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Invariant natural killer T (iNKT) cells are a subset of lipid-reactive, unconventional

T cells that have anti-tumor properties that make them a promising target for

cancer immunotherapy. Recent studies have deciphered the developmental

pathway of human MAIT and Vg9Vd2 gd-T cells as well as murine iNKT cells,

yet our understanding of human NKT cell development is limited. Here, we

provide an update in our understanding of how NKT cells develop in the human

body and how knowledge regarding their development could enhance human

treatments by targeting these cells.
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Introduction

T cells are highly specialized lymphocytes that undergo a complex maturation and

differentiation program that gives rise to distinct T-cell lineages with unique effector

functions. Conventional T cells that recognize peptide antigens presented by the major

histocompatibility complex (MHC) undergo well-characterized processes of antigen

receptor rearrangement followed by positive and negative selection in the thymus. They

typically exit the thymus as naive progenitors that can be primed upon primary antigen

encounter in the secondary lymphoid organs, which confer functional maturity and effector

subset differentiation.

The thymus also supports the development of several populations of unconventional T

cells that appear to undergo a decidedly distinct maturation process. Unconventional T

cells typically recognize non-peptide antigens presented by distinct antigen-presenting

molecules. CD1d molecules present lipid antigens to natural killer T (NKT) cells, MR1

presents microbial riboflavin derivatives to mucosal-associated invariant T (MAIT) cells,
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and human gamma delta (gd) T cells are potently activated by a

wide range of ligands, e.g., Vd2+ T cells react to phosphoantigen-

bound butyrophilin molecules. NKT cells are defined by their

reactivity to CD1d-restricted lipid antigens, and humans contain

two main subsets of NKT cells, called type 1 or invariant NKT

(iNKT) cells and type 2, or diverse NKT cells (1).

Human iNKT cells express a semi-invariant alpha beta T-cell

receptor (ab-TCR) composed of a Va24Ja18 alpha chain paired to

Vb11 that recognizes the prototypic ligand alpha-galactosylceramide

(aGalCer) presented by CD1d. Diverse NKT cells express diverse

TCRs that can also recognize lipid antigens presented by CD1d, but do

not recognize aGalCer (1). aGalCer loaded CD1d tetramers and

monoclonal antibodies specific to human TCR chains of iNKT cells
Frontiers in Immunology 02
are widely used tools to stringently identify iNKT cells in health and

disease settings (2–6). Diverse NKT cells are considered to be slightly

more abundant in humans, but the lack of specific reagents to identify

them has hindered their detailed analysis (1). Hence, this review will

focus on human iNKT cells and how our knowledge of their

development could enhance human immunotherapies that target

these cells.
Human iNKT cells

Human iNKT cells display great variability in responding to

activation stimuli (7, 8). Remarkably, they exhibit dual functionality
FIGURE 1

Human and mouse iNKT subsets. Subsets of iNKT cells in humans (left) and mice (right). Key surface markers, cytokines and transcription factors that
define the subsets are shown.
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via differential secretion of pro- and anti-inflammatory cytokines,

and they can also display direct cytotoxicity via the release of lytic

granules or via death receptor ligation (9–15). They play important

roles in regulating immune responses associated with tumor

surveillance, infectious diseases, autoimmunity, and graft versus

host disease (GvHD), and are increasingly seen as attractive

therapeutic targets to prevent human diseases (16, 17).

In contrast to mouse iNKT cells that represent ~1% of blood

and up to 45% of T cells in the liver, human iNKT cells are much

rarer. They account for approximately 0.1% of T cells in peripheral

blood [reviewed in (1)], and their numbers are only slightly higher

in organs such as the liver and spleen, with the exception of the

omentum and adipose tissue where they constitute ~10% and 1% of

T cells, respectively (1, 18, 19). iNKT cells can be activated in a

TCR-dependent manner by recognition of lipid antigens presented

by CD1d or in a TCR-independent manner by cytokines such as IL-

12 and IL-18 (8). Both pathways are important for their

dual functionality.
NKT cell heterogeneity in humans
and mice

In humans, iNKT cells can be broadly grouped into three main

subsets defined by differential expression of CD4 and CD8

(Figure 1). Whereas mice only have CD4+ and CD4−CD8−

double-negative (DN) iNKT subsets, humans contain an

additional subset of CD8+ iNKT cells (20–22). Generally, human

CD4+ iNKT cells differ functionally from their CD4− counterparts.

