetic correlation between IBS and COVID-19, using methods such as COJO, POPS, MAGMA,
SMR, and BLISS to explore connections from SNVs to genes, proteins, and signaling pathways. Our goal was to identify potential therapeutic targets
for treating IBS in long COVID patients. BLISS, Biomarker Imputation from Summary Statistics; COJO, Conditional and joint analysis; HDL, High-
definition likelihood; LDSC, Linkage disequilibrium score regression; MAGMA, Multi-marker analysis of genomic annotation; MTAG, Multi-trait
analysis of GWAS; POPS, Polygenic priority score; SMR, Summary-based Mendelian Randomization.
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2.1.1 Assessment of genetic correlations between
IBS and COVID-19

We conducted LDSC on two sources of IBS and COVID-19

patients, hospitalized patients, and severe patients from GWAS data

(25). In LDSC, constraints were not imposed on the intercept, as

sample overlap affects only the intercept, not the regression slope or

genetic correlation. This approach allowed for the acknowledgment

of residual confounding factors and revealed potential sample

overlap in the two GWAS datasets. We also employed the HDL

method to assess genetic correlations. The HDLmethod extends the

LDSC approach by modeling the relationship between Z-statistics

covariance for trait pairs across multiple SNVs and the full matrix of

cross-SNV LD scores. To ensure the accuracy and reliability of the

analysis, all data were subjected to Benjamini and Hochberg (BH)

adjustment for multiple comparisons, with an adjusted P-value of

<0.05 indicating statistical significance.

2.1.2 Meta-analysis of GWASs
Meta-analysis was performed to combine data from the two IBS

datasets. Given the potential sample overlap between the datasets,

Metasoft was used to evaluate heterogeneity (I2) and P-values based

on Cochran’s Q test (P_het). When heterogeneity was present (I2 ≥

50 or P_het < 0.05), P-values from the random-effect model

calculated using RE2C were considered (26, 27).

2.1.3 Multi-trait analysis of GWAS
summary statistics

Building on the results from the previous stage of research, we

continued with a multi-trait analysis, conducting a cross-analysis of

META-IBS with COVID-19 phenotypes that exhibited significant

genetic correlation. MTAG combines the summary statistics from

GWAS of genetically correlated traits into a meta-analysis,

accounting for genetic correlation and sample overlap, to

maximize the power to identify loci associated with the target

traits (28). We combined the GWAS data of phenotypes that

exhibited a genetic correlation with IBS to produce MTAG-IBS.

The genome-wide significance threshold was set at a P-value of

< 5 × 10-8 to ensure accurate identification of correlations.

2.1.4 Identification of genetic risk factors for IBS
2.1.4.1 Identification of independent risk loci

To identify genomic risk factors for IBS, we detected distinct,

independent signals within the genomic loci associated with MTAG-

IBS using the stepwise model selection framework provided by

GCTA-COJO (29, 30). The analysis was limited to multiallelic

variants that exhibited significant correlations (P.mtag < 5 × 10-8)

within previously established genomic risk loci, and additional signals

were confirmed based on a joint P-value threshold of < 5 × 10-8. This

analysis benefitted from the reference dataset provided by the third

iteration of the 1000 Genomes Project, particularly the European

ancestry cohort (25). Based on the results of MTAG, the identified

pleiotropic loci were mapped to neighboring genes to investigate their

shared biological mechanisms. The functional mapping and

annotation (FUMA) platform (31) was used to delineate the

genomic risk loci through functional annotation of the variants.
Frontiers in Immunology 04
The maximum P-value for lead SNVs was set at <5 × 10-8, whereas

the broader significance threshold was set at P-values of <0.05.

Independent and lead SNVs were identified based on an r2

threshold of <0.6 and <0.1 within a 1-Mb radius, respectively.

Genomic risk loci were defined by merging areas wherein lead

SNVs were <250 kb apart. SNVs validated through GCTA-COJO

and FUMA analyses were identified as risk factors for IBS.

2.1.4.2 Genetic insights into IBS

In the integrated analysis aimed at revealing the genetic basis of

IBS, MAGMA and POPS (32, 33) were used to identify and

prioritize relevant genes, with P-values adjusted using the BH

procedure in each method. Genes with false discovery rate

(FDR)-adjusted P-values of <0.05 and those consistently

identified using both methods were considered significant risk

factors. MAGMA enables gene-centered analysis based on

extensive data from protein-coding genes and can be integrated

with POPS to prioritize enriched genes. In particular, this approach

integrates GWAS summary data with expression profiles and

biological pathways, with a POPS score of >1 indicating candidate

genetic risk factors.

