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Dormancy and awakening of
cancer cells: the extracellular
vesicle-mediated cross-talk
between Dr. Jekill and Mr. Hyde
Concetta D’Antonio and Giovanna L. Liguori*

Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, National Research Council
(CNR) of Italy, Naples, Italy
Cancer cell dormancy is a reversible process whereby cancer cells enter a

quiescent state characterized by cell cycle arrest, inhibition of cell migration and

invasion, and increased chemoresistance. Because of its reversibility and resistance

to treatment, dormancy is a key process to study, monitor, and interfere with, in

order to prevent tumor recurrence and metastasis and improve the prognosis of

cancer patients. However, to achieve this goal, further studies are needed to

elucidate the mechanisms underlying this complex and dynamic dual process.

Here, we review the contribution of extracellular vesicles (EVs) to the regulation of

cancer cell dormancy/awakening, focusing on the cross-talk between tumor and

non-tumor cells in both the primary tumor and the (pre-)metastatic niche.

Although EVs are recognized as key players in tumor progression and metastasis,

as well as in tumor diagnostics and therapeutics, their role specifically in dormancy

induction/escape is still largely elusive. We report on the most recent and

promising results on this topic, focusing on the EV-associated nucleic acids

involved. We highlight how EV studies could greatly contribute to the

identification of dormancy signaling pathways and a dormancy/early awakening

signature for the development of successful diagnostic/prognostic and

therapeutic approaches.
KEYWORDS

extracellular vesicles, cancer cell dormancy, cancer cell awakening, tumor
microenvironment, premetastatic niche, metastasis, cancer diagnosis and therapy, EV
dormancy signature
1 Introduction

In tumorigenesis, two different levels of dormancy have been distinguished so far. The

first level, called tumor dormancy, was first proposed by Judah Folkman in the early 1970s

and indicates the whole tumor mass maintaining an overall constant size possibly due to a

balance between cell proliferation and death (1, 2). The second level, called cancer cell

dormancy or quiescence is a process whereby individual tumor cells inside the tumor enter a
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state of cell cycle arrest (3). Cancer cell entry into a dormant state can

occur at any stage of cancer progression, even the ones characterized

by fast tumor growth, and in different types of tumors, including the

highly aggressive and metastatic cancers (4, 5). In this Review we will

explore the dormancy at a cellular level. Besides cell cycle arrest,

dormant cancer cells are also characterized by the acquisition of

stemness, mesenchymal and chemotolerance features and the

activation of the related signaling pathways, involving Notch,

Transforming Growth Factor b (TGFb)as well as Bone

Morphogenetic Protein (BMP) receptors, and the Zinc finger E-

box-binding homeobox (ZEB2) transcription factor (6–10). Dormant

cancer cells resemble, and in some cases, overlap with quiescent/slow

proliferating cancer stem cells, thus suggesting that they are different

metastable states, rather than separate entities, along the same cell

continuum (10). Stemness pathways activated in dormant cells can be

also active in quiescent/slow-proliferating cancer stem cells and even

in quiescent normal stem cells, such as the long-term hematopoietic

stem cells (LT-HSCs). LT-HSCs are a subset of HSCs that remain

quiescent to guarantee the existence of an HSC pool and the

continuous production of blood cells throughout an individual’s

lifetime (11). Interestingly, the hematopoietic cell kinase, normally

expressed in the lymphoid and myeloid lineages of hemopoiesis (12),

has been found to be enriched in dormant leukemia cells, interfering

with the maturation of the FMS-like tyrosine kinase 3 (Flt3) and

causing abnormal Flt3 signaling (13).