CD4+ iNKT cells exhibit a T helper, TH0 cytokine signature and

can simultaneously secrete IFNg and IL-4, whereas CD4− iNKT

cells lack IL-4 secretion, exhibit an IFNg-positive TH1 cytokine

profile, express several NK receptors, and can also mediate direct

cytotoxicity (Figure 1) (23, 24). Minor differences exist between

human DN and CD8 iNKT cells in their TH1 cytokine secretion and

cytotoxicity (10, 13, 24, 25). Other variations of human iNKT cells

have been described, marked by the expression of CD161 or CD62L,

although their significance is not well defined (23). Single-cell RNA

sequencing of unstimulated and stimulated human iNKT cells

revealed additional clusters of functionally diverse iNKT cells,

while also corroborating well-established functional differences

between CD4+ and CD4− subsets (26).

Effector subsets in mice are not grouped according to the

expression of CD4 but are rather defined by the expression of

transcription factors and their ability to secrete cytokines. After

thymic development in the mouse, functional iNKT subsets

diversify into three separate lineages termed iNKT1, iNKT2, and

iNKT17, analogous to conventional TH1, TH2 and TH17 subsets

(Figure 1). NKT1 cells are low in PLZF and high in Tbet and secrete

IFNg, NKT2 cells express high levels of PLZF and GATA3 and

secrete IL-4, whereas NKT17 cells have high expression levels of

RORgt coupled with intermediate PLZF expression and secrete IL-

17 (Figure 1) (27–29). It is unclear if human equivalents of these

subsets exist, as human iNKT cells appear to be polarized towards a

TH1 or mixed TH0 functionality while their ability to produce IL-17
Frontiers in Immunology 03
ex vivo is more controversial (30–33). Furthermore, even though

human iNKT cells express PLZF and the protein levels of Tbet and

EOMES vary between the CD4+ and CD4− subset, the classification

of human iNKT cells based on the expression of key transcription

factors has not been investigated in detail (34–36).

Besides the well-defined murine NKT1, NKT2, and NKT17 and

the human CD4+ and CD4− subsets, there are reports of additional

iNKT subsets. Immunoregulatory iNKT cells capable of secreting

IL-10 were described in mice and in human PBMCs (37). In mice,

this subset is termed NKT10 cells, and these cells are enriched in

adipose tissue (Figure 1) (38). They are characterized by the absence

of PLZF and by the expression of the transcription factor E4BP4

(38). An additional immunoregulatory, suppressive iNKT subset is

induced in mice and humans upon stimulation in the presence of

TGF-b or rapamycin resulting in the expression of FOXP3 (39, 40).

In mice, the emergence of follicular helper NKT (NKTfh) cells was

demonstrated following aGalCer administration (Figure 1). This

subset closely resembled conventional Tfh cells as it was dependent

on the expression of BCL-6, expressed PD-1 and CXCR5, and was

able to induce germinal centers via IL-21 signaling (41). An

analogous human subset of PD-1 and CXCR5 co-expressing

iNKT cells was discovered in human tonsils (41).
Development of mouse iNKT cells

We have previously reviewed the development of mouse iNKT

cells, including a detailed description of key signaling molecules,

transcription factors, and microRNAs that regulate this process

(27). Early studies by us and others suggested that mouse iNKT cells

develop in a linear manner, via a 4-stage maturation pathway

characterized by the differential expression of CD24, CD44, and

NK1.1, with fully mature cells expressing NK1.1 (27, 42, 43).

