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The COVID-19 pandemic has uncovered the high genetic variability of the SARS-

CoV-2 virus and its ability to evade the immune responses that were induced by

earlier viral variants. Only a few monoclonal antibodies that have been reported to

date are capable of neutralizing a broad spectrum of SARS-CoV-2 variants. Here,

we report the isolation of a new broadly neutralizing humanmonoclonal antibody,

iC1. The antibody was identified through sorting the SARS-CoV-1 RBD-stained

individual B cells that were isolated from the blood of a vaccinated donor following

a breakthrough infection. In vitro, iC1 potently neutralizes pseudoviruses

expressing a wide range of SARS-CoV-2 Spike variants, including those of the

XBB sublineage. In an hACE2-transgenic mouse model, iC1 provided effective

protection against the Wuhan strain of the virus as well as the BA.5 and XBB.1.5

variants. Therefore, iC1 can be considered as a potential component of the broadly

neutralizing antibody cocktails resisting the SARS-CoV-2 mutation escape.
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1 Introduction

Despite the declared end of the COVID-19 global health

emergency, there remains a need for effective therapy, particularly

for at-risk groups, such as immunocompromised or immunodeficient

individuals. Human monoclonal antibodies neutralizing SARS-CoV-

2 have become one of the most important tools of counteracting

coronavirus infection in this population. Since November 2020, drugs

such as the cocktail of casirivimab and imdevimab (1), the

combination of bamlanivimab (2) and etesevimab (3), sotrovimab

(4), bebtelovimab (5), regdanvimab (6) as well as the cocktail of

tixagevimab and cilgavimab (7) (Evusheld) have been authorized for

emergency use (8). However, at present, the authorization has been

revoked due to the emergence and spread of new viral variants of the

Omicron lineage capable of evading the immune response elicited by

the original Wuhan-1 variant of SARS-CoV-2 (9–13). Moreover, out

of thousands of monoclonal antibodies against SARS-CoV-2

characterized to date, only a few have been shown to neutralize the

broad spectrum of the viral variants, including the BQ, XBB, or JN

lineages (14–17).

We previously reported the isolation of a panel of monoclonal

antibodies capable of neutralizing the Wuhan-1 variant of SARS-

CoV-2 with ultrahigh potency (18). Of these, one was shown to

neutralize both the early viral variants and the Omicron variant

BA.1–BA.4/5 (19). In the present study, we set out to isolate SARS-

CoV-2-neutralizing antibodies that have a broader range using an

individual with hybrid antiviral immunity as the source of B cells

(Figure 1A). The choice of such a donor was dictated by the data

showing that hybrid immunity induced by multiple exposure to

vaccine antigens and live SARS-CoV-2 typically displays broader

neutralization (20–22).
2 Materials and methods

2.1 Single B cell sorting, cloning, and
antibody production

Peripheral blood mononuclear cell isolation and single B cell

sorting were described previously (18) except for the use of the

Spike protein of SARS-CoV-1 (23). Single-cell cDNA synthesis,

reverse transcription PCR, and cloning of antibody variable

sequences into pAbVec expression vectors encoding constant

regions of human g1, k, or l chains were performed according to

(24, 25). Antibodies were produced and purified as described (18).
2.2 Biolayer interferometry

Measurements of Kd, Kon, Koff, and epitope binning for

purified antibodies were performed as described previously (18)

using OctetRed96 (Fortebio, Sartorius, Germany) with SARS-CoV-

2-S-RBD-His6 immobilized on NTA biosensors (Cat #18-5101).

