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Editorial on the Research Topic

Trends in neuroimmunology: cross-talk between brain-resident and
peripheral immune cells in both health and disease
The functional anatomy of organisms is maintained by the coordination of different

systems, which often rely on interactions between specialized cells and between

macromolecules. The immune system works with the circulatory and lymphatic systems

to protect most of the organs. However, some organs are considered immune privileged due

to the presence of highly selective and regulated barriers, such as the blood-brain barrier

(BBB) within the brain (1). The BBB controls periphery-brain molecule exchange and

prevents immune effector cells from entering the homeostatic brain. BBB-associated

elements, such as endothelial cells, pericytes, astrocytes, and microglia, potentially can

function as antigen-presenting cells (APC). Pathological scenarios that induce dysfunction

of the BBB and its associated cells may lead to the infiltration of lymphocytes, crossing over

from the blood to the brain. Similarly, traumas can also enable B and T lymphocytes to pass

bidirectionally between the central nervous system (CNS) and the periphery, via the

meningeal lymphatic vessels, which drain into the cervical lymph nodes. Research in

animals and humans has revealed that B and T cells are involved in the progression of

neurological diseases (NDs). It has been shown that under certain conditions, T cells

establish themselves and become resident in the brain, from where they can exert either

beneficial or detrimental effects on brain function. Amazing efforts have been made to

further comprehend interactions between brain-specific cells and peripheral immune cells,
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especially their roles and impact on the onset, progression, and

eventual resolution of diverse brain pathologies (2–4). The Research

Topic discussed herein represents an effort of Frontiers Media S.A.

and the authors of this Editorial to develop another special volume

related to the healthy and diseased brain (5–8). This Research

Topic, which is available for the scientific community and the

public, focuses on understanding the complexity of central immune

cells and peripheral immune cells, and their cross-talk mechanisms

in diverse CNS pathologies. Eleven peer-reviewed manuscripts

including four original articles, six reviews, and one systematic

review, encompass this special volume. Seventy-five authors from

research laboratories located in six countries: Australia, China,

Germany, Japan, United Kingdom, and United States took part in

this initiative.

Among the interesting contributions, an in vitro study on

primary murine glia by Li et al. showed differential substrate-

dependent and time-dependent phagocytic behavior and

phenotypic plasticity among M0-like (unstimulated), M1-like

(pro-inflammatory) and M2-like (anti-inflammatory) microglia

subtypes. Although the application of M1/M2 terminology in the

microglia field has been dismissed, the coexistence of pro-

inflammatory and anti-inflammatory microglial states has been

documented, including in circumventricular organs (9–12). Li

et al. differentiated cultured glial cells into M1-like and M2-like

microglia subtypes by treating them either with granulocyte colony

stimulating factor and interferon-gamma (GM-CSF/IFNg), or with
macrophage colony-stimulating factor and interleukin-4 (M-CSF/

IL-4), respectively. No supplements were added to obtain M0-like

microglia. Phagocytosis assays using E. coli-rhodamine particles or

IgG-FITC beads revealed different preferences and dynamics for the

substrates among the microglia subtypes. M1-like microglial cells

engulfed more bacteria particles than beads after 3 hours. The

opposite behavior was observed with the anti-inflammatory

subtype, where M0-like microglia internalized both substrates

equally. The authors reported further differences among the three

differentiated microglial phenotypes during incubation with both

substrates for 16 hours. M2-like microglia showed discontinuous

phagocytosis after 8 hours, while M0-like and M1-like microglial

cells continuously internalized substrates with different profiles.

One interesting observation after a prolonged exposure for 5 days to

either E. coli particles or IgG-opsonized beads, was that M1-like

states and M0/2-M1 transitions were both enhanced, indicating

phenotypic plasticity like it occurs in neurodegenerative conditions

(13, 14). The study by Li et al. complements the existing knowledge

about microglia diversity and plasticity (15, 16), and it opens

therapeutic avenues to intervene in microglia-mediated

inflammation and neurodegeneration.

Neumaier et al. reviewed current knowledge and therapeutic

potential of midkine (MDK), which is a neurotrophic growth factor

with dual functions in the healthy and diseased CNS and periphery

(17, 18). Due to its multi-functionality, MDK has been involved in

the progression or suppression of numerous CNS-related

pathologies including autoimmune disorders, such as multiple

sclerosis (MS), brain tumors, acute injuries, and other conditions

that imply neuroinflammation and neurodegeneration. In the CNS,

MDK is spatio-temporally expressed by oligodendrocytes,
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astrocytes, and neuronal lineages, and maybe also by microglia in

response to inflammatory stimuli. In the periphery, hematopoietic

and non-hematopoietic cells can produce MDK. This regulator acts

through multimolecular receptor complexes, with protein tyrosine

phosphatase z (PTPz) as one of the most established components.