Dormancy is not associated to gene mutations, but to a specific

epigenetic signature. Indeed, it is a reversible process, which means

that quiescent cancer cells can awake in every moment, even after

many years, and restart proliferating giving rise according to the

specific context to the primary tumor, to tumor relapse after excision

and or (chemo)therapy, or to formation of metastasis at distant sites

(8, 10). In both melanoma and glioblastoma (GB) a restricted and

relatively quiescent subset of cancer cells was identified as responsible

for sustained long-term tumor growth (14, 15). In addition to these

two tumors, dormancy/reawakening balance has been mainly

identified in breast and prostate cancer cells, as well as in brain,

liver, lung and bonemetastatic niche (16–19). The discovery of tumor

quiescence revolutionized the concept of tumor progression and

metastasis, suggesting that the initial mutations that give rise to

cancer cells, as well as the dissemination of cancer cells to distant sites,

may precede the onset of tumor and metastasis respectively, even by

many years (20–23). The therapy resistance and the reversibility that

characterize dormant state make it extremely important to monitor

and crucial to regulate with the perspective to contrast tumor

initiation, progression, relapse and metastasis.

Tumor microenvironment plays a key role in regulating cancer

cell dormancy/awakening at both primary tumor and (pre-)

metastatic sites. Premetastatic niche are actively formed by

extracellular signals emanating from the primary tumors, which

modify the microenvironment at distant sites, rendering it

supportive for survival and outgrowth of circulating tumor cells

long before their arrival, colonization and engraftment (24, 25).

Studies on the pre-metastatic niche highlighted that dormancy is a

very specific process, supported by a unique microenvironment

specific to each cancer type (19, 23). As an example, the

microvascular endothelium is able to induce dormancy in
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disseminated breast cancer cells, whereas the osteoblastic niche can

promote quiescence of prostate cancer and multiple myeloma cells

(26–29). In each niche, specific factors are involved in dormancy

induction, released by non-tumor cells, such as stromal, endothelial

and immune cells, as well as present in the Extracellular Matrix

(ECM) (30–33). ECM components such as thrombospondin-1 and

osteopontin have been associated to induction of dormancy in

disseminated tumor cells (DTCs), respectively in the perivascular

and osteoblastic niches (26, 34). Induction of DTC quiescency can be

also mediated by soluble factors, including the growth arrest-specific

protein 6 (GAS6), Transforming Growth Factor b2 (TGFb2), bone
morphogenetic protein 4 and 7 (BMP4 and 7) (16, 35–37). Soluble

and ECM factors cooperate in regulation of quiescence, as shown for

the ECM component fibronectin, whose production is dependent

from the cancer-secreted TGFb2 which is able to induce DTC

quiescence (38). However, despite the fact that each niche

microenvironment uses specific factors to induce quiescence in

cancer cells, the downstream intracellular signaling pathways

commonly activated are the ERK signaling, C-X-C chemokine

receptor type 4 (CXCR4) activated Src-dependent signaling,

endoplasmic reticulum stress, VCAM1, Wnt and BMP-dependent

signaling (19, 32, 33, 37, 39, 40).

Extracellular vesicles (EVs) are key components of the tumor

microenvironment and (pre-)metastatic niche, being produced by

both tumor and non-tumor cells and being able to transport active

molecules, such as DNAs, RNAs (mRNAs, lncRNAs and miRNAs),

proteins, lipids and metabolites to target cells (both tumoral and

non), thereby influencing their state (41, 42). EVs can be closely

associated with tissues or the ECM, and are referred to as tissue-

derived EVs (Ti-EVs) or matrix-bound vesicles (MBVs) (87, 88).

Finally, EVs can be also transported in body fluids reaching target

sites at very long distance from the producing cells, with relevant

diagnostic and therapeutic implications (41, 42). Based on their

biogenesis, two main types of vesicles have been defined: the

exosomes, which are formed in multivesicular bodies inside cells

and then secreted outside, and the microvesicles or ectosomes,

which originate from cell membrane budding (89). During tumor

development, EVs have been shown to play a key role in many

processes related to cell communication, being involved in the

induction of stemness, epithelial-mesenchymal transition (EMT),

proliferation, migration, chemoresistance and metastasis formation

(42, 43, 90). However, the specific contribution of EVs to the

induction and regulation of tumor quiescence is still in its

infancy. Therefore, our review article aims to explore the impact

of EVs on the dormancy/awakening balance by summarizing more

relevant and recent studies on this topic, and discuss the

potentiality in using EVs for theranostic dormancy/awakening

targeting approaches.