The following human reference antibodies with known epitopes

were used via BLI for epitope binning (competition assay):
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bamlanivimab (2), cilgavimab (7), sotrovimab (26), bebtelovimab

(5), imdevimab (1), tixagevimab (7), casirivimab (1), CV30 (27),

S2X259 (28), S2H97 (29), S2K146 (30), and SA55 (31). The

reference antibodies were produced in-house based on the

published VH and VL sequences (32).
2.3 SARS-CoV-2 Spike-pseudotyped
lentivirus neutralization assay

SARS-CoV-2 Spike-pseudotyped lentiviral particles were

produced as described previously (18). HEK293T cells were

transfected with a 4:6:3 molar mixture of plasmids psPAX2,

pCDHNLuc, and a pCAGGS-SpikeD19 plasmid encoding either a

Wuhan-1 (wild-type) or a mutant Spike variant without the 19 C-

terminal residues. The constructs encoding wild-type and mutant

variants of the Spike protein were obtained either via gene synthesis

(Genewiz, USA; NovoPro Bioscience, China; Evrogen, Russia) or

PCR mutagenesis with sets of mutagenic primers (33). A Spike-

pseudotyped lentivirus neutralization assay was performed as

described (19). Briefly, ACE2-HEK293T cells were transduced

with a mixture of the antibody and the Spike-pseudotyped

lentiviral particles; 48 hours later, the cells were washed, lysed,

and luminescence intensity upon the addition of the substrate (1.25

µg of freshly prepared h-coelenterazine (Nanolight Technologies,

Germany) in 50 µL of PBS per well, 3 s) was measured. The half-

maximal inhibitory concentration (IC50) was determined by non-

linear regression as the concentration of antibody that neutralized

50% of the pseudotyped lentivirus.
2.4 SARS-CoV-2 isolates

Three SARS-CoV-2 isolates were used for in vivo experiments

in hACE2-transgenic mice. Preparation of the SARS-CoV-2/

human/RUS/Nsk-FRCFTM-1/2020 isolate (EPI_ISL_481284)

which is characterized by a single D614G substitution in the

Spike protein (lineage B.1) has been described previously (18).

SARS-CoV-2 isolates hCoV-19/Russia/SPE-RII-MH71262/2022

(BA.5.2 lineage, GISAIDEPI_ISL_14596294) and hCoV-19/

Russ ia/SPE-RII-9714/2023 (XBB.1 .5 l ineage , GISAID

EPI_ISL_16902719) were cultured from nasopharyngeal swabs in

VeroE6/TMPRSS2 cells (JCRB, #JCRB1819). The cells were

inoculated for two hours with swab material diluted 1/10 in

DMEM (Biolot, Russia) supplemented with 2% heat-inactivated

fetal bovine serum (Biolot, Russia), 1% antibiotic-antimycotic

(Gibco, Thermo Fisher Scientific, USA), and then incubated for

4-5 days until 70-100% cytopathic effect. Following a single round

of viral passaging, a working viral stock was obtained. Virus titers

were measured using the standard TCID50 method.
2.5 In vivo protection assay

C57BL/6-Tg (CAG-ACE2)5Nrba/Icg mice were generated

through a pronuclear injection of a genetic construct containing
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the cDNA of the human ACE2 gene under the control of a strong

ubiquitous constitutive chimeric CAG promoter (34). The

transcription of the hACE2 cassette was observed in all organs of

these mice, and hACE2 protein was detected on the cell surface. The

infection of mouse embryonic fibroblasts with SARS-CoV-2

infection by the Wuhan-1 variant resulted in pronounced

cytopathic effects. In these transgenic mice, signs of viral infection
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were observed in the lungs following intranasal infection. No signs

of infection in the brain were observed when analyzing the

histological sections (34). The mice were obtained from the SPF

animal facility of the Institute of Cytology and Genetics SB RAS

(Novosibirsk, Russia). The animals were weighed. The values

ranged from 15.1 to 26.1 g. In the prophylactic scheme, mice

were intraperitoneally (i/p) administered with 10 mg/kg iC1
B

C

D E

A

FIGURE 1

Isolation and primary characterization of the iC series of SARS-CoV-2 binding antibodies. Nucleotide sequences encoding iC1-5 antibodies were
obtained from single-sorted B cells of a previously vaccinated COVID-19 convalescent individual using single cell PCR (A). The iC antibodies
underwent more intensive somatic hypermutation (SHM) compared to the iB antibodies (18) (**** – p<0.0001) (B). BLI analysis of the binding affinity
between iC1 and SARS-CoV-2 RBD variants shows picomolar to nanomolar values (C). In vitro pseudovirus neutralization by the iC1 antibody
demonstrates its broad neutralizing activity (D, E).
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(group 1, n=5; group 3, n=5; group 5, n=6) or total human IgG as a