In addition, multiple signaling pathways are involved depending on

the cellular context, thereby facilitating MDK’s multifaceted

functions. Interestingly, the authors discussed the role of MDK as

a mediator of the neuro-immune cell-to-cell cross-talk in CNS

inflammatory scenarios that involve a dysfunctional or leaky BBB.

These conditions facilitate the infiltration of MDK-expressing

immune cells from the periphery. The recruitment of peripheral

immune actors such as macrophages and T cells, and the impact of

MDK-signaling events on CNS-resident cells are also addressed

within the context of neoplastic diseases (19). The findings included

in this review support the importance of MDK as a mediator of

tumorigenesis and inflammatory disorders, irrespective of the tissue

and cell type, and they emphasize the need for further research to

better understand its mechanisms and biomarker potential in

neurodegenerative diseases, such as Parkinson’s and Alzheimer’s

diseases (PD and AD, respectively).

Neuroinflammation and neurodegeneration are associated with

traumatic spinal cord injuries (SCI), which are highly debilitating

pathologies. SCI progresses through various phases: acute (up to 3

days post-injury; dpi), subacute (3–14 dpi), and chronic (more than

14 dpi) stages. Yao et al. investigated differential gene expression

profiles and pathways in macrophages and microglia across these SCI

phases to pinpoint potential therapeutic targets for SCI. The authors

applied bioinformatic analysis to the existing scRNA-seq dataset

GSE159638 (total 30,958 cells; https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE159638), which was generated in a mouse

model of thoracic contusion SCI (20). Then, they validated the

results in a mouse model of cervical SC hemi-contusion injury

[wild type and APOE-/- mice; (21)]. They identified apolipoprotein

E (APOE) as a central gene of interest in both macrophages and

microglia during the subacute and chronic phases of SCI. These cells

exhibited high activity, suggesting a crucial role in regulating SCI-

associated inflammation. On the other hand, APOE has been linked

to pathways related to debris and dead cell clearance (phagocytosis),

lipid metabolism, and lysosomal function (22–24). Subsequent

experiments demonstrated that APOE knockout (KO) in mice

exacerbated neurological deficits, increased neuroinflammation, and

worsened white matter loss after SCI at the cervical level. Following

SCI, ultrastructural analysis of the KO mice revealed myelin uptake

and accumulation of lipid droplets, lysosomes, and needle-like

cholesterol crystals in macrophages and microglia. APOE is vital

for cholesterol homeostasis within the CNS (25). Together, these

results make APOE and its associates promising therapeutic targets

for reducing neuroinflammation and for enhancing recovery

after SCI.

Zhang et al. contributed to this Research Topic with a

comprehensive review of the impact of inflammation and the

involvement of infiltrated regulatory T cells (Treg cells) on

neuropathic pain (NP) following spinal cord injury (SCI), as well

as the potential of cellular therapeutic interventions in SCI-related

conditions. The authors discussed the mechanisms behind
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inflammation and NP after SCI, which include a plethora of cells

and mediators. Glial cells, including astrocytes and microglia, and

infiltrated immune cells, such as monocytes, macrophages, B cells,

and T cells, are involved in these scenarios. These cells, when

activated, release inflammatory mediators including chemokines

(e.g., CXCL1 and CXCL2) and cytokines (e.g., TNF-a, IL-1b, and
IL-6) (26). These molecules affect neurons through multiple

signaling pathways, leading to neurotransmitter and ion channel

imbalance, increased neuronal excitability, decreased neuronal

inhibition, and boosted pain transmission (27). In particular, the

authors reviewed the mechanisms by which astrocytes, microglia,

and immunosuppressive Treg cells intervene in the pathogenesis of

SCI and the subsequent NP. In fact, the inflammatory response

following SCI has been tightly linked to a reduction in the number

of Treg cells (28). Finally, this review provides a framework for

thinking about strategies and challenges (i.e., cell purity, stability,

and functionality) in the application of Treg cell therapy in SCI

patients who suffer from neuropathic pain.