To examine the genetic composition of individual IBS cases,

SMR was performed using the GWAS summary data of patients

with IBS and the eQTL data of various tissues and cell types (34).

LD scores from the European ancestry cohort of the 1000 Genomes

Project (25) were used to investigate the relationship between gene

expression and IBS. The inclusion criteria were as follows: FDR-

adjusted P-value < 0.05; heterogeneity (HEIDI) > 0.01.

To explore the biological relevance of genes associated with

COVID-19 combined with IBS, we performed genomic enrichment

analysis. This analysis utilized data from the Molecular Signatures

Database (MSigDB) (35), and significant biological pathways were

identified using the ClusterProfiler tool, following adjustment for

multiple testing (36).

2.1.4.3 Proteomic insights into IBS

The “Biomarker Level Inference from Summary Statistics”

(BLISS) method was used to examine the complex proteomic

landscapes of IBS and COVID-19. Traditional proteome-wide

association study (PWAS) models depend on detailed individual-

level proteomic data. This dependence often limits the ability to

utilize the vast amount of summary-level pQTL data available

publicly (37). In contrast to traditional PWAS models, the BLISS

method represents a novel strategy for constructing protein

imputation models directly from summary-level pQTL data. In

this study, the BLISS method was used to generate extensive

European PWAS models using pQTL data from large-sample

UKB, deCODE, and ARIC studies (37). Proteins with an FDR-

adjusted P-value of <0.05 were identified as significant risk factors,

indicating their potential key role in the pathophysiology of IBS and

COVID-19.

2.1.4.4 Two-sample MR

MR, a type of instrumental variable analysis widely used for

causal inference, was used to examine causal relationships between
frontiersin.org
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IBS and COVID-19. Exposure-related SNPs were used as

instruments (38, 39), and GWAS summary data were used to

identify variants associated with IBS and COVID-19 (P-value <

5.0 × 10-8). The IVW method was primarily used, with LD and

physical distance thresholds being set at 0.001 and 10 Mb,

respectively. To ensure the robustness of the instrumental

variables, the determination coefficient r2 and F-statistic were

calculated, and SNPs with an F-value of >10 were selected.

Additionally, the MR-PRESSO method (repeated 1000 times) was

used to detect outliers (15), which were removed for re-evaluation.

To ensure the reliability and robustness of the results, we conducted

sensitivity analyses, including Cochran’s Q test, MR-Egger intercept

test, funnel plot, and leave-one-out analysis. Cochran’s Q test was

used to assess potential heterogeneity to determine if the variability

of the independent variable could lead to different outcomes. If a p-

value of ≤0.05 indicated the presence of heterogeneity, a random-

effects IVW MR analysis was used (40). The purpose of the MR-

Egger intercept test was to detect the potential presence of

directional pleiotropy, a phenomenon where the independent

variable influences the outcome through pathways other than

exposure (41). A funnel plot was used for visual inspection of the

symmetry of the distribution of effect estimates. Any obvious

asymmetry in the funnel plot may indicate heterogeneity. Leave-

one-out analysis involved systematically excluding each SNP and

then re-evaluating the effect estimates to determine the reliability

and robustness of the results by assessing the impact of each SNP on

the overall outcome.

2.1.4.5 GSVA and Immune cell infiltration analysis

To estimate the infiltration levels of various immune cells in IBS

patients, we utilised mRNA expression data from four datasets

containing IBS patients—GSE13367, GSE14841, GSE36701, and E-

TABM-176—obtained from the Gene Expression Omnibus (GEO)

and EMBL databases (42). These datasets included a total of 188 IBS

patients. The datasets were merged into a single normalised

expression matrix using the “combat” function in the “sva”

package (version 3.42.0), effectively eliminating batch effects,

which was confirmed via principal component analysis (43). Risk-
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related genes were quantified using the single-sample gene set

enrichment analysis (ssGSEA) algorithm in the “GSVA” (version

1.24.0) R package. Based on the results of ssGSEA, patients in the

IBS cohort were divided into high- and low-immune-infiltration

groups. Subsequently, the “deconvolute_xcell” function in the

“immunedeconv” R package (version 2.1.0) (44) was used to

evaluate the proportion of 64 types of immune and stromal cells

in the two groups.
3 Results

3.1 Genetic relationship between IBS and
COVID-19

GWAS summary data from two IBS datasets were subjected to

LDSC and HDL analysis to examine the genetic relationship

between IBS and COVID-19 patients, hospitalized patients, and

severe patients. After stringent BH correction, significant genetic

correlations were observed between IBS and two COVID-19

phenotypes (COVID-19 infection and Hospitalized covid) in both

IBS datasets (Table 1). Subsequently, GWAS summary data from

the two datasets were integrated to obtain the consolidated META-

IBS dataset. This dataset included 9,781,012 validated SNPs. After

SNPs within the MHC region were excluded, a total of 8,987

statistically significant genetic loci were identified.