negative control (group 2, n=4; group 4, n=3; group 6, n=5) 24 h

before infection (–1 dpi). On the next day, (0 dpi) SARS-CoV-2 was

given intranasally (50 mL/nostril) at a total dose of 3.0-3.3

lgTCID50/mouse of the B.1 (groups 1 and 2), BA.5 (groups 3 and

4), and XBB.1.5 (groups 5 and 6) virus variants. Untreated animals

(group 7, n=6) were used as an additional baseline control. In the

therapeutic regimen, 14 mice were infected as above with XBB.1.5

and administered iC1 (group 8, n=8) or a placebo (group 9, n=6) 6 h

post-infection (10 mg/kg, i/p). The animals were monitored for any

signs of distress and weighed daily. The animals were euthanized on

9 dpi.The lungs from the mice infected with the Wuhan and

XBB.1.5 variants were extracted for pathology analysis; blood

samples were collected to measure the levels of human IgGs in

the serum. Assessment of the levels of injected human antibodies in

the sera of infected mice was performed as described (18).
2.6 Statistical analysis

Statistical analysis was performed in GraphPad Prism 8: The

significance of differences between groups was tested with Mann

Whitney test (Figure 1B); Nonlinear regression was used for the

neutralization curves transformation and IC50 determination

(Figures 1D, E).
3 Results and discussion

A peripheral blood sample was collected from a donor on day

14 following a laboratory-confirmed breakthrough infection with

SARS-CoV-2 (Figure 1A). The infection occurred at the time of the

BA.1/BA.2 Omicron surge in February 2022 (35). However, the

exact variant of the virus was not determined. To sort the individual

B-cells, we used fluorescein-labeled receptor-binding domain

(RBD) from the related sarbecovirus SARS-CoV-1, which was the

causative agent of the 2002 coronavirus outbreak. The donor had no

history of previous exposure to SARS-CoV-1. While it is now clear

that the binding of antibodies to SARS-CoV-1 does not guarantee a

high neutralization breadth (17), we anticipated that such an

approach would help identify antibodies targeting conserved RBD

epitopes. As a result, five monoclonal antibodies (iC1-5) were

isolated. The new iC-series antibodies exhibited a high level of

somatic hypermutation (8 to 19 amino acid substitutions in the

framework regions of a VH and 2 to 11 substitutions in the

framework regions of a VL), thereby indicating their prolonged

maturation compared to the monoclonal antibodies isolated at the

start of pandemia (18) (Figure 1B).

To assess the breadth of neutralizing activity of the obtained

antibodies, we used lentiviral particles pseudotyped with the Spike

protein of the Wuhan-1 variant as well as with the Spike of the various

variants of Omicron lineage, including BA.1, BA.1.1, BA.2, BA.3, BA.4/

5, BQ.1, XBB, XBB.1, XBB.1.5, XBB.1.16, EG.5, and SARS-CoV-1.

Despite the fact that donor B cells were sorted based on their binding to

SARS-CoV-1 RBD, none of the isolated monoclonal antibodies

appreciably neutralized SARS-CoV-1 Spike-pseudotyped lentiviral
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particles. Two antibodies, iC1 and iC4, showed neutralizing activity

against several variants of SARS-CoV-2 pseudoviruses. Of these, iC4

neutralized the BA.1, BA.2, and BA.3 variants with IC50 of 311, 109,

and 975 ng/mL (not shown). In contrast, iC1 potently neutralized all of

the SARS-CoV-2 variants tested (Figures 1D, E) and was pursued for

further studies with the highest activity against Wu-1 (IC50 = 14 ng/

mL) and the lowest activity against BQ.1 (759 ng/mL).We also assessed

the dissociation constants of the iC1 complexes with RBD of theWu-1,

BA.1, BA.2, BA.4/5, BQ.1, and XBB variants. The antibody bound these

RBD with KD ranging from 1.94E-09 (BQ.1) to ~1.0E-12 (Wu-1 and

BA.1) (Figure 1C).