Chronic inflammation has been associated with different

neurological disorders (NDs). Cumulative evidence showed that

the recruitment of peripheral immune cells into the CNS is a

common characteristic in various NDs (29–32). Among these

neuroinflammatory cells, T helper (Th) 17 lymphocytes play an

active role in the pathogenesis of CNS-related diseases. The biology

of this CD4+ Th cell subtype in NDs is addressed in this volume by

Shi et al. Th17 cells and their cytokines (e.g., IL-17A, IL-23, IL-21,

IL-6, and IFN-g) contribute to the disruption of the BBB, promote

the infiltration of other immune cells into the CNS, excessively

activate microglia, and can cause direct cytotoxic damage to

neurons (33). The authors described Th17 lymphocytes, including

the signaling pathways that induce their differentiation. They also

introduced ND-linked environmental factors that may induce the

pathogenic potential of Th17 cells, such as peripheral inflammation,

enhanced oxidative stress, and changes in the microbiota or diet

that affect the gut-brain axis. Shi et al. further discussed the possible

immunopathological mechanisms of Th17 cells in AD, PD, MS,

amyotrophic lateral sclerosis (ALS), and major depressive disorder

(MDD). Finally, therapeutic strategies targeting Th17 lymphocytes,

their associated cytokines, and Th17-related molecular mechanisms

to treat neurodegenerative diseases, are also addressed.

Grotemeyer et al. elaborated a detailed summary of the

interconnected innate and adaptive immune responses in the

context of Parkinson’s disease (PD), which is a ND characterized

by neuroinflammation and dopaminergic neurodegeneration (34,

35). Interestingly, they propose a mechanism for how

neuroinflammation is triggered in PD. They hypothesized that

pathological forms of alpha-synuclein (paSYN), the key protein

in PD, might act as a damage-associated molecular pattern (DAMP)

to induce and maintain a pro-inflammatory shift of the immune

system, via pattern recognition receptor (PRR)-mediated processes

(36). Central (e.g., microglia) and peripheral (e.g., T and B cells)

immune cells and their mechanisms in the pathophysiology of PD

in humans and animal models (e.g., MPTP, 6-OHDA, viral vector,

and preformed fibrils), are discussed. Circulating and infiltrated

CD4+ and CD8+ T cells are among the immune effector cells in PD,
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and their roles are both beneficial and detrimental. The authors also

summarized current clinical trials on anti-inflammatory therapy in

PD, focusing on the regulation of glucose metabolism, intestinal

microbiota, and oxidative stress. Then, they discussed different

signaling pathways associated with inflammation and

neurodegeneration, such as the pentose phosphate pathway (PPP)

(30) and the renin-angiotensin [-aldosterone] system (RA[A]S)

(37), to use them as potential therapeutic targets. Finally, the

authors suggested that dopaminergic neurodegeneration could be

halted by administrating neuroprotective/anti-inflammatory agents

early in the course of PD, before severe symptoms have developed.

The involvement of innate and adaptative immune cells in the

pathophysiology of multiple sclerosis (MS), and their regulation by

physical exercise, are addressed in this Research Topic by Zong et al.

The pathogenesis of this neuroinflammatory and autoimmune

disease is driven by the dysfunctional activity of immune cells,

including those recruited from the periphery into the CNS (38).

Aberrant immune responses damage oligodendrocytes and thus,

cause severe demyelination, impaired remyelination, axonal

degeneration, and altered neurotransmission (39, 40). This results

in a spectrum of motor and non-motor symptoms. The disease has

no cure and pharmacotherapy is considered the primary treatment.

However, drugs have low efficacy, several side effects, and high

costs. Alternative MS-modifying interventions, such as physical

exercise, have gained attention as a new therapy to alleviate

patients’ symptoms (41, 42). In summary, the authors present

morphological, cellular, and molecular evidence from animal

models (e.g., EAE and toxin and/or virus-induced demyelination

models) and human studies of how this type of adjunctive

intervention regulates innate and adaptive immune cells, reducing

peripheral immune cell infiltration, and eventually leading to a

reduction of the autoimmune responses and their concomitant

negative effects in the CNS. The authors focused this review

specifically on T cells (e.g., CD8+ and CD4+ cells, including Th17

and Treg cells), B cells, dendritic cells, neutrophils, microglia/

macrophages, and astrocytes. Zong et al. also raised a critical view

towards the need to conduct more studies in humans, stratifying

patients by gender, disease stage, and type, duration, intensity, and

cycle of exercise, to better understand the potential of the physical

therapy in treating MS.

