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Machine learning-based
diagnostic model of lymphatics-
associated genes for new
therapeutic target analysis in
intervertebral disc degeneration
Maoqiang Lin1,2†, Shaolong Li1†, Yabin Wang1,2†, Guan Zheng1,2,
Fukang Hu1,2, Qiang Zhang1,2, Pengjie Song1* and Haiyu Zhou1,2*

1Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University,
Lanzhou, Gansu, China, 2Key Laboratory of Bone and Joint Disease Research of Gansu Province,
Lanzhou, Gansu, China
Background: Low back pain resulting from intervertebral disc degeneration

(IVDD) represents a significant global social problem. There are notable

differences in the distribution of lymphatic vessels (LV) in normal and

pathological intervertebral discs. Nevertheless, the molecular mechanisms of

lymphatics-associated genes (LAGs) in the development of IVDD remain unclear.

An in-depth exploration of this area will help to reveal the biological and clinical

significance of LAGs in IVDD and may lead to the search for new therapeutic

targets for IVDD.

Methods: Data sets were obtained from the Gene Expression Omnibus (GEO)

database. Following quality control and normalization, the datasets (GSE153761,

GSE147383, and GSE124272) were merged to form the training set, with

GSE150408 serving as the validation set. LAGs from GeneCards, MSigDB, Gene

Ontology, and KEGG database. The Venn diagram was employed to identify

differentially expressed lymphatic-associated genes (DELAGs) that were

differentially expressed in the normal and IVDD groups. Subsequently, four

machine learning algorithms (SVM-RFE, Random Forest, XGB, and GLM) were

used to select the method to construct the diagnostic model. The receiver

operating characteristic (ROC) curve, nomogram, and Decision Curve Analysis

(DCA) were used to evaluate the model effect. In addition, we constructed a

potential drug regulatory network and competitive endogenous RNA (ceRNA)

network for key LAGs.

Results: A total of 15 differentially expressed LAGs were identified. By comparing

four machine learning methods, the top five genes of importance in the XGBmodel

(MET, HHIP, SPRY1, CSF1, TOX) were identified as lymphatics-associated gene

diagnostic signatures. This signature was used to predict the diagnosis of IVDD

with strong accuracy and an area under curve (AUC) value of 0.938. Furthermore, the

diagnostic model was validated in an external dataset (GSE150408), with an AUC

value of 0.772. The nomogram and DCA further prove that the diagnosis model has

good performance and predictive value. Additionally, drug regulatory networks and

ceRNA networks were constructed, revealing potential therapeutic drugs and post-

transcriptional regulatory mechanisms.
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Conclusion: We developed and validated a lymphatics-associated genes

diagnostic model by machine learning algorithms that effectively identify IVDD

patients. These five key LAGs may be potential therapeutic targets for

IVDD patients.
KEYWORDS

intervertebral disc degeneration, machine learning, diagnostic model, lymphatic-
associated gene, therapeutic target
1 Introduction

The Global Burden of Disease study has reported that low back

pain is one of the major causes of disability-adjusted life-years

(DALYs) worldwide (1). Low back pain is a multifactorial outcome,

and intervertebral disc degeneration (IVDD) is considered to be one

of the major causes of low back pain. As evidenced by statistical

analysis, discogenic low back pain constitutes approximately 26%–

42% of cases (2). At present, the pathogenic mechanisms underlying

intervertebral disc degeneration remain unclear. Identifying the

various predisposing factors and developing diagnostic markers

with etiologic specificity are the most pressing research priorities at

this stage. These biomarkers can provide effective strategies for

precise prevention and targeted treatment of IVDD.

The lymphatic system is part of the circulatory system of the

body that is primarily responsible for the discharge of extracellular

fluid containing cells, high- and low-molecular-weight proteins, and

other molecules in the tissues (3). The normality of the lymphatic

system determines the structure and reflux function of the

lymphatic vessels (4, 5). Many diseases are associated with the

function of the lymphatic system. For instance, the role of

lymphatic reflux has been demonstrated in musculoskeletal

disorders, such as osteoarthritis. Modulating lymphatic reflux has

been shown to significantly reduce the progression of inflammatory

arthritis (6, 7). Furthermore, an increasing number of studies have
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indicated that lymphatic vessels are closely linked to the

