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Macrophages represent an immune cell population characterized by high

plasticity and a range of properties and functions. Their activation status and

specific phenotype are highly associated with their localization and the

environmental cues they receive. The roles of macrophages in cancer

development are diverse. Despite their antitumor effects at early stages of the

disease, their presence in the tumor microenvironment (TME) has been linked to

tumor promotion upon disease establishment. Tumor associated macrophages

(TAMs) are key components of breast cancer TME and they have been associated

with poor clinical outcomes. High TAM densities were found to correlate with

tumor progression, increased metastatic potential and poor prognosis.

Interestingly, considerably higher levels of TAMs were found in patients with

triple negative breast cancer (TNBC)—the most aggressive type of breast cancer

—compared to other types. The present review summarizes recent findings

regarding the distinct TAM subsets in the TME and TAM involvement in breast

cancer progression and metastasis. It highlights the constant interplay between

TAMs and breast cancer cells and its major contribution to the progression of the

disease, including such aspects as, polarization of macrophages toward a tumor

promoting phenotype, induction of epithelial to mesenchymal transition (EMT) in

cancer cells and enhancement of cancer stem cell properties. Further, we

discuss the clinical relevance of these findings, focusing on how a better

delineation of TAM involvement in breast cancer metastasis will facilitate the

selection of more efficient treatment options.
KEYWORDS

breast cancer, tumor associated macrophages, surface markers, prognosis, metastasis
Abbreviations: BC, Breast Cancer; DFS, Disease Free Survival; EMT, Epithelial to Mesenchymal Transition;

ECM, Extracellular Matrix; GAL8, Galectin 8; LEC, Lymphatic Endothelial Cell; HER2, Human Epidermal

Growth Factor Receptor 2; LH, Lysyl Hydroxylases; LOX, Lysyl Oxidases; MDM, Myeloid Derived

Monocytes; OS, Overall Survival; PoEMs, Podoplanin Expressing Macrophages; PR, Progesterone

Receptor; RFS, Relapse Free Survival; TAM, Tumor Associated Macrophages; TME, Tumor

Microenvironment; TNBC, Triple Negative Breast Cancer; TNM, Tumor, Node, Metastasis (T-describes

the size of the tumor, N-describes whether malignant cells have spread to the lymph nodes and M-describes

whether malignant cells have spread to other parts of the body, away from the primary tumor site).
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1 Introduction

Breast cancer (BC) is among the most frequently diagnosed

types of cancer worldwide and the second leading cause of cancer

related mortality in women (1–3). It can be subdivided into different

types based on the expression of estrogen (ER) and progesterone

(PR) hormone receptors, HER2 expression and Ki67 (4, 5). Triple

negative breast cancer (TNBC), ER-/PR-/HER2-, accounts for 10–

20% of BC and it is characterized by high aggressiveness and poor

prognosis owing to the lack of targeted therapeutic strategies (6, 7).

A substantial amount of evidence has supported the involvement of

tumor associated macrophages (TAMs) in cancer progression and

metastasis in various types of cancer, including BC (8–10). In fact,

TAMs represent the dominant immune cell population of BC

tumor microenvironment (TME) and they have been correlated

with poor prognosis and increased metastatic potential. Distinct

TAM subsets can differentially affect disease progression, and this is

highly dictated by their specific phenotype, and their spatial and

temporal distribution (11, 12). TAM subsets in BC TME have also

been utilized as predictive tools of clinical outcomes. A thorough

characterization of the TAM signature of individual BC patients

could facilitate the design of personalized and more efficient

treatment strategies. It could also enable a more accurate

prediction of patients’ response to treatment. In this review, we

summarize subtypes of TAMs commonly encountered in the TME

of BC, highlighting the heterogeneity and diversity of these cells. In

addition, we present recent findings concerning TAM involvement

in BC progression and metastasis, with particular attention to the

constant crosstalk between TAMs and cancer cells and its central

role in fueling and maintaining disease progression.
2 Distinct TAM subtypes in breast
cancer progression and prognosis

In an oversimplified manner, macrophages in the TME were

previously distinguished into the pro-inflammatory M1 type-linked

to antitumor functions and the anti-inflammatory M2 type-

endowed with tumor promoting capabilities (13). This M1/M2

distinction represents the two extremes, and macrophages of

intermediate states are also present in the TME. More recently,

the terms M1-like and M2-like macrophages were introduced to

refer to anti- and pro-tumor macrophages respectively (14, 15).