Subsequently, GWAS summary data from the two datasets were

integrated to obtain the consolidated META-IBS dataset. This

dataset included 10,634,628 validated SNPs. After SNPs within

the MHC region were excluded, a total of 1,166 statistically

significant genetic loci were identified.
3.2 Bidirectional Mendelian
randomization study

A bidirectional MR study was conducted to delineate the

potential causal relationship between COVID-19 and IBS, and the
TABLE 1 Genetic correlation analysis results.

Trait pair LDSC HDL

rg (SE) P- FDR rg (SE) P- FDR

COVID-19 infection-IBS (dataset1) 0.210 (0.082) 0.016 0.231 (0.091) 0.018

COVID-19 infection-IBS (dataset2) 0.135 (0.050) 0.016 0.183 (0.052) 0.003

Hospitalized COVID-19 -IBS (dataset1) 0.177 (0.069) 0.016 0.160 (0.073) 0.035

Hospitalized COVID-19 - IBS (dataset2) 0.117 (0.043) 0.016 0.170 (0.051) 0.003

Very severe respiratory confirmed COVID-19
-IBS (dataset1)

0.087 (0.079) 0.263 0.134 (0.087) 0.127

Very severe respiratory confirmed COVID-19-
IBS (dataset2)

0.085 (0.044) 0.060 0.150 (0.048) 0.004
The genetic correlation was estimated using the LDSC method, while the genetic overlap was assessed using the HDL method. A Benjamini and Hochberg (BH)–corrected significance threshold
was set to account for multiple comparisons. Notably, we observed a significant genetic correlation between irritable bowel syndrome (IBS) and COVID-19-infected, hospitalized patients. These
findings highlight a potential common genetic factor between IBS and COVID-19. LDSC, linkage disequilibrium score regression; HDL, high-definition likelihood; rg, regression; dataset1,
FinnGen-IBS; dataset2: GCST90016564-IBS.
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findings revealed no causal association between the two conditions

(Supplementary Table S2). The random effects inverse variance

weighted (IVW) results demonstrated no genetic causal

relationship for either COVID-19 susceptibility (p = 0.616, OR =

1.021, 95% CI = 0.940-1.109) or COVID-19 hospitalization

(p = 0.609, OR = 1.007, 95% CI = 0.979-1.036). In the MR analysis

relating to IBS, SARS-CoV-2 infection, and hospitalization events, no

heterogeneity was detected, as evidenced by Cochran’s Q statistic

(MR-IVW) and Rucker’s Q statistic (MR-Egger) (p > 0.05). Similarly,

theMR Egger intercept test did not detect horizontal pleiotropy in the

analysis of these conditions (p > 0.05). Moreover, the MR-PRESSO

global test further corroborated the non-existence of horizontal

pleiotropy (p > 0.05).
3.3 Genetic landscape of IBS identified
through multi-trait analysis

The genetic landscape of IBS was examined using the META-

IBS dataset and the GWAS summary data of two COVID

phenotypes. The MTAG method was used to generate an

enhanced dataset (MTAG-IBS), which included 6,941,121 SNPs.

A total of 241 SNPs were identified in the MTAG-IBS dataset

(P.mtag < 5× 10-8).
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3.4 Genetic markers associated with
COVID-19 and IBS comorbidity

The advanced GCTA-COJO tool was used for stepwise model

selection in the MTAG-IBS dataset. A total of 9 SNVs were

identified through this rigorous process (Supplementary Table

S3). Subsequently, Based on MTAG results, the FUMA platform

revealed 8 SNVs (Supplementary Table S4). Notably, 8 SNVs that

were consistently identified in both GCTA-COJO and FUMA

analyses were defined as independent genetic risk factors for IBS.
3.5 Identification of genes associated with
COVID-19 and IBS comorbidity