2 The contribution of extracellular
vesicles to dormancy/awakening
balance

A complete characterization of dormant cancer cells has not yet

been achieved, so it is challenging to clearly assess the contribution
frontiersin.org
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of external signals, including EVs, to dormancy induction. Here we

collect evidence on the ability of EVs released by non-tumoral cells

in the tumor or (pre-)metastatic niche, such as stromal, immune

and endothelial cells, to promote one or more features related to

dormancy. The ability of the tumor microenvironment cells to

regulate dormancy/awakening balance is illustrated in Figure 1.
Frontiers in Immunology 03
Several in vitro studies have addressed the ability of stromal EV

cargo to decrease tumorigenic features, such as proliferation,

migration, and invasion, and induce a quiescent-like and highly

chemoresistant state in cancer cells. Among the different types,

metastatic breast cancer cells (BCCs) have been extensively studied,

due to the clinical evidence of very late relapses. EV released by
FIGURE 1

The extracellular vesicle-mediated cross-talk in the regulation of cancer cell dormancy and awakening. Cancer cell dormancy is a reversible process.
Non-tumor cells in the tumor microenvironment as well as at the (pre-)metastatic site, including endothelial, stromal and immune cells, produce
extracellular vesicles (EVs) capable of inducing cancer cell dormant (green) as well as awakening (red) state. Pro-dormancy EVs (shown in green)
target cancer cells and induce the activation of intracellular pathways leading to arrest of cell proliferation, migration and invasion together to
increased chemoresistance. Pro-awakening vesicles (shown in red) act on dormant tumor cells, inducing the escape from quiescence, with
increased cell proliferation and migration, the ability to invade other tissues as well as acquired chemosensitivity. The EV cargo capable of shifting
the balance between dormant and awakening state is also highlighted. miR-9-3p, miR-31 and miR-126 are among the microRNAs able of promoting
dormancy of cancer cells, whereas mitochondrial DNA (mtDNA) and the MALAT1 long non-coding RNA induce cancer cell awakening. Cancer cells,
in turn, produce EVs that act on non-tumor cells stimulating the production and release of primed EVs, that can both induce and reverse the
dormancy process.
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stromal cells (fibroblasts and cancer associated fibroblasts or CAFs)

have been shown to target BCCs, causing the increase of

chemoresistance through activation of Stat1 and Notch3 signaling

pathways (44). Similarly, EVs released by bone marrow-derived

mesenchymal stem cells (BM-MSCs) are uptaken by BCCs, causing

reduction of cell proliferation, migration and invasion, enhanced

adhesion, increased chemoresistance and the decrease of stem cell-

like markers on the cell membrane (45, 46). In most cases the effect

is due to EV transfer of specific miRNAs between stromal and

cancer cells; the most relevant miRNAs identified have been

summarized in Table 1. BM-MSC derived EV miR-23b

downregulates the expression of the gene encoding the

myristoylated alanine-rich C-kinase substrate (MARCKS) protein,

which in turn promotes cell cycling and motility (45). Other stromal

EV-associated miRNAs, miR-31 and 205, suppress the metastatic

potential of BCCs by repressing the gene encoding Ubiquitin

Conjugating Enzyme E2 N (UBE2N/Ubc13), that is involved in

cell proliferation, migration and invasion ( (47).