Still, there is a grey zone in this discrimination and macrophages of

the M1-like type can occasionally exert tumor-promoting

functions. A comprehensive correlation between the specific TAM

phenotype and function would provide substantial information

regarding the role of distinct TAM subsets in BC development/

progression. Importantly, TAM spatial and temporal distribution

are determining factors for their effects. TAMs located in

different breast territories were reported to go through separate

differentiation pathways and are characterized by distinct

transcriptomic profiles (16). Additionally, TAM phenotype alters

with malignancy progression, as tumor stage is one of the key

determinants of spatial diversity in tumors (16). Prevalent TAM

subsets in BC-based on surface marker expression-are presented
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next, along with their impact on disease progression and their

prognostic value.
2.1 CD68 expression

Pan-macrophage marker CD68 was used in initial studies aiming

to delineate TAM role in BC progression and prognosis. Increased

CD68+ TAM infiltration correlated with angiogenesis induction and

poor clinical outcomes (17, 18). An association between high CD68+

TAM infiltration in the TME and high TNM stage, increased tumor

size and shorter patient survival were also reported (19). Distinct

functions for TAMs located at different areas in the TME were

proposed (20). High stromal CD68+ TAM numbers were linked to

higher tumor grade, resulting from tubular architecture modulation

by TAMs, whereas high numbers of TAMs in the tumor nest were

related to angiogenesis. Mahmoud et al. assessed the density and

localization of CD68+macrophages in 1322 BC tissues (21). Increased

total macrophage numbers were associated with high tumor grade,

ER/PR negativity, HER2 positivity and basal BC, while a significant

correlation between high macrophage density and reduced BC

specific survival was observed. Intratumoral and stromal CD68+

TAM infiltration was evaluated in hormone receptor positive and

negative BC patient groups (22). High intratumoral infiltration was

linked to poor disease-free survival (DFS) in both groups and was an

independent DFS predictive factor in the hormone receptor

positive group.
2.2 CD163/CD206/CD204 expression

CD68 pan-macrophage marker cannot distinguish between

macrophages with anti-tumor effects and those with protumor

functions. Additional markers were employed to better identify

functionally distinct TAM subsets including CD163, CD206 and

CD204-scavenger receptors. Increased CD163+ macrophage

infiltration in tumor stroma positively correlated with higher tumor

grade, larger tumor size, Ki67 positivity and ER/PR negativity (23). In

the same study, CD68+ macrophages in tumor stroma positively

correlated with tumor size and were an independent factor for

reduced BC specific survival. High stromal CD68+ and CD163+

TAM infiltration was associated with BC clinicopathological

features, increased tumor recurrence and reduced overall survival

(OS) (24). Additionally, stromal CD163+ macrophages were reported

as an independent prognostic factor for relapse-free survival (RFS) and

OS. Another study demonstrated that high CD163+ TAM numbers

were related with increased proliferation and poor differentiation of

cancer cells and ER negativity (25). CD163 expression was further

linked to negative prognosis and decreased recurrence-free survival. In

the same study, conditioned media from the MDA-MB231 breast

cancer cell line induced macrophage differentiation into CD163+

TAMs in vitro via cancer cell secreted CSF-1. The prognostic value

of CD68+CD163+ TAMs was assessed in the tumor nest and stroma of

TNBC patients (26). CD163+ TAMs in both locations were

independent predictive factors for poor prognosis and were

associated with reduced OS and RFS. In a separate study, high
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CD163+ TAM infiltration was correlated with increased tumor

aggressiveness and reduced progression-free survival (27). The

group demonstrated that CD14+ blood derived monocytes were

converted into CD163+ TAMs, upon culture with supernatant from

primary dilacerated tumors. Interestingly, distal to the tumor

monocytes were refractory to M1 polarization in vitro and

presented altered transcriptional profile, suggesting a systemic

tumor effect. CD68+CD163+ TAM frequency was studied alongside

the frequency of tumor infiltrating lymphocytes (TILs) in TNBC

patients (28). High CD68+CD163+ TAM density, combined with

reduced T and B lymphocyte presence significantly correlated with

poor prognosis and reduced RFS and OS. Maisel et al., reported that

CD163+ TAMs in immediate proximity to cancer cells and the average

number of CD163+ TAMs, either adjacent to or at communicating

distance with cancer cells, were independent factors of poor clinical

outcomes in BC (29). A separate study in HER2+ BC patients revealed

a correlation of inferior clinical outcomes with high CD163+ TAM

density even when HER2-targeted therapy was administered (30).