MAGMA analysis identified 125 genes associated with IBS risk

SNVs (Supplementary Table S5). Subsequent POPS screening

highlighted 4 genes with POPS scores greater than 1 (Supplementary

Table S6), marking them as potential IBS risk genes. SMR analysis,

integrating GWAS summary data and eQTL information from various

tissues and cell types, found that CADM2 was replicable in the SMR

analysis (Supplementary Table S7). Genomic enrichment analysis

indicated significant enrichment in pathways related to megakaryocyte

development and the Hedgehog signalling pathway, suggesting their

roles in IBS and COVID-19 (Supplementary Table S8) (Figures 2A, B).
FIGURE 2

Enrichment analysis for identified risk genes. Significant Types of Pathways Based on GO (A) and KEGG Enrichment Analyses (B). (C) summarizes the
categories to which risk genes and proteins belong. Immune infiltration analysis of pleiotropic gene in IBS cohort. (D) Abundance of differences in
immune cells between both groups in the IBS cohort. BP, Biological Process; CC, Cellular Component; MF, Molecular Function; KEGG, Kyoto
encyclopedia of genes and genomes pathway. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, not significant.
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3.6 Identification of proteins associated
with COVID-19 and IBS comorbidity

Using the BLISS method, we identified 231 proteins associated

with the comorbidity risk of IBS and COVID-19. Among these, four

proteins (DLL1, DPEP1, HEXIM1, and MFGE8) were consistently

found across three different databases (Supplementary Table S9),

highlighting their potential as drug targets.
3.7 Identification and characterization of
IBS subtypes

To identify IBS immune subtypes, we conducted single-sample

gene set enrichment analysis (ssGSEA) to quantify the risk gene

scores for each patient, categorizing them into high and low

immune infiltration groups. Visualization of immune-related

feature infiltration levels in bar plots revealed distinct patterns

between these two clusters, showing low and high immune

infiltration modes. The results indicated that Th1 cells, plasma

cells, NK cells, neutrophils, mast cells, macrophages, and dendritic

cells predominated in the high-risk group, whereas CD8+ T cells,

eosinophils, and Tregs were more prominent in the low-risk

group (Figure 2D).
4 Discussion

The complex genetic diversity observed in patients with

COVID-19 and IBS required an approach beyond the traditional

single-disease research paradigm, i.e. cross-trait GWAS analysis.

Cross-trait analyses have demonstrated excellent validity in

multiple co-morbidity studies (45–47), and this study aimed to

elucidate the genetic underpinnings and complex interconnections

between COVID-19 and IBS. The integration of GWAS summary

data from two IBS datasets into a single META IBS dataset

facilitated a detailed genetic association analysis of COVID-19.

Significant genetic correlations were identified between IBS and

both SARS-CoV-2 infection and hospitalization, enhancing the

understanding of potential COVID-19 treatments. In a

prospective COVID-19 cohort study, the OR for developing IBS

in COVID-19 patients was found to be 12.92 (95% CI = 3.58-46.60,

p < 0.001) (48), further indicating a potential interaction between

the two conditions.

The integration of META-IBS with data from SARS-CoV-2

infected and hospitalized patients into a comprehensive multi-trait

analysis was aimed at strengthening the statistical validation of the

IBS dataset. This innovative approach led to the identification of three

previously unrecognized significant genetic loci, markedly enriching

our understanding of the genetic basis of IBS. Importantly, these

SNVs had shown associations with COVID-19 in earlier studies, such

as SNV rs10789340 (p = 4.23× 10-17), rs308523 (p = 1.32× 10-4), and

rs61902812 (p = 1.06× 10-9), after adjusting the significance threshold

to conventional statistical standards (p < 0.05). This result

underscored the critical role of our research in advancing the

identification of SNVs that were not deemed significant in previous
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studies, thereby deepening the understanding of the genetic

foundation of IBS. A comprehensive gene association analysis

incorporating MAGMA, PoPS, and SMR identified a correlation

between CADM2 and IBS-COVID-19. CADM2, a member of the

synaptic cell adhesion molecules, is involved in synaptic organization

and plasticity (49). Although the precise function of CADM2 in IBS

remains unclear, it is hypothesized that CADM2 might interact with

the gastrointestinal tract through the enteric nervous system (ENS).

The ENS consists of an extensive network of various intrinsic enteric

neurons and glial cells, including motor neurons, intrinsic primary

afferent neurons, and interneurons. Disrupted communication

between enteric glial cells and neurons may contribute to ENS

circuit dysfunction in IBS (50). Understanding the cell adhesion-

mediated communication between glial cells and neurons in the ENS

is vital for comprehending the role of ENS in both health and disease,

warranting further research to clarify this mechanism.