development of IVDD. It has been demonstrated that with the

progression of IVDD, lymphatic vessels comprising LYVE1

+/podoplanin+ accompany the growth of vascularized fibrous

tissue into the interior of the intervertebral disc (IVD) (8, 9). In

addition, during IVDD, a variety of proteases (e.g., matrix

metalloproteinases and aggrecan) and cytokines in the

degenerating IVD stroma show elevated expression in response to

the lack of lymphatic vessel supply, accelerating IVD prolapse (10,

11). At the same time, these factors also stimulate the proliferation

and migration of blood and lymphatic vessels into the protruding

IVD tissue in an autocrine manner (9). In addition, the lymphatic

vasculature also plays an immunomodulatory role (12), and there is

an apparent correlation between the progression of IVDD and

immune cell infiltration (13). Thus, it is evident that lymphatic

vessels play a crucial role in the IVDD process. However, the study

of its underlying pathological mechanisms is still in its early stages.

Further research into the biological significance of lymphatic-

associated genes (LAGs) in IVDD may help accelerate the

progress of molecular diagnosis and targeted therapy for

this condition.

The selection of effective features is a crucial step in the

discovery of biomarkers, which represents a fundamental task in

this field of research. Machine learning is an effective strategy to

address this problem, with its enormous resources to handle large,

complex and diverse data, and has been applied to genomics

research (14). Meanwhile, machine learning has enhanced our

capacity to extract pertinent features from copious amounts of

high-dimensional data pertaining to gene expression profiles (15),

and has been extensively employed in medical biomarker screening

(16, 17). However, there is still an unmet need for machine learning

in the field of diagnosis and treatment of IVDD. In this study, based

on the transcriptome data set and lymphatic vessel-related genes of

IVDD patients obtained from the public database, we identified

differentially expressed LAGs by bioinformatics analysis, and then

used four machine learning algorithms to screen out lymphatic

vessel gene biomarkers related to IVDD diagnosis, and used them as

model genes to construct a diagnostic model. In addition, we also

constructed the drug regulatory network and competitive

endogenous RNA (ceRNA) network of model genes. The ultimate

goal is to reveal the correlation between lymphatic vessel-related
frontiersin.org
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genes and the pathogenesis of IVDD and to provide a reference for

potential drugs and candidate targets in IVDD treatment.
2 Materials and methods

2.1 Dataset download and
data preprocessing

The original gene expression profile data is derived from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/

geo/), which is an international public repository. We identified

three training sets (GSE124272, GSE147383, and GSE153761) and

one validation set (GSE150408). GSE124272 included eight patients

with IVDD and eight normal controls, GSE147383 included four

patients with IVDD and four normal controls, and GSE153761

included three patients with cervical spondylotic myelopathy and

three healthy subjects. GSE150408 included seventeen patients with

sciatica and seventeen healthy volunteers. This data was mainly

used to confirm the analysis results.

The GSE124272, GSE147383, and GSE153761 datasets were

integrated by the “limma” and “sva” packages in R (4.4.0), and the

combined dataset was used as our training set . The

“normalizbetween-arrays” function in the “limma” package of R

language was used to normalize the expression matrix of the

training set and the validation set, and the gene probes were

annotated. A total of 302 LAGs were obtained from GeneCards

(https://www.genecards.org/), MSigDB (https://www.gsea-

msigdb.org/), Gene Ontology (https://geneontology.org/) and

KEGG (https://www.kegg.jp/kegg/).
2.2 Characterization of immune infiltrating
cells in the training set

We used twenty-two immune cells identified in previous studies

(18, 19), analyzed the immune cell content of each sample in the

training set using the “CIBERSORT” function in the “preprocessCore”

package, and then The number of immune infiltrating cells, differential

expression level, and correlation were visualized for each sample.
2.3 Identification and visualization of DEGs

DEGs within the training set were identified using the “limma”

package, with screening criteria set at |log fold change (FC)| > 0.5

and P value < 0.05. Subsequently, visualizations of volcano and heat

maps were created with the R package using ggplot2 and

pheatmap, respectively.
2.4 Identification and functional
enrichment of differentially expressed LAGs

The overlap of DEGs and LAGs within IVDD was obtained

using the “VennDiagram” package in R, defining them as
Frontiers in Immunology 03
differentially expressed lymphatics-associated genes (DELAGs).