Beyond the immunological roles, immune cells can participate

in other physiological responses that are essential to maintain the

homeostasis of the organisms (43, 44). One instance of this is the

interplay between enteric C1q-producing macrophages and the

enteric nervous system to regulate neuronal and smooth muscle

cell functions and thus, gastrointestinal motility and homeostasis

(45). It was previously reported that bidirectional signaling between

muscularis macrophages and enteric neurons is necessary to ensure

gut peristalsis in healthy mice (46). Macrophage-derived bone

morphogenetic protein 2 (BMP2) and neuronal colony

stimulatory factor 1 (CSF1) are involved in this cross-talk

mechanism. In this context, Yip et al. contributed to this

Research Topic with an original article in which they studied the

participation of CD163 intestinal macrophages and inhibitory

interneurons of the myenteric plexus in the regulation of colonic
frontiersin.org
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motility. They used a conditional KO Cx3cr1 (chemokine receptor)-

Dtr (diphtheria toxin receptor) rat model to transiently deplete

resident macrophages in combination with the nitric oxide synthase

(NOS) inhibitor NOLA (Nw-nitro-L-arginine), and ex vivo video

imaging (47, 48). The authors showed that the resident intestinal

macrophages are crucial in regulating colonic motility in the

absence of the inhibitory neuronal input driven by NO. Whereas,

under control conditions, these macrophages might not be relevant.

They also showed that these immune cells are important in

maintaining healthy intestinal structure. The authors highlighted

CD163-positive intestinal macrophages as a potential therapeutic

target for gastrointestinal disorders in which inhibitory neuronal

input is impaired, such as gastroparesis and achalasia (49, 50).

However, Yip et al. pointed out the need for further research to

dissect the cell subtypes and to investigate the mechanisms of

these functions.

Viengkhou and Hofer reviewed the dual pivotal roles of type I

interferons (IFN-Is) in regulating cellular and molecular

homeostasis within the CNS, as well as inflammation and

immunity associated with diverse NDs, from chronic infections

and auto immune condi t ions to t rauma , ag ing , and

neurodegeneration. Some of these conditions are known as

interferonopathies. The authors initially discussed mechanisms by

which levels of IFN-Is are altered, especially those mediated by

innate immune sensors (e.g., cyclic GMP-AMP synthase/STING

signaling pathway), by genetic alterations (e.g., trisomy 21 and

mutations in USP18 or ISG15), and by therapeutic interventions for

diseases like chronic viral infections, MS, and certain cancers (51,

52). They further presented the canonical and non-canonical IFN-I

signaling pathways that imply binding to cell surface receptors and

activation of distinct response phases, including an early

widespread protein phosphorylation stage and changes in the

expression of several IFN-regulated genes (IRGs) (53). The classic

path involves the interferon-stimulated gene factor 3 (ISGF3)

complex (54), which consists of the transcription factors STAT1

(signal transducer and activator of transcription 1), STAT2, and

interferon regulatory factor 9 (IRF9). Then, Viengkhou and Hofer

focused the review on the specific responses to IFN-Is mounted by

each cell type in the CNS, especially those mediated by neurons,

glial cells, and BBB-associated cells. Understanding the diversity in

cell responses has been facilitated by single-cell technologies.

Moreover, it has been accepted that a diverse spectrum of cellular

response states coexists within the diseased CNS, instead of a single

prevalent response. Neurons respond to limit the impact of viral

infections, but they can suffer neurotoxic effects from increased

IFN-I signaling, including fewer dendrites, impaired neurogenesis,

and altered neurotransmission (55). Although basal IFN-I signaling

in astrocytes is crucial for brain health (56), its contribution to IFN-

I neurotoxicity seems yet unclear. A small IFN-I-hyperresponsive

microglia subset was identified by single-cell sequencing, which has

been associated with age-dependent cognitive decline and synaptic

stripping (57, 58). Due to that chronic inflammation has been

related to NDs and that IFN-I therapy has been shown to have

adverse effects, the authors finished their review discussing the
Frontiers in Immunology 04
impl icat ions and mechanisms of IFN-Is in cerebra l

interferonopathies, such as Aicardi-Goutières Syndrome (AGS)

and chronic viral encephalopathies, as well as in aging, and in

diseases with abnormal protein aggregation, including AD and PD

(59–61). The authors pointed out that understanding the

complexity of IFN-I responses in the CNS is critical for

developing targeted therapies for neurological disorders that

occur with IFN-I dysregulation. These therapies should consider

factors such as cell type, signaling duration, and disease context.