CD163 significance in BC prognosis was highlighted in a recent meta-

analysis which used data from 32 studies and identified CD163+ TAM

density as superior predictor of clinical outcomes compared to CD68+

TAM density (31). Strack et al., reported a relative increase to the

amounts of CD206- macrophages in BC tumors compared to normal

breast tissue (32). Elevated numbers of CD206-MHCIIhigh

macrophages were correlating with poor prognosis, while CD206+

TAMs correlated with improved survival. Similarly, Bobrie et al.,

reported a positive correlation between CD206 TAM positivity and

improved RFS and OS (33). A higher density of CD204+ TAMs

compared to CD68+ or CD163+ TAMs was observed in patients with

invasive ductal carcinoma (34). High numbers of CD204+ TAMs were

associated with reduced rates of RFS, distant RFS and BC specific

survival. Another study reported CD204+ TAM accumulation in

highly aggressive breast tumors (35). CD204+ TAMs were also

prevalent in tumors with increased T lymphocyte infiltration and

PDL1 expression and were suggested to contribute to

immunotherapy resistance.
2.3 PDL1 expression

Increased numbers of CD68+/PDL1+/CD163- cells at

intratumoral sites but not in tumor stroma were associated with

favorable clinical outcomes (36). Interestingly, higher CD68+/

PDL1+/CD163- cell density was reported in TNBC and HER2+

patients compared to ER/PR+ patients. A study in TNBC reported

better prognosis in patients with high CD68+PDL1+ stromal

macrophages numbers (37). Superior predictive value for

CD68+PDL1+ macrophages as opposed to PDL1+ macrophages

was also demonstrated and was proposed as a tool to identify

patients with good or poor prognosis. Similar data were obtained by

Hong et al. in patients with stage I-III BC, suggesting a positive

prognostic role of PDL1 expression on stromal immune cells but

not on tumor cells (38). In a single-cell transcriptomic analysis,

PDL1+ TAMs were reported to be immunostimulatory,

demonstrated a preference to localize near T cells and were

associated with improved clinical outcomes (39). In another
Frontiers in Immunology 03
study, increased CD163+PDL1+ TAM density was associated with

advanced stages of BC and metastasis, while PDL1 upregulation was

proposed to occur through miRNA mediated gene regulation (40).

The abovementioned studies highlight TAM heterogeneity and

underline the necessity for surface marker combinations to

accurately identify functionally distinct TAM subsets. A highly

specific universal TAM marker for BC prognosis is yet to be

discovered. Therefore, a thorough phenotypic characterization of

TAM subsets utilizing multiple surface markers remains crucial.
3 TAMs orchestrate breast cancer
progression and metastasis

Epithelial to mesenchymal transition (EMT) causing loss in cell

polarity and cell-cell adhesion, along with destabilization of cell

junctions is a driving force of cancer cell migration and invasion.

Similarly, stemness induction of cancer cells, endowing themwith self-

renewal capacities and multi-lineage differentiation capabilities is

crucial for metastasis. Extracellular matrix (ECM) remodeling and

collagen crosslinking contribute to the metastatic potential by

facilitating BC cell migration. TAM involvement in all the above

events has been well documented. Recent findings on TAM

involvement in BC progression and metastasis are summarized below.

CXCL1, an abundant cytokine in the TME has been associated

with poor BC prognosis and increased metastasis (41, 42). TAMs

are the main source of CXCL1 in the TME and are involved in EMT

induction and tumor cell migration. Their metastatic effect was

proposed to occur through the NF-kB/SOX4 axis activation (43).

SOX4 implication in EMT induction, cancer stem cell enrichment

and poor prognosis in BC patients was also reported by Zhang et al.

(44). Induction of CXCL1-secreting M2 TAMs through cancer cell

derived visfatin (known adipokine) was reported to promote BC

progression and metastasis (45). Increased tumorsphere formation

and migration, along with elevated mesenchymal and stemness

markers were reported after breast cancer cells were co-cultured

with visfatin-treated macrophages. Breast cancer cells from the

same co-cultures caused increased pulmonary metastases and

high numbers of metastatic nodules in mice, while a CXCL1

blocking antibody reversed those effects. CXCL1 was reported to

induce visfatin secretion by cancer cells through a positive feedback

loop, thereby maintaining M2 TAM polarization (45).