However, subsequent studies revealed that mature subsets of

iNKT2 and iNKT17 cells were present within mouse thymus that

lacked the expression of NK1.1 (29, 44). Thus, these later studies

indicated that thymic iNKT cells developed via lineage

diversification, from a common CD24hi, CD44lo, NK1.1− iNKT0

progenitor into distinct mature iNKT1, iNKT2, and iNKT17

subsets. More recently, single-cell sequencing analysis suggested

that mouse iNKT2 cells represent a branching point for the

generation of iNKT1 and iNKT17 cells, and that iNKT1 cells

upregulate NK1.1 upon final maturation (45).

PLZF is described to be the master regulator of unconventional T-

cell development, and PLZF is absolutely required for development of

functionally mature subsets of mouse iNKT cells and MAIT cells (27,

35, 36, 46, 47). The expression of PLZF in mouse iNKT cells is

regulated by the transcription factors Egr2 and Runx1 (48, 49). PLZF

expression is first detected in mouse NKT0 progenitors and high levels

of PLZF are maintained by iNKT2 cells, whereas PLZF is

downregulated in mature subsets of mouse iNKT1 and iNKT17 cells

(27, 29, 35). Notably, forced suppression of PLZF results in higher

frequencies of mouse iNKT1 cells, and the microRNA, Let7, is required

for the downregulation of PLZF in mouse iNKT1 cells (47, 50). Thus,

PLZF expression is essential for mouse iNKT cell development.
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Development of human iNKT cells

While the developmental pathway of mouse iNKT cells has

been well studied (reviewed in (27, 51)), the exploration of human

iNKT cell development has proven challenging. The earliest human

iNKT cell progenitors emerge in the fetal thymus at 13 weeks of

gestation and start to colonize peripheral tissues, especially the gut,

but also the spleen and mesenteric lymph nodes in the second

trimester (52, 53). In humans, the frequency of fetal thymic iNKT

cells negatively correlates with gestational age and early studies

failed to detect clear populations of iNKT cells in the postnatal

thymus (52, 54). This observation implied that a significant portion

of iNKT cell thymic development occurs during early fetal life and

led to the initial hypothesis that the postnatal pool of iNKT cells is

reconstituted by peripheral expansion of fetal-derived iNKT cells

(52, 54). However, subsequent studies identified iNKT cells from

human postnatal thymus, conclusively demonstrating that iNKT

cells could be generated after fetal development (55, 56). The

discrepancy between these studies may be partially attributed to

the development of stringent detection reagents that facilitate the

detection of these rare thymic progenitor cells (55, 56).

The timing of thymic iNKT cell development in humans and

mice is different. While clear evidence of fetal thymic iNKT cells exists

for humans, thymic development of iNKT cells in mice appears to be

limited to the postnatal thymus (57). Specifically, iNKT cells fail to

develop in neonatally thymectimized mice, revealing that the

postnatal thymus is essential for mouse iNKT cell development

(57). iNKT cells arise from the same lymphoid progenitors as

conventional ab-T cells but diverge at the CD4+CD8+ double-

positive (DP) stage (58–60). In mice, selection of iNKT cells

depends on CD1d expressed by DP thymocytes (61), and the

presence of similar immature iNKT progenitors in both human and
Frontiers in Immunology 04
mouse thymus suggests that human iNKT cells are selected in a

similar manner. Human studies investigating thymic maturation

based on phenotypic heterogeneity demonstrate a dominance of

CD4+ iNKT cells in the neonatal thymus, with CD4− iNKT cells

accumulating in the blood with age (52, 55, 56, 62). Specifically, DN

and CD8 iNKT cells do not emerge in peripheral blood until 6

months of age, although their levels in the thymus remain low even in

older individuals (55). The scarcity of CD4− iNKT cells among

thymic progenitors raises the question of the ontogenic origin of

these cells (Figure 2) (55, 56). While the possibility exists that CD4−

iNKT cells develop at a distinct extrathymic site, the lower T-cell

receptor excision circle (TREC) content in these peripheral cells

suggests that small numbers of CD4− iNKT cells exported from the

thymus may increase in frequency following peripheral expansion,

while CD4+ iNKT cells are maintained by thymic output (56).