Subsequently, the DELAGs underwent Gene Ontology (GO)

analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis, Disease Ontology (DO) analysis, and Gene Set

Enrichment Analysis (GSEA) using the “clusterProfiler” package

in R. Enrichment results with a P-value less than 0.05 were

considered statistically significant.
2.5 Screening of model genes by machine
learning algorithms

Fifteen LAGs exhibiting differential expression were analyzed

via machine learning algorithms. Four machine learning

algorithms, including Extreme Gradient Boosting (XGB), Random

Forest (RF), Support Vector Machine (SVM), and the Generalized

Linear Model (GLM), were employed for the selection of key genes

in IVDD diagnosis. We trained RF, SVM, XGB, and GLM models

using the train function from the R “caret” package, in conjunction

with the “randomForest”, “kernlab”, “xgboost”, and “stats”

packages, respectively. Meanwhile, we leveraged the built-in grid

search mechanism of the “caret” package to explore the optimal

hyperparameter combinations (Table 1) and evaluated the

performance of each combination through cross-validation.

Additionally, residual boxplots, feature importance plots, reverse

cumulative distribution of residuals, and Receiver Operating

Characteristic (ROC) curves were constructed for XGB, RF, SVM,

and GLM models to ascertain model genes.
2.6 Model construction and validation

Diagnostic model nomograms were constructed using model

genes and the “rms” package in R software, with calibration curves

employed to validate their accuracy. The efficacy of the Nomo-

clinical grading was assessed through Decision Curve Analysis

(DCA). ROC curves were plotted to evaluate the diagnostic value

of model genes in IVDD. Subsequently, an external validation

cohort (GSE150408) was introduced to assess the diagnostic

capability and robustness of the model.
TABLE 1 Hyperparameter tuning settings for each machine
learning algorithm.

Machine
learning
algorithm

Hyperparameters

RF mtry: 2, ntree: 500

SVM sigma: 0.04, c: 0.25

XGB nrounds: 100, max_depth: 2, eta: 0.4, gamma: 0,
colsample_bytree: 0.8, min_child_weight: 1,
subsample: 0.5

GLM no specific
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2.7 GSVA enrichment analysis of model
genes and its correlation with
immune cells

To unravel the potential biological functions of the model genes,

we performed Gene set variation analysis (GSVA) by using the

“clusterprofiler” package in the GO and KEGG genomes. Reference

gene sets included c2.cp.kegg.Symbols.gmt and c5.go.Symbols.gmt.

Enrichment results with a P-value less than 0.05 were deemed

statistically significant. The “GSVA” package in R was employed to

investigate the association between model genes and twenty-eight

immune cells, with visualization of the results carried out using the

“ggplot2” package.
2.8 Construction of drug regulatory
networks and ceRNA networks

Interactions between model genes and drugs were obtained

using the Drug-Gene Interaction database (DGIdb) (https://

www.dgidb.org/), and the results were visualized using Cytoscape

software. The results were analyzed using miRanda (http://

www.microrna.org/), miRDB (http://mirdb.org/), miRWalk

(http://mirwalk.umm.uni-heidelberg.de/), and TargetScan (http://

www.targetscan.org/) databases and predicted microRNAs

(miRNAs) targeting model genes using Score=1 as a screening

condition. SpongeScan database (http://spongescan.rc.ufl.edu/) was

employed for predicting lncRNA-miRNA interactions (20).
Frontiers in Immunology 04
Subsequently, Cytoscape software was utilized for the creation

and visualization of lncRNA-miRNA-mRNA regulatory networks.
2.9 Statistical analysis

All data processing, plotting, and statistical analysis are

performed in R software (4.4.0). Differences between independent

variables and non-normally distributed variables were analyzed using

the Wilcoxon test. The correlation between the two continuous

variables was determined by Spearman correlation analysis. ROC

curve analysis was performed using the “pROC” package in R

software. P < 0.05 was considered statistically significant.
3 Results

3.1 The landscape of immune infiltration
in IVDD

Based on the merged training set from the GSE124272,

GSE147383, and GSE153761 datasets, the relative proportions of

22 immune cell subsets in the normal control group and the IVDD

group were assessed using CIBERSORT technology (Figure 1A).