Further studies reported that exposure to BCCs does influence

the cargo composition of EVs released by BM-MSCs and can be

involved itself in the induction of cycling quiescence and early

cancer dormancy (48, 54). A stepwise dormancy process was

proposed in which early naive EVs released from BM-MSCs

began the BCC transition into cycling quiescence and their

reorganization into distinct cell subsets, whereas BCC-primed

MSC-derived EVs target a subset of cancer cells and complete the

process towards dedifferentiation and acquisition of stemness

properties (54). Specific miRNAs (miR-127, miR-197, miR-222/
Frontiers in Immunology 04
223) found in primed MSC-EVs have been associated with reduced

proliferation, and induction of cancer cell dormancy and

chemoresistance (48). Studies using liver microphysiological

system as a model to recapitulate the early metastatic events also

highlighted a timely controlled cross-talk between the hepatic niche

and BCCs enabling first liver seeding and then reduced tumor

outgrowth and cancer cell entry into dormancy at the metastatic

site. Hepatic EVs were able to reduce cancer cell proliferation and

invasion and concomitantly revert the EMT, with induction of

epithelial markers such as E-cadherin and Zonula Occludens-1

(ZO-1) and the acquisition of an epithelial-like morphology (55).

Bone marrow-mesenchymal EVs have been shown to target not

only BCCs, but also other types of cancer cells, both solid (bladder

cancer) and liquid (chronic myelogenous leukemia), inducing

cycling quiescence and increased drug resistance. This activity is

mediated by EV miRNAs transfer, in particular miR-9-3p for

bladder cancer and miR-300 for leukemia (49, 50).

Noteworthily, MSCs can also release awakening signals able to

revert the quiescence process (Figure 1). Several studies point to the

ability of tumor derived EVs (TDEVs) to condition MSCs and

stromal cells to release in the microenvironment pro-tumorigenic

signals, such as interleukins (ILs) 6 and 8, vascular endothelial

growth factor (VEGF) and monocyte-chemotactic protein-1 (MCP-

1), to stimulate angiogenesis and immune suppression, and then

supporting cancer cell proliferation and survival (23, 42). EV

packaging and transfer of mitochondrial DNA from CAFs to

metastatic BCCs is able to induce exit from dormancy through

estrogen receptor-independent oxidative phosphorylation
TABLE 1 EV-RNAs released from non-tumor cells and involved in cancer cell dormancy/awakening.

EV
cargo

EV Source Target
Cells

Induced Effect Signaling Pathway References

miR-23b BM-MSCs bone
metastatic
BCCs

Inhibition of cell invasion; increase of
chemoresistance; decrease of stemness markers

MARCKS downregulation 45

miR-31
and -205

MSCs bone
metastatic
BCCs

Inhibition of metastatic potential UBE2N/Ubc13 downregulation 47

miR-127 BM-MSCs
primed
with BCCs

BCCs Decreased proliferation; induction of quiescence Targeting of C-X-C Motif Chemokine
Ligand 12
(CXCL12)

91

miR-197 BM-MSCs
primed
with BCCs

BCCs Decreased proliferation; induction of quiescence CXCL12 targeting 91

miR-
222/223

BM-MSCs
primed
with BCCs

BCCs Induction of cycling quiescence and chemoresistance CXCL12 targeting 48, 91

miR-9-3p BM-MSCs bladder
cancer cells

Reduction of cell viability, migration and invasion;
induction of apoptosis

Endothelial ell-specific molecule 1
(ESM1) downregulation

49

mir-300 BM-MSCs Leukemia
stem cells

Induction of growth arrest, apoptosis and
drug resistance

Protein phosphatase 2A (PP2A) activation 50

miR-126 BM
endothelial cells

Leukemia
stem cells

Induction of quiescence and persistence,
poor prognosis

Unknown 51

MALAT1 Endothelial cells Metastatic
BCCs

Suppression of immunogenic cell death Activation of Wnt pathway and induction
of Serpin protease inhibitors

52, 53
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1441914
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


D’Antonio and Liguori 10.3389/fimmu.2024.1441914
(OXPHOS) (56). Interestingly, teratocarcinoma-derived EVs have

been shown to inhibit migration of GB cells in vitro (57), suggesting

that TDEVs could also directly target cancer cells contributing to

the induction of a dormant-like state.