However, other studies could not find evidence of active

proliferation in any peripheral iNKT cell subset outside of the

thymus (55). A recent study analyzed iNKT TCR beta clonotypes

in longitudinal matched samples and found hints of a linear

relationship in which CD4+ cells give rise to CD4− subsets in the

periphery but not vice versa (Figure 2) (11). The clear distinction in

CD4 expression between thymic and peripheral iNKT cells is unique

to humans, because even though the majority of mouse thymic iNKT

cells are CD4+, there is a significant proportion of CD4− cells that

emerge during development (63, 64).

Like mouse NKT1 cells, the human marker for mouse NK1.1

(CD161) is upregulated on fully mature human NKT cells.

Although some CD161+ iNKT cells are already present in the

thymus, the majority of human thymic iNKT cells appear to be

CD161 negative, and CD161 expression accumulates with age in the

periphery (52, 55, 56). Importantly, the increase in CD161+ iNKT

cells was restricted to the blood (55). These data indicate that the

developmental pathway of iNKT cells in humans is characterized by

the upregulation of CD161 (21, 55). In accordance with this, a

recent study used single-cell RNA sequencing to reveal the

transcriptome of human thymic iNKT cells (65). Although the

authors use of cryopreserved thymocytes might skew the ratio of

developmental stages due to the preferential death of DP

thymocytes, a profound upregulation of CD161 transcripts was

identified in the clusters that comprised iNKT cells of later

developmental stages (65, 66). Furthermore, a developmental

trajectory was proposed that resembled murine iNKT cell

development in which human immature “NKT2-like” cells

develop into fully matured cells with a NKT1 signature (65).

Development of iNKT cell progenitors appears strongly

dependent on IL-7 signaling since thymic and neonatal but also

adult peripheral CD4+ iNKT cells express high levels of CD127 and

are hyperresponsive to IL-7 (52, 62). CD4− iNKT cells from adult

blood on the other hand express higher levels of CD122 and depend

on IL-15 signaling (56).

Although the activated memory phenotype that is characteristic

of human iNKT cells is imprinted during thymic development and

already present in neonatal blood (67, 68), thymic iNKT cell

progenitors do not seem to be functionally mature. This was

indicated by the absence or comparatively weak cytokine response

when stimulated ex vivo, especially when TCR ligation was used
FIGURE 2

Human thymic iNKT cell development. Proposed pathway of human
thymic iNKT cell development.
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instead of PMA and ionomycin (23, 56, 62, 67). The observation

that human iNKT cells are subject to substantial peripheral

maturation was previously underpinned by a study recently

published as a preprint that discovered shared transcriptional

states between thymic naïve conventional T cells and iNKT cells

using single-cell RNA-sequencing (69). Notably, the paper found no

clusters of human iNKT cells that directly corresponded to mouse

iNKT1, iNKT2, and iNKT17 subsets, suggesting that human iNKT

cells may not fully differentiate into these distinct lineages, but

rather acquire a mixed iNKT1/NKT17 effector program in the

thymus (69). Similarly, data from Legoux, Lantz, and colleagues

also support the idea of human iNKT cells acquiring a mixed Th1/

17 effector program akin to the development of MAIT cells (70).

Interestingly, only a small subset of thymic iNKT cells exhibited an

effector signature, and this signature closely resembled that of iNKT

cells in the peripheral blood of adult donors, whereas most thymic

iNKT cells appeared to reside in a naïve state (69). It was suggested

that the naïve phenotype of human thymic iNKT cells results from

positive selection on thymic epithelial cells (TECs) instead of DP

thymocytes, since TECs do not provide SLAM signaling, which is

critical for the induction of the effector program in iNKT cells (69).