CCL18 is abundantly expressed by TAMs in BC. TAMs, or

myeloid derived monocytes (MDMs) activated with IL-4, promote

breast cancer cell invasiveness, adherence to fibronectin and

migration in vitro, through CCL18 secretion (46). Treatment with

an anti-CCL18 antibody, or TAM/MDM transfection with CCL18-

siRNAs abrogated cancer cell invasive and migratory capacities. The

same group identified a membrane-associated phosphatidylinositol

transfer protein 3, PITPNM3 (or Nir1) as CCL18 receptor on

cancer cells. In mouse BC xenografts, intratumor rCCL18

injections enhanced vascular invasion of cancer cells and lung

and liver metastasis, while breast cancer cell infection with

PITPNM3-shRNA alleviated this effect. CCL18 secreting TAMs

were reported to be induced by breast cancer cell derived GM-CSF,

with lactate —abundant in the TME—acting as a concomitant
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factor (47). GM-CSF treated TAMs induced cancer cell EMT,

migration and invasiveness through NF-kB pathway activation.

Importantly, the study demonstrated that both TAM secreted

CCL18 and cancer cell secreted GM-CSF are required for the

maintenance of cancer cell mesenchymal/metastatic phenotype

and macrophage tumor-promoting polarization. Either a CCL18

neutralizing antibody, or an anti-GM-CSF antibody inhibited

metastasis in a xenograft mouse model. Annexin A2 (AnxA2)-a

member of the calcium dependent phospholipid binding proteins

was proposed as a downstream molecule of the CCL18-PITPNM3

signaling in cancer cells (48). A recent study reported the

upregulation of exosome derived miR-760 in breast cancer cells

stimulated with TAM derived CCL18. This resulted in enhanced

cancer cell proliferation and metastatic potential through activation

of the ARF6-mediated Src/PI3K/Akt pathway, where ARF6 is a

direct miR760 target (49).

IL-1b is a crucial pro-inflammatory cytokine whose aberrant

levels were associated with a highly progressive and metastatic

potential and poor prognosis in BC patients (50–53). Breast cancer

cell lines genetically modified to overexpress IL-1b presented

increased EMT and metastasis. In contrast, IL-1b signaling

inhibition decreased metastases in a humanized mouse model of

BC bone metastasis (51). A recent study suggested a role for IL-1b
secreting TAMs in tumor progression and metastasis in TNBC (54).

Based on the study, membrane derived soluble CD44 secreted by

breast cancer cells triggered IL1-b expression in TAMs promoting

cancer cell EMT and metastasis. In mouse models, macrophage

ablation or CD44 neutralizing antibody injection, reduced IL-1b
serum levels and decreased lung metastasis incidence. CD44

expression on cancer cells was shown to be up-regulated through

rhIL-1b treatment, suggesting a positive feedback loop to maintain

IL-1b levels. Tsai et al., described the involvement of IL-1b secreting
M1 TAMs in BC cell migration and invasiveness (55). BC cell

derived GLUT3 triggers lactate-mediated CXCL8 secretion by

cancer cells leading to TAM M1 polarization and expression of

IL-1b, TNF-a and IL-6. M1 TAMs induced EMT and BC cell

migration and invasion through the produced inflammatory

cytokines. A paracrine loop between cancer cells and TAMs,

whereby TAM derived IL-6 activates STAT3/GLUT3 pathway in

cancer cells to preserve high CXCL8 levels was suggested.

A CCL2 paracrine feedback loop between macrophages and

cancer cells promotes BC growth and metastasis (56). CCL2

released by cancer cells was shown to increase macrophage

migratory capacity and induce M2 polarization in vitro. M2 TAM

derived CCL2 promoted in turn breast cancer cell stem cell

properties. CCL2 expression both in cancer cells and TAMs was

shown to be regulated through direct binding of b-catenin to the

CCL2 gene promoter. Breast cancer cells overexpressing b-catenin
demonstrated high lung metastatic potential and generated larger

tumors in vivo. Breast cancer growth and breast cancer cell stemness

were suppressed through the synergistic effect of CCR2 and b-catenin
inhibition. A positive correlation was observed in the expression of b-
catenin, CCL2 and CD163 in tissue microarrays from BC patients.

Consistent with the above data, CD163+ CD206+ M2 polarized

macrophages were reported to confer stem cell properties and

enable EMT of TNBC cell lines through secretion of CCL2 (57).
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Culture of breast cancer cells in M2 TAM conditioned media

enhanced their invasiveness and migratory ability, induced their

mesenchymal phenotype and enriched the cancer stem cell

population (CD44+CD24low/- and ALDH+). The study proposed a

novel mechanism through which TAM secreted CCL2 activates the

PI3K/Akt pathway in cancer cells upon binding to its CCR2 receptor.