The BLISS method was used to pinpoint four proteins

associated with IBS risk, which were validated in the deCODE,

UKBPP, and ARIC databases. Milk fat globule-EGF factor 8 protein

(MFGE8) has been identified to exhibit characteristics similar to

cluster proteins (51) and participate in pivotal biological processes

such as apoptosis, immune regulation, and inflammation. MFGE8

also crucially maintains intestinal epithelial cell balance and

promotes mucosal healing (52). Delta-like 1 (DLL1) has been

characterized as a protein involved in the Notch signaling

pathway, essential for the development, maintenance, and

regeneration of the intestine (53). Abnormal expression of the

Notch signaling pathway has been shown to inhibit the

differentiation of intestinal epithelial cells, weakening the mucosal

barrier and leading to IBS (54). Dipeptidase 1 (DPEP1), a zinc-

dependent metalloprotease, has been recognized to process

antibiotics, hydrolyze multiple peptides such as glutathione

(GSH) and its conjugates, and be involved in the metabolism of

leukotrienes (55). GSH is one of the most critical antioxidants in

cellular biology (56), indispensable for upholding normal redox

balance and antioxidant protection in the body (57). Reduced

expression of DPEP1 can disrupt GSH homeostasis, thereby

altering the redox state of the cellular microenvironment and

protecting cells against pathological stress (58). HEXIM1,

involved in transcription regulation, was found to regulate RNA

polymerase II activity and the innate immune response mediated by

DNA viruses by forming the HDP-RNP complex (59). Figure 2C

summarizes the categories to which risk genes and proteins belong.

While there is currently no definitive evidence linking these four

proteins to IBS, our analysis suggests potential connections.

Evidence indicates low-grade inflammation and immune

dysregulation involving various immune cells in the context of IBS

(60). These immune cells contributed to IBS onset and progression

through mechanisms such as cytokine production, alterations in the

gut microbiome, immune cell infiltration, and effects on gut barrier

integrity and nervous system function. Our immune infiltration

analysis showed an increased proportion of mast cells, neutrophils,

and M1 macrophages in the high-risk IBS group, while the proportion

of regulatory T cells (Tregs) was reduced. Mast cells could be activated

through IgE-dependent or IgE-independent pathways, releasing

inflammatory mediators. An in vivo functional study of mast cell-
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deficient rats compared intestinal permeability between groups with

and without mast cell inhibitors, revealing significantly increased

intestinal permeability in the group without mast cell inhibitors (61).

In addition, a case-control study (62) identified an augmentation in

mucosal mast cell counts in colonic and duodenal biopsies from

patients with IBS, specifically those who mainly presented with

diarrhea symptoms. These findings underscored the role of mast

cells in gut function and disease. Macrophages, highly plastic cells,

could polarize into inflammatory (M1) and anti-inflammatory (M2)

phenotypes (63). M1 macrophages released pro-inflammatory factors,

including tumor necrosis factor-a (TNF-a), interleukin (IL)-6, IL-1b,
IL-23, IL-18, and C-C motif ligand 2 (CCL2) (64). In IBS patients, the

NF-kB/IkB-a pathway activation in mucosal macrophages fostered the

expression of inflammatory factors like NLRP3, leading to increased

secretion of IL-1b and TNF-a (65). Inflammation could cause visceral

hypersensitivity and altered gut motility, worsening IBS symptoms.

Moreover, the induction of inflammatory cascades and the

accumulation of neutrophils could damage intestinal epithelial cells

and form crypt abscesses, increasing mucosal immune cells and

chemokines, and thereby raising intestinal permeability (66). Tregs,

responsible for immune system regulation, when deficient or

dysfunctional, were linked to various autoimmune and inflammatory

diseases, including arthritis, IBS, and ulcerative colitis (67). This was

consistent with our findings, thus supporting the reliability of the study.
5 Conclusion

Taken together, significant genetic associations between SARS-

CoV-2 infection and COVID-19 hospitalization with IBS were

identified, revealing new genetic risk factors and associated

biomolecules. These findings enhanced the understanding of the

genetic underpinnings of IBS and could inform the development of

novel therapeutic strategies. Future research should aim to validate

the biological relevance of the newly identified risk genes, such as

CADM2, and proteins, including MFGE8, DLL1, DPEP1, and

HEXIM1, to advance our understanding of IBS pathophysiology

further. Nonetheless, the study encountered limitations such as the

reliance on GWAS data predominantly from individuals of

European descent, which may not adequately capture the genetic

diversity of more varied populations. Additional research is

required to confirm these results across a broader range of

populations and to investigate the functional mechanisms behind

these genetic associations. Additionally, due to the cross-sectional

nature of the study, causal inference of COVID-19 to IBS is limited,

and therefore, more prospective studies are needed for validation.
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