Overall, the cumulative data suggest that iNKT cells in the

human thymus are CD4+ and CD161−. Thereby, the expression of

CD161 is considered a major control point in the maturation of

iNKT cells (21), which mostly occurs extrathymically and increases

with age and reaches the highest levels in adult PBMCs. CD4−

iNKT cell subsets (DN and CD8+) emerge later and almost

exclusively in the periphery. The origin of these cells is still

unclear but CD4− cells likely arise from CD4+ cells (Figure 2) (11).
Transcriptional regulation of human
iNKT development

PLZF is highly expressed in human peripheral iNKT cells (35, 36),

although protein expression has not been examined for human iNKT

cells from the thymus. A recent paper used single-cell RNA-

sequencing to indicate that PLZF is expressed by mature subsets of

human thymic iNKT cells, although gene expression appeared low

(70). Interestingly, a patient with a biallelic mutation of PLZF revealed

a failure to develop DN and CD161+ iNKT cells, consistent with

perturbed thymic NKT cell development (71). These data correspond

well with mouse studies (27, 35, 36, 46, 47) and strongly hint towards

an equally important role of PLZF in the development of human

iNKT cells (Figure 2) (71). It is not known if the dynamics of PLZF

expression in humans is similar to the mouse and whether it is

differentially expressed during the emergence of distinct functional

subsets. Characterizing the expression of PLZF during human iNKT

cell thymic development will help to definitively establish a role for

PLZF in human iNKT cell development and its impact on

lineage commitment.

We know from mouse studies that iNKT cell development is a

tightly regulated process that relies crucially on signaling via the

SLAM–SAP–Fyn axis, reviewed in (27). Consistent with this, the lack

of SAP in patients with X-linked lymphoproliferative syndrome

(XLP) correlates with an absence of iNKT cells (72, 73). Multiple
Frontiers in Immunology 05
other factors exist that are affected in those with primary

immunodeficiencies and are associated with defects in iNKT and

CD1-restricted T cells, reviewed in (74). Two factors that appear

essential for human iNKT development are the Wiskott–Aldrich

syndrome protein (WASp) and X-linked inhibitor-of-apoptosis

(XIAP). WASp is mutated in Wiskott–Aldrich syndrome patients

who exhibit an almost-complete absence of circulating iNKT cells

(75). Mutations in XIAP can also cause XLP, and XIAP-deficient

patients had low levels of iNKT cell levels, comparable to those seen

in SAP-deficient XLP donors (76). The underlyingmechanism from a

developmental point of view is unexplored, but data from peripheral

blood suggest that XIAP counteracts a proneness to increased

apoptosis in iNKT cells mediated by PLZF, which may explain the

abrogated iNKT cell development in XLP patients with a XIAP

deficiency (77).

Overlap between NKT cell
development and other human
unconventional T-cell pathways

We have recently characterized the thymic development of

human MAIT cells and Vg9Vd2+ gd T cells (27, 46, 78–80). Both

pathways describe a linear three-stage thymic pathway that involves

the upregulation of CD161. The earliest stage for human thymic

MAIT cells is CD27−CD161− stage 1 cells that upregulate CD27 to

become stage 2 CD27+CD161− cells before finally upregulating

CD161 to become stage 3 CD27+CD161+ cells (46, 78, 80). For

human thymic Vg9Vd2+ gd T cells, stage 1 cells are CD4+CD161−

that transition to become CD4−CD161− stage 2 cells and then to

CD4−CD161+ stage 3 cells (79). Importantly, the thymic

development of both MAIT cells and Vg9Vd2+ gd T cells involves

the upregulation of PLZF as cells mature from stage 1 to stage 3.

Furthermore, both pathways involve major changes in the

expression of transcription factors, surface molecules,

chemokines, chemokine receptors, and cytotoxic killing granules

as cells mature from stage 1 to stage 3. For example, CD1A, CD4,

CCR9, LEF1, TCF7, BACH2, BCL11B, and SOX4 are expressed by

stage 1 MAIT and Vg9Vd2+ gd T cells and are downregulated as

these cells mature to their stage 3 counterparts (78, 79). These

studies highlight clear overlap between the thymic development

pathway for human MAIT cells and Vg9Vd2+ gd T cells (78, 79);

thus, it will be important to establish if these characteristics of

development among these unconventional T-cell subsets extends to

the development of human iNKT cells.