For the epitope mapping of the antibody iC1, we assessed its

neutralizing activity on a panel of 15 pseudoviruses with the Spike

protein of the ancestral Wuhan-1 variant carrying single amino acid

substitutions in the RBD region. None of the substitutions that were

tested has resulted in the complete loss of iC1 neutralizing activity.

Notably, the substitutions N439K, K444Q, L452R, F490L, and E484K

caused a twofold to sixfold decrease in iC1 neutralizing activity.

Conversely, the substitutions R346G and V367F increased antibody

activity twofold and threefold, respectively (Figures 2A, B). Amino

acid residues, whose substitutions affected iC1 activity, clustered on

the outer face of the RBD and are likely a part of the RBD-iC1

complex interface. This assumption is further supported by the

results of the BLI analysis of iC1 competition with 12 reference

antibodies whose epitope structures are known. The incubation of

iC1 with RBD completely blocked the binding of antibodies targeting

the outer face (36) region of RBD, including bamlanivimab,

cilgavimab, sotrovimab, bebtelovimab, and imdevimab (Figure 2C)

(1, 2, 5, 7, 26). In reciprocal setups, bamlanivimab, cilgavimab, and to

a lesser extent sotrovimab blocked the interaction of iC1 with RBD.

The binding of bebtelovimab and imdevimab as the first antibody had

a negligible effect on the ability of iC1 to interact with RBD. At the

same time, iC1 did not compete for binding to RBD with the

reference antibodies tixagevimab, casirivimab, CV30, S2X259,

S2H97, S2K146, and SA55, which are known to predominantly

interact with various regions of the inner face of RBD (Figure 2C)

(1, 7, 27–31). Taken together, these results suggest that the epitope of

iC1 maps to the upper part of the outer face of RBD, and it has an

overlap with the epitopes of bamlanivimab and cilgavimab as well as

partially with that of the sotrovimab (Figure 2D). However, the

broader range of neutralization of iC1 clearly shows that its epitope is

different from those of bamlanivimab, cilgavimab and sotrovimab.

The absence of competition with the antibodies binding to the inner

face region of RBD indicates that iC1 can potentially be used in a

cocktail with such antibodies to counteract SARS-CoV-2

mutation escape.

iC1 only showed moderate potency when tested against the

XBB and BQ virus variants, with IC50 values ranging from 118 to

759 ng/mL (Figure 1E). However, it is well recognized in the field

that the in vivo protective activity of the antibodies against SARS-

CoV-2 may differ from that demonstrated in in vitro tests (37–39).

To evaluate the therapeutic and prophylactic properties of iC1, we

studied its effect on infection in hACE2-transgenic mice. In

addition to the Wuhan-1 variant virus, two variants of the

Omicron lineage, BA.5 and XBB.1.5, were tested in vivo. The

infection of placebo-administered animals with the Wuhan-1
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variant in the prophylactic scheme led to rapid weight loss. One

mouse from this group was sacrificed on the 5th day in order to

examine the lung pathology. The rest of the group died by day 8. In

the case of BA.5, two mice died, and one lost 22% of its weight by

day 9. When infected with XBB.1.5, two mice died, and three mice

had a weight loss of 21-32% by day 9. In the therapeutic experiment,

three XBB.1.5-infected and placebo-treated mice died, and three

lost 31-33% of their weight by day 9 (Figure 3A). The milder course

of infection in mice infected with BA.5 and XBB.1.5 is consistent

with the data on the reduced pathogenicity of Omicron sublineages

compared to the earlier viral variants (40, 41).