Subsequent elevated expression and nuclear localization of b-catenin
promotes EMT and stemness. Both a b-catenin inhibitor and a CCR2
antagonist were reported to reverse these effects. Interestingly, TAM

derived CCL2 has been suggested to induce invasiveness in non-

neoplastic epithelial cells (58). In the study, TAM co-culture with

non-neoplastic MCF10A breast epithelial cells induced EMT,

invasiveness and elevated MMP9 expression in the epithelial cells,

through TAM-secreted CCL2. In another study, MMP11-

overexpressing TAMs promoted HER2+ cell migration, induced

monocyte recruitment and enhanced angiogenesis (59). These

effects were mediated through CCL2 secretion by TAMs. Cancer

cell migration resulted fromMMP9 expression upon activation of the

CCL2-CCR2/MAPK axis. Of note, MMP11 expression by TAMs can

reportedly be stimulated by MMP11-overexpressing cancer cells.

Podoplanin (mucin-type sialoglycoprotein) expressing

macrophages (PoEMs) were identified as a metastasis promoting

TAM subset in mammary tumors (60). Podoplanin in TAMs was

suggested to engage Galectin 8 (GAL8) on lymphatic endothelial cells

(LEC), promoting b1-integrin activation and macrophage migration

and adhesion to LECs. Upon adhesion, PoEMs were shown to induce

lymphangiogenesis. They also enable transendothelial cancer cell

migration and are involved in extracellular matrix remodeling

through local collagen and MMP production. The same study

demonstrated that either the use of anti-b1-integrin blockade or

GAL8 inhibition reduced lymphatic cancer spread in mice.

Collagen crosslinking is causative of stromal stiffness and is

mediated by two enzyme families, lysyl oxidases (LOX) and lysyl

hydroxylases (LH or PLOD). TAM involvement in the induction of

stromal stiffness and subsequent metastasis was suggested (61).

TAMs in BC TME were proposed to be a source of collagen-

crosslinking enzymes leading to extracellular matrix remodeling

and stromal stiffness. TAM depletion before tumor invasion could

reduce lung metastases in mice, while anti-CSF1 treatment

(inhibiting TAM recruitment) decreased stromal LOX and PLOD

secretion and reduced the collagen content and number of collagen

crosslinks. Stromal PLOD2 expression correlated with poor

prognosis in cancer patients.
4 Discussion

TAMs are abundant in the TME in BC and their role in

promoting disease progression has been well documented. They

are involved in multiple aspects of tumor progression and

metastasis including cancer cell EMT, stemness induction and

extracellular matrix remodeling (Figure 1). Importantly, a

continuous crosstalk between cancer cells and TAMs is in place

to establish and preserve TAM tumor promoting functions and

perpetuate cancer cell malignant properties. Given the TAM

contribution in BC progression, TAM targeting either as
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monotherapy, or combined with other therapeutic modalities

(chemotherapy/radiotherapy/immunotherapy) poses as a very

attractive approach. TAM depletion or blockade of their

recruitment to the tumor site, TAM re-education to the

tumoricidal M1-like type and enhancement of TAM phagocytotic

potential are among the main strategies currently explored (62, 63).

Although very promising, these approaches are yet to show their

high potential in the clinical setting. This could be at least in part

attributed to the considerable heterogeneity of this cell population

and the lack of specific and reliable markers to selectively target the

desired subsets. Targeting TAMs as a general cell population would

entail targeting subsets with anti-tumor effects alongside the tumor-

promoting ones. More comprehensive analyses of the different

TAM subsets, including analyses at the single-cell level should be

considered to enable the identification of highly specific markers to

discriminate between functionally different TAM subsets.

Additionally, TAM spatial distribution should be accounted for

when TAM targeting strategies are designed. TAM functional

properties are highly influenced by their specific localization and

targeting TAMs at certain sites might offer greater benefit as a

treatment approach. It is also worth noting that although TAMs

represent primary drivers and facilitators of metastasis, other cells

in the TME including cancer associated fibroblasts are also

contributing to these processes (64). Therefore, a sole focus on

TAMs might not be sufficient to inhibit metastasis and disease

progression since other cells could mediate a compensatory effect.
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Finally, better elucidation of the mechanisms used by TAMs to

facilitate disease progression/metastasis along with thorough

characterization of the tumor molecular landscape (i.e. expression

of high levels of CD44/visfatin/miR760) could provide alternative

targeted therapies for individual patients.
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FIGURE 1

TAMs in breast cancer progression and metastasis. TAMs are involved in multiple mechanisms leading to tumor progression and metastasis. Such
tumor promoting mechanisms include epithelial to mesenchymal transition, extracellular matrix remodeling, cancer stem cell enrichment and
angiogenesis. Cytokines, enzymes and other factors derived from TAMs are key mediators of these processes. Figure created with BioRender.com.
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