Despite the strong overlap in the development of human MAIT

cells and Vg9Vd2+ gd T cells, particularly at early stages, some

important differences were observed in the degree of maturation of

stage 3 subsets from each population. For example, stage 3 thymic

MAIT cells produced very little cytokines compared to mature

MAIT cells from the blood, suggesting that significant extrathymic

development is required for human MAIT cells, and this was

supported by RNA-sequencing data (46, 78, 80). In contrast, stage

3 Vg9Vd2+ gd T cells from human thymus produced levels of IFNg
and TNFa upon stimulation similar to their matched blood

counterparts (79). Furthermore, transcriptomic analysis revealed
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very few differences in the genes expressed by CD4−CD161+ stage 3

cells from the thymus and matched blood, suggesting only minor

extrathymic development for human Vg9Vd2+ gd T cells (79). As

discussed above, very few thymic human iNKT cells express CD161

and acquisition of CD161 occurs predominantly in periphery

(52, 55, 56). These data indicate that human MAIT cells and

iNKT cells require additional development steps in the periphery

that are yet to be fully defined.

Transcriptomic analysis is a powerful approach to dissect the

complexities of human unconventional T-cell development

(65, 69, 70, 78, 79), although validation of proposed pathways

using phenotypic analysis, functional assays, and precursor-

product experiments is crucially required for investigating the

development of iNKT cells.
Challenges to deciphering a human
thymic iNKT developmental pathway

Even though iNKT cells can be detected in the human thymus

and there are similarities between mouse and human thymic iNKT

development, our knowledge of the developmental pathway in

humans is incomplete. A major challenge in defining the pathway

for human iNKT cell development is their relative scarcity within

thymus tissue. Their frequency in the human thymus is far lower

than in mice and approximately 100 times lower than in matched

human peripheral blood, which hinders detailed analysis (23). As

demonstrated by Berzins et al., detection of an extremely rare cell

population in the human thymus requires refined flow cytometry

protocols and stringent gating to reliably detect them above

background levels (55). The technological advance in high-

dimensional full spectrum flow cytometry has significantly

expanded and now allows for a more comprehensive phenotyping

of rare cell populations (81–84). Furthermore, the use of MACS

enrichment of MAIT cells and Vg9Vd2+ gd T cells was critical to

our efforts to define the development pathways for these cells from

human thymus (46, 78, 79). The integration of MACS technology in

combination with advances in flow cytometry and transcriptomics

approaches like RNA-seq will likely provide significant new insights

into the development of human thymic iNKT cells (85).
How human immunotherapies could
benefit from understanding a defined
developmental pathway for NKT cells

Since their discovery more than 30 years ago, an ever-growing

body of evidence has emerged that human iNKT cells represent a

promising therapeutic target for autoimmune disorders, GvHD,

and cancer immunotherapy, and as vaccine adjuvants for infectious

diseases (86–90). This is based on their potential for off-the-shelf

use in immunotherapies (17), and their rapid, multifunctional

effector responses. Importantly, iNKT cells express an invariant

TCR shared by all individuals that confers common lipid antigen
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specificity, and moreover, CD1d is monomorphic, which abolishes

any concerns caused by highly polymorphic MHC molecules.

Hence, a detailed knowledge about iNKT subsets, their function,

and especially how these subsets develop will be important to

successfully utilize them for distinct therapeutic approaches (91).

For example, understanding what genes are switched on and off

during the development of cytokine and cytotoxic granule

producing iNKT cells could be exploited to develop NKT cell-

based therapies with a desired functional output.

Out of several therapeutic options for iNKT cells, iNKT-based

tumor immunotherapies are an especially promising field for

future therapeutic applications. Reduced numbers of iNKT cells

were observed not only in autoimmunity or obesity (18, 92, 93),

but also in several human malignancies [reviewed in 94, 95].

Infiltration of IFNg-producing iNKT cells thereby positively

correlated with better survival (96), demonstrating the

importance of iNKT cells in the tumor setting. Furthermore,

iNKT cells have been shown to mediate potent anti-tumor

immunity (14, 97, 98) by a range of different mechanisms like

direct cytotoxicity (99, 100), lysis of tumor promoting immune

cell subsets (101), or creating a tumor suppressive immune

environment by stimulation of NK cells or CD8 T cells via IFNg
release and DC maturation, respectively (96, 102).