The prophylactic administration of iC1 at a dose of 10 mg per

kg body weight 24 h before infection with either viral variant

completely prevented not only the death of the mice but also

their weight loss. In the therapeutic setting, the administration of

iC1 6 h after infection with the XBB.1.5 variant also prevented the

weight loss and death of the experimental mice (Figure 3A).

Histological analysis of the lungs taken from the control mice

infected with the Wuhan and XBB.1.5 variants showed the
Frontiers in Immunology 05
development of severe hemorrhages. Prophylactic administration

of iC1 before infection with the Wuhan-1 variant largely prevented

these complications (Figure 3B). Similar effect was observed in

XBB.1.5-infected mice after therapeutic treatment with iC1.

After the completion of the described experiments, a new

SARS-CoV-2 variant, BA.2.86, has emerged. This variant, in turn,

has initiated the widespread dissemination of the JN.1 variant and

several of its subvariants. Compared to its predecessor BA.2, the

JN.1 variant exhibits 33 mutations in the Spike protein, including

13 substitutions and one deletion in the RBD (42). Notably, the

RBD mutations in JN.1 include substitutions at positions that,

according to our findings, may be part of the epitope recognized

by iC1, specifically R346T, G446S, N450D, and L452W. Our

recent analysis has demonstrated that iC1 does not neutralize a

pseudovirus carrying the JN.1 Spike (data not shown). Regardless

of whether the loss of such activity is a result of the cumulative

effect of Spike substitutions or specific individual mutation(s), the

data indicate that the JN.1 variant is likely resistant to

neutralization by iC1.
B

C D

A

FIGURE 2

Epitope mapping of iC1 binding to the RBD of SARS-CoV-2. Neutralizing activity on a panel of 15 pseudoviruses with the Spike protein (Wuhan-1)
variant carrying single amino acid substitutions in the RBD region (A). A 3D model of the RBD (SARS-CoV-2) with highlighted substitutions causing
effect on iC1 neutralizing activity (yellow/blue) (B). BLI analysis of iC1 competition with 12 reference antibodies with known epitope structures.
Negative values (dark blue color) mean that there is a competition, positive values (white/light blue color) means that there is no competition (C). An
overlay of the epitopes for the reference antibodies with single amino acid residues influencing the iC1 neutralizing activity (D).
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4 Conclusion

In summary, in the present study, we describe a novel SARS-CoV-

2-specific human monoclonal antibody, iC1. This antibody exhibits

excellent protective properties in vivo against not only the Wuhan-1

variant of SARS-CoV-2 but also against the BA.5 and XBB.1.5 variants.

Although iC1 does not appear to neutralize the currently dominant

sublineage JN.1, it belongs to a group of rare SARS-CoV-2-specific

antibodies with the highest neutralization breadth. Considering the

significant likelihood of the future emergence of SARS-CoV-2 variants

that are antigenically distinct from the JN.1 lineage (43), it is

conceivable that iC1 antibody may still find application as a potential

component of broadly neutralizing antibody cocktails for countering

the mutation escape of SARS-CoV-2.
Frontiers in Immunology 06
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B

A

FIGURE 3

In vivo activity of iC1 (hACE2 transgenic mouse model). Prophylactic and therapeutic properties of iC1 antibody against Wu-1, BA.5, and XBB.1.5
authentic SARS-CoV-2 viruses (A). The open circles represent placebo-treated mice (human IgG only), the red triangles represent the negative
control mice (IgG+virus), and the color squares represent the experimental mice (iC1+virus). Each circle with an “x” indicates death of one mouse.
Histological analysis of the lungs of mice infected with the Wu-1 and XBB.1.5 variants (B). The mouse treated with Wu-1 and a placebo was sacrificed
on day 5 due to its moribund state, and all other mice were sacrificed at the end of the experiment on day 9.
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