Very few data are available on the implication of non-stromal

(endothelial and immune) EV cargo in the induction of cancer cell

quiescence. Bone marrow endothelial EVs have been shown to

transfer miR-126 to leukemia cells, thus supporting quiescence, as

well as prolonged risk of cancer relapse and worst prognosis (51).

Endothelial EVs seem, instead, more involved in cancer cell

awakening. In most cases, in fact, endothelial cells in the tumor

niche are conditioned by TDEVs, to release EVs carrying pro-

tumorigenic factors, which enhance in turn cancer cell proliferation,

migration and invasion (23, 42). In mouse models of tumorigenesis,

endothelial EVs were shown to target glioma or metastatic breast

cancer, enhancing cancer cell self-renewal and proliferation (52,

58). Very recently, endothelial EVs have been shown to protect

tumor dormant cells by T cell mediated immunosuppression, by

inducing their reactivation or awakening through transfer of the

lncRNAMALAT1. MALAT1 causes activation of Wnt pathway and

induction of Serpin protease inhibitors, thus suppressing

immunogenic cell death in the incipient metastatic cells (52, 53).

Similarly, only few studies pointed to an implication of immune

EV cargo in dormancy induction. As an example, EVs released from

pro-tumorigenic M2, but interestingly not anti-tumoral M1,

macrophages were able to induce cycling quiescence and drug

resistance in BCCs (59). Instead, preceding metastatic outgrowth,

TDEVs can target immune cells and induce an immunotolerant

microenvironment in which dormant cells can awaken and start

proliferating, by blocking myeloid and lymphoid differentiation,

promoting pro-tumorigenic M2 macrophage polarization, and/or

inducing the expansion of immunosuppressive cells like Treg

lymphocytes (60, 61).

Finally, we would highlight that EVs might promote cancer cell

dormancy/awakening also indirectly, through complex regulatory

networks involving other EV-mediated processes such as

autophagy, ECM remodeling, inflammation or hypoxia stress,

that are ones of the main triggers of cancer cell quiescence (62).

For instance, dormant cancer cells can survive in hypoxic and

nutrient deficient tumor microenvironments through autophagic

processes (63), as well as they are able to reorganize fibronectin in

the ECM to maintain dormancy in breast cancer cell lines (38).
3 Diagnostic and therapeutic EV
significance to detect/regulate
cancer dormancy

EV-associated molecules, including proteins, lipids and nucleic

acids, can serve as reliable biomarkers for early-stage cancer

detection and classification (41, 42, 64). Therefore, defining EV

signatures related to tumor dormancy or early awakening might be

crucial to monitor cancer progression, including the risk of late

relapses and metastasis. In particular, the possibility of amplifying

and coupling miRNAs with high-throughput multiplexed RNA
Frontiers in Immunology 05
profiling, make miRNAs extremely interesting for theranostic

purposes. EV-associated miRNAs listed above and in Table 1

might be interesting markers to follow in circulating EVs, being

their increase in tumor and (pre-)metastatic microenvironment,

and body fluids potentially associated to cancer cell dormancy/

awakening balance. Moreover, different TDEV-miRNAs, including

miR-19a, miR-21, miR-141 and miR-375, have been found

associated to cancer relapse and metastasis, both in vitro and in

vivo, thus being potential candidate biomarkers to follow (23, 65–

67). However, the low number of dormant cells is an obvious

limitation that may affect the sensitivity of liquid biopsy. Tissue and

matrix bound vesicles could also be useful, as they may better reflect

the pathological state of the primary tumor or (pre-)metastatic

niche compared to biofluid EVs. Unfortunately, their isolation is

less immediate and more invasive, requiring tissue or matrix

isolation and dissociation by enzymatic digestion. However, the

study of Ti-EVs and MBVs could help to assess a dormant/pro-

awakening EV signature, which could then be investigated by EV

analysis via liquid biopsy.