Indeed, many clinical trials have been conducted that employed

various strategies to stimulate NKT cells to boost their numbers or

induce their function with the objective of targeting different

cancers (103, 104). While iNKT cell immunotherapy was feasible

and well tolerated in most of these trials, there was only partial

success in eradicating the tumors. The reasons for this are not clear,

but the pan-targeting strategies employed in most of the trials may

be a factor. Anti-tumor activity is dependent on a strong type 1

immunity and the release of IFNg (105). Notably, iNKT cells are not

exclusively pro-inflammatory—and thus anti-tumorigenic—but

also mediate potent anti-inflammatory immune responses (9)

mediated by IL-4 that could promote tumor growth (10, 106).

These conflicting iNKT functions are believed to be regulated

through the context in which the cells are activated and on the

presence of heterogeneous subsets. These factors include the mode

of activation (i.e., cytokine- versus ligand-driven activation), the

microenvironment (i.e., the presence of cytokines or antigen-

presenting cells), and the strength of TCR signaling (8, 107).

As mentioned earlier, iNKT cell subsets elicit heterogeneous

immune responses in which anti-tumor functions appear to be

primarily mediated by the CD4-negative subset (10, 13, 14). This

suggests that trials might need to target specific subsets of iNKT cells,

although recent evidence has shown that relying solely on the

expression of CD4 to define the anti-tumor potential of iNKT

subsets is not enough. Subset differences were demonstrated in a

work by Tian et al. that showed superior anti-tumor potential of

CD62L+ CAR-iNKT cells, compared with CD62L− CAR-iNKT cells

(108). More recently, a circulating NKT cell subpopulation was

identified in humans that exhibited pronounced cytotoxic

properties that was marked by the expression of CXCR6 and

CD244 (109). Investigation of the developmental trajectory of the

murine equivalent to these cells showed that they were occupying a
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separate developmental niche in the thymus. Development of these

CXCR6+CD244+ cells was highly dependent on IL-15 in the thymus,

whereas “conventional” iNKT cells depend more on IL-15 in the

periphery (109). Efforts to generate human iNKT cells for off-the-shelf

cancer immunotherapy using human CD34+ stem cells transduced

with NKT TCR and cultured in artificial thymic organoids

successfully resulted in hematopoietic stem cell (HSC)-engineered

iNKT cells of high purity and yield (110). Most HSC-iNKT cells

exhibited a CD4+CD8+ DP phenotype after 6 weeks of culture, before

further developing into CD8+ or CD4−CD8−DN iNKT cells, but not

CD4+ iNKT cells, after 10 weeks of culture (110). Collectively, these

studies have important implications for the in vitromanipulation and

expansion of specific subsets of iNKT cells for immunotherapy,

highlighting how detailed knowledge of iNKT subset development

helps to identify subpopulations suitable for therapeutic approaches.

Concluding remarks

A crucial advance in our efforts to utilize NKT cells in

immunotherapies will be to identify functionally distinct subsets

and characterize their development pathways. This will help enable

subsets with the desired functions to be selectively targeted,

ensuring different subsets do not oppose each other’s functions

(111). Important unknowns include whether there is direct thymic

imprinting of human NKT cell subsets as there is in mice, and

determining whether the functions of human iNKT cells are

polarized in the thymus or periphery, and understanding what

drives this process (i.e., specific stimuli) (112). The frequency of

iNKT cells is another important consideration given their low

frequency in human blood and tissues. The use of transcriptomics

to study the development of unconventional T cells has greatly

increased our understanding of the molecular requirements to

produce functional subsets of T cells. Therefore, uncovering the

origin of mature human iNKT cell subsets and defining a more

detailed thymic developmental pathway may then allow the specific

targeting of iNKT cell subsets in new-generation immunotherapies

that exploit the unique characteristics of iNKT cells.
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