Sun et al. conducted a Mendelian randomization (MR) study to

explore the causal relationship between immune cell surface

antigens and post-stroke functional outcomes, and to identify

novel biomarkers and therapeutic targets for ischemic stroke. The

authors employed Genome-Wide Association Studies (GWAS)

summary statistics for a two-sample MR analysis, followed by

several alternative methods and sensitive approaches. They

sourced genetic variants linked to immune cell surface antigens

(measured by median fluorescence intensities, MFIs) from the

publicly available GWAS catalog (62); outcome data from the

Genetics of Ischemic Stroke Functional Outcome (GISCOME)

network (63, 64), and statistics about the risk of ischemic stroke

from the MEGASTROKE consortium (65). The cohorts were

primarily of European ancestry, aged 18 and above. A total of 389

MFIs with surface antigens were included in seven panels

(maturation stages of T cell, Treg cell, TBNK, DC, B cell,

monocyte, and myeloid cell, respectively). The authors identified

genetic variants including single nucleotide polymorphisms (SNPs)

associated with MFIs of immune cell surface markers, as measured

from samples of peripheral blood. They meticulously selected SNPs

that were strongly linked to markers and less likely influenced by

non-genetic factors like lifestyle, and they treated them as

instrumental variables (IVs) for the MR analysis (66, 67). After a

comprehensive analysis, Sun et al. identified 13 suggestive immune

cell surface antigens that appear to be associated with post-stroke

outcomes. Notably, elevated levels of CD20 on switched memory B

cells and of PDL-1 on monocytes appeared to be linked to worse

stroke outcomes and severity. In contrast, surface antigen CD25 on

CD39+ resting Treg cells was found to be associated with favorable

post-stroke functional outcomes, possibly due to enhanced Treg cell

survival supported by IL2 affinity (68). CD39 was highlighted for its

immunosuppressive role, which may be crucial for long-term

immune balance after stroke (69). The authors discussed

limitations of their analysis including those related to the nature

of the sourced data. Overall, this study uncovers potential novel

biomarkers and therapeutic strategies targeting immune cell surface

antigens to enhance post-stroke recovery, and it warrants further

exploration and validation across diverse populations and

stroke subtypes.

Considering that research in Treg cells in NDs continues to be a

topic of interest (70, 71), Gao et al. contributed to this Research

Topic with a bibliometric analysis of the field, spanning from 1991

to 2023, and including 2,739 documents between articles and review

articles from the Web of Science Core Collection. The authors used

Tableau Public, VOSviewer, and CiteSpace software to perform the
frontiersin.org
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study. The research course was categorized into three phases: 1991–

2003 (early stage), 2004–2019 (rapid expansion period), and 2020–

2023 (fluctuating yet productive phase). A total of 85 countries/

regions investigating Treg cells in NDs were identified with the

United States, China, and Germany leading in document output.

Collaboration among countries/regions was widespread, again with

the United States cooperating most (with 57 countries/regions).

Notably, Harvard Medical School showed exceptional productivity,

citations, link strength, and centrality, reflecting its prolific research

and collaborations. Studies examining Treg cells in NDs were

published in 859 journals. Among them, the top 11 journals

contributed 618 documents, with Frontiers in Immunology,

Journal of Immunology, and Journal of Neuroinflammation as

the most prominent publishers. The associations of high-

frequency keywords, such as “multiple sclerosis”, “inflammation”,

and “regulatory T cells”, were found to change throughout the

research evolution. Initially, they appeared linked with

neuroprotection, neuroimmunology, and immunoregulation

(2014), and currently, they shifted towards ischemic stroke, gut

microbiota, and the gut-brain axis. Gao et al. identified the top 10

most-cited documents, with three emphasizing the roles of

cytokines in autoimmune neurological diseases (72–74), and

others examining gut microbiota impact on immune responses

and the influence of tumor microenvironment in tumorigenesis

(75). Although the United States has led in document output and

citations, China emerged as a significant contributor, rising to the

forefront in 2022. The study conducted by Gao et al. acknowledges

limitations such as language barriers and publication bias, but it

emphasizes the need for continual updates to reflect ongoing

scientific avenues. This review provides valuable insights for

shaping future research directions and therapeutic strategies in

this dynamic field.

Overall, the original research and review articles on this

Research Topic illustrate the complexity behind the participation

of immune cells in the healthy and diseased central nervous system.

We expect this Research Topic will encourage researchers to

continue their efforts to further investigate immunity and the

brain, with the ultimate hope of finding not only new knowledge

but also potential clinical interventions to prevent or ameliorate the

devastating consequences of neurological diseases.
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