The best therapeutic options to target dormancy and therefore

avoid tumor relapse or metastasis are still controversial. The

different approaches can be subdivided into four treatment

strategies, in some cases based on divergent principles, here

summarized: (i) induction of maintenance of cancer cells in a

quiescent state throughout the life of the patient, also defined as

the “sleeping strategy”, or at the opposite (ii) controlled reactivation

of dormant cells to overcome drug tolerance, the so called

“awakening strategy”, (iii) inhibition of dormancy, and (iv)

elimination of dormant cancer cells from patient’s body (8, 32).

The maintenance of dormancy or sleeping strategy is probably the

most logical one. The strategy involves the repression of the

proliferation signaling pathways (mediated by b1-integrin, uPAR,
ERK and Src kinases), the induction of intrinsic dormancy factors,

such as the kinases DYRK1A and p38 MAPK, or extrinsic signals

produced by the pre-metastatic dormant niche, including GAS6,

TGF-b2, BMP4 and 7 and Nuclear factor erythroid 2-related factor

2 (NRF2), which is currently being evaluated in a clinical trial for

the therapy of head and neck squamous cell carcinomas

(NCT03572387) (8). However, and not secondarily, the sleeping

strategy has the great disadvantage of requiring prolonged

treatment for the whole life of the patient.

As the opposite, both the awakening approach and the

inhibition of dormancy would involve the targeting of dormancy-

promoting factors released in the microenvironment (e.g., using

neutralizing antibodies against osteopontin) (34) or by inhibiting

specific kinases able to induce cell cycle arrest and quiescence (68,

69). The use of these molecules strongly enhances the effect of drugs

targeting the proliferative cells, and could potentially being used for

combination therapy (8). Last, but not least, the elimination of

dormant cancer cells is probably the most translational strategy and

can be achieved through administration of different substances such

as antibiotics (mithramycin), tyrosine kinase inhibitors (linsitinib),

or phosphorylation inhibitors (oligomycin) (8). The ideal therapy

should be able to efficiently target dormant cancer cells, while

sparing the patient’s quiescent normal stem cells, such as LT-

HSCs. Therefore, the identification of differentially expressed
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molecules and differentially activated pathways between quiescent

cancer and normal stem cells is fundamental for the development of

safe and efficient targeting approaches.

Finally, the strong limitation of all the approaches described is

that in case of efficiency less than 100%, the cells that escape the

treatment could show a more malignant phenotype, worsening the

patient prognosis.

EV exploitation might be extremely useful for developing new

suitable anti-cancer therapeutic approaches with increased efficacy

and efficiency (43, 70–72). First of all, EV cargo associated with

dormancy/awakening induction (Table 1) could be promising

targets to be blocked. As an example, in vivo targeting of the EV-

miR-222/223 associated to BCC dormancy was able to reverse the

quiescence process in BCCs, increasing their chemosensitivity and

increasing mouse model survival (48). Second, EVs could be

extremely useful as biological nanocarriers to deliver anti-

dormancy or anti-proliferative drugs, depending on the strategy

chosen, as well as to target specific dormancy/awakening factors

within cancer dormant cells. EVs derived from different sources are

suitable natural drug-delivery vectors, due to their high

biocompatibility and safety, ability to cross the physiological

boundaries and high immunotolerance (73–77). EVs might be

instrumental for all the types of strategies, through engineering

with the molecule to deliver, prolonging the half-life and even the

efficiency of the carried molecules, respect to the soluble ones.