Subsequently, further analysis was conducted to decode the

interrelationships among these infiltrating immune cells

(Figure 1B). The results revealed strong positive correlations

between T cells follicular helper and dendritic cells activated (r =
FIGURE 1

Examination of immune cell infiltration in the normal group and IVDD group in the training set. (A) A bar chart of the proportion of 22 immune cells
in the normal group and the IVDD group; (B) The relationship between immune infiltrating cells in the training set. Red indicates a positive
relationship, blue indicates a negative relationship, with darker colors representing a stronger relationship; (C) A violin diagram of the difference in
the content of 22 immune cells between the normal group and the IVDD group. Statistically significant when p < 0.05. IVDD, intervertebral
disc degeneration.
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0.99), T cells CD4 memory resting and eosinophils (r = 0.8), and T

cells CD8 and T cells CD4 memory activated (r = 0.71). On the

contrary, there were notable negative correlations between activated

NK cells and M0 macrophages (r = -0.69), T cells gamma delta and

T cells CD8 (r = -0.62), and B cells naïve and B cells memory (r =

-0.71). As depicted in the violin plot (Figure 1C), CD8 T cell

infiltration was significantly lower (p = 0.005) and neutrophil

infiltration was significantly higher (p = 0.007) in the IVDD

group compared to the normal control group, indicating that

immune cells are involved in the progression of IVDD.
3.2 Identification of DEGs in the IVDD and
normal groups

GSE124272 comprises 16 samples, GSE147383 includes 8

samples, and GSE153761 contains 6 samples. After merging these

three datasets, the training set consists of 30 samples. Subsequently,

the expression matrix data of the 30 samples were normalized

(Figures 2A, B). A total of 517 differentially expressed genes

(DEGs), including 306 upregulated genes and 211 downregulated

genes, were identified between the normal and IVDD groups. The

volcano plot depicting the expression of DEGs is shown in
Frontiers in Immunology 05
Figure 2C, with red representing higher expression levels, green

indicating lower expression levels, and all other genes depicted in

gray. Figure 2D displays the heatmap of the top 50 genes with

increased (red) and decreased (green) expression levels based on

logFC between the normal and IVDD groups.
3.3 Identification and functional analysis
of DELAGs

Using keywords such as “lymphatic” and “lymphatic vessel,” we

retrieved 302 LAGs from GeneCards, MSigDB, Gene Ontology, and

KEGG databases. Intersection with the DEGs in the training set

identified 15 DELAGs (Figures 3A, B). To elucidate the biological

functions of these DELAGs, we employed GO, KEGG, and DO

analysis tools. GO enrichment analysis revealed that DELAGs are

mainly enriched in processes such as morphogenesis and regulation

of branching epithelium and structure, morphogenesis and

development of glands, growth factor activity, transmembrane

receptor protein tyrosine kinase activity, and exogenous protein

binding (Figure 3C; Supplementary Table S1). The DELAGs also

exhibited consistent trends with the Rap1, MAPK, Ras, and PI3K-

Akt signaling pathways (Figure 3D; Supplementary Table S2).
FIGURE 2

Identification and analysis of DEGs in the training set. (A) The bar chart of the expression matrix of 30 samples in the training set before
normalization; (B) The bar chart of the expression matrix in 30 samples in the training set after normalization; (C) Volcano plot of DEGs expression.
Red indicates genes with increased expression, grey is non-significant, and green indicates genes with decreased expression; (D) Heatmap of DEGs
expression. Red is the high expression and green is the low expression. DEGs, differentially expressed genes; IVDD, intervertebral disc degeneration.
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Further Disease Ontology analysis explored the associations of

DELAGs with various diseases, including tumors of the

musculoskeletal system and head and neck, as well as chronic

ulcers of the skin (Figure 3E; Supplementary Table S3). GSEA

analysis results revealed the enrichment of pathways such as Cell

cycle and translation initiation in samples from the normal control

group (Figure 3F), while the Notch and Ras/ERK signaling

pathways were enriched in IVDD samples (Figure 3G).
Frontiers in Immunology 06
3.4 Based on multiple machine learning
algorithms to screen key DELAGs as
model genes