Moreover, membrane functionalization and eventual biomimetic

designing (78, 79) might help in recognizing and targeting specific

cancer dormant cells through specific cell marker interactions.
4 Discussion

As shown in the Figure 1, duality strongly characterizes the

dormancy induction process: (i) cancer cells can exist both in an

active (or awakened) and a dormant state, (ii) the switching from

one state to the other is reversible, (iii) the non-tumor cells in the

primary tumor or (pre-)metastatic niche can release both pro-

dormancy and pro-awakening EVs, and (iv) cancer cells can

condition non-tumor cells of the microenvironment to release

both type of EV-associated signals.

All these features made us think of the dual character par

excellence, namely Dr. Jekill and Mr. Hyde. The transformation of

Dr. Jekill in Mr. Hyde is reversible, induced by opposing extrinsic

factors (the potion and its antidote). At this metaphoric level, EVs,

together with other extrinsic factors, such as soluble or ECM-bound

molecules, would function as potion as well as antidote to shift the

balance between dormant (Dr. Jekill) and awakening (Mr. Hyde)

cells, as highlighted in Figure 1. Just as Dr. Jekyll had a hidden

malignant nature that fully manifested itself when he became Mr.

Hyde, so dormant cancer cells retain the malignant potential to

resume proliferation, upon awakening, leading to tumor recurrence

or metastasis to distant sites. The high persistence and drug

resistance that characterizes dormancy, together with the

unpredictable intrinsic risk of awakening, leading to tumor

relapse and/or metastasis, make dormant cancer cells not

properly safe and harmless. Dormancy allows cancer cells to
Frontiers in Immunology 06
evade the highly selective drug pressure as well as the immune

response, to survive in an hostile environment and to awaken in

more favorable conditions, leading to tumor or metastasis growth

(8). Moreover, it has been intriguingly proposed that cancer

dormancy is an intelligent adaptive behavior that prolongs the life

of the host and then of the cancer itself (80). Quiescence could be

the adaptive response of cancer cells to treatment with antitumor

drugs, most of which target actively proliferating cells. For this

reason, both non tumor and tumor cells in the tumor

microenvironment and the (pre-)metastatic niche can release

factors, including EVs, able to induce or reverse cancer cell

dormancy, being both processes functional for cancer persistence

and progression. Related to this, therapeutic approaches are also

dualistic, involving the development of both sleeping and

awakening strategies to reach the same goal, that is prevent tumor

relapse and improve patient prognosis.

In this intriguing scenario, the identification of dormancy-

associated molecules and related regulatory mechanisms would be

crucial for both diagnostics and therapeutics. At the diagnostic level,

these molecules could serve as reliable biomarkers for the specific

detection of dormant cells before or at very early stages of re-

awakening, while at the therapeutic level they could represent

potential targets to be blocked in order to prevent tumor relapse.

In both cases, approaches based on EV exploitation could be

extremely useful. Since EVs are detectable in almost all body

fluids, diagnostic methods based on liquid biopsy and sequential

quantitative and qualitative analysis of EVs would be of great help

in non-invasive monitoring of disease-free cancer patients.

However, to move in this direction, current limitations in the

standardization and reproducibility of analytical methods to

identify and possibly sort EVs specifically associated with a

particular feature or released by a particular cell subset need to be

carefully addressed. From a therapeutic point of view, EVs could be

extremely useful as drug delivery vectors in a targeted approach. To

realize these strategies, more reliable and sustainable sources of EVs

(not only MSCs, but also milk, plants and microalgae) have been

identified, together with improvements in the associated techniques

for EV isolation, engineering and delivery. Significant efforts have

been made by the international EV community to standardize

procedures and methodologies and to identify commonly agreed

strategies at each level of the pipeline, from basic research to

diagnostic and therapeutic applications (81–85) In addition,

various EV-based biotechs and spin-offs have been established to

exploit EV research (86). Ongoing work is likely to improve current

knowledge of the contribution of EVs to dormancy/awakening fine-

tuning, and to stimulate novel EV-based theranostic solutions, with

the desirable goal of improving the prognosis and living conditions

of cancer patients.
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