We compare the four machine learning algorithms (XGB, RF,

SVM, and GLM) by calculating the residual values (Figure 4A), the

reverse residual distribution plots (Figure 4B), and the ROC curves

(Figure 4C). The residual values are the smallest for XGB and the
FIGURE 3

Identification and functional analysis of DELAGs. (A) Veen diagram shows the intersection of DEGs and LAGs; (B) Heat map of DELAGs differential
expression in normal group and IVDD group; (C) The bubble diagram of GO enrichment analysis of DELAGs, including BP, CC and MF; (D) Bubble
diagram of KEGG enrichment analysis of DELAGs; (E) Description of DO enrichment analysis results of DELAGs; (F) GSEA analysis results of DELAGs
in the normal group; (G) GSEA analysis results of DELAGs in the IVDD group. DEGs, differentially expressed genes; LAGs, lymphatics-associated
genes; DELAGs, differentially expressed lymphatics-associated genes; GO, gene ontology; BP, biological process; CC, cellular component; MF,
molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; DO, disease ontology; GSEA, gene set enrichment analysis.
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largest for GLM. The Area under Curve (AUC) values for XGB, RF,

SVM, and GLM are 1.00, 1.00, 1.00, and 0.75. At the same time, we

also calculated the accuracy, standard deviation of accuracy, Kappa

value, and standard deviation of Kappa value of the fourmodels. XGB

was 0.853, 0.219, 0.704, and 0.444; SVMwas 0.863, 0.237, 0716, 0.488;

RF was 0.807, 0.298, 0.608, 0.6; GLM was 0.57, 0.388, 0.134, 0.768. By

performing Friedman’s test and Nemenyi’s post hoc test on the

accuracy and kappa values, we found that there is no significant

difference in the performance of the three models, XGB, SVM, and

RF (p > 0.05), whereas there is a significant difference between the

GLM model and the three, and in particular, there is a significant

difference between the XGB and the SVMwith it (p < 0.01). Although

XGB, SVM, and RF are not statistically different, when combined

with specific values, the SVMmodel has the best accuracy and kappa
Frontiers in Immunology 07
value, while the XGBmodel is the most stable. In addition, we plotted

the feature importance of the four models (Figure 4D). Based on the

results of the above-combined comparison of the four models, we

identified the XGB model as the best model. Then, we identified the

top five genes in the XGB model as the key DELAGs (MET, HHIP,

SPRY1, CSF1, and TOX) and used them as the model genes to

construct a diagnostic model for predicting IVDD.

3.5 Model gene-based diagnostic model
construction and diagnostic
performance evaluation

A nomogram model was built based on five model genes to

investigate the risk of IVDD (Figure 5A). Evaluation of the
FIGURE 4

Screening of key DELAGs. (A) The box plots of residuals for the XGB, RF, SVM, and GLM models; (B) Reverse cumulative distribution of residuals in
XGB, RF, SVM, and GLM models; (C) The ROC curve evaluates the diagnostic effect of XGB, RF, SVM and GLM models; (D) Feature Importance
created for the GLM, RF, SVM, XGB model. XGB, Extreme Gradient Boosting; RF, Random Forest; SVM, Support vector machines; GLM, Generalized
linear model.
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nomogram model using calibration curves showed good

consistency between the five model genes and the ideal model

(Figure 5B), indicating the nomogram’s strong predictive value. The

DCA results showed that the decision curve of the model was

always higher than the None and ALL reference lines, indicating

that the decision-making based on the nomogram may benefit

IVDD patients, and the nomogram model has strong clinical utility

(Figure 5C). Finally, separate ROC curves and an overall ROC curve

were constructed using the five model genes in both the training

and validation sets (Figures 5D–G). The results of the ROC curve

analysis demonstrated that the constructed diagnostic model

exhibited excellent predictive performance in the training set, as

evidenced by an area under the curve (AUC) value of 0.973

(Figure 5E). Furthermore, the sensitivity, specificity, and accuracy

of the model, as well as the positive predictive value (PPV) and

negative predictive value (NPV), were all 0.933. Meanwhile, the

Positive Likelihood Ratio (PLR) was as high as 14, while the

Negative Likelihood Ratio (NLR) was 0.07. In the validation set,

the AUC value of the diagnostic model was 0.772 (Figure 5G), and

its sensitivity was 0.765, specificity 0.706, and accuracy 0.735. In

addition, the PPV was 0.722, NPV 0.75, PLR 2.6, and NLR 0.33.

Combining the above diagnostic performance metrics, the model

demonstrated good accuracy and stability in diagnosing IVDD.

Additionally, we visually represented the expression of the five

model genes in the training set using boxplots (Figures 5H–L). The

results revealed that MET, SPRY1, and TOX exhibited lower

expression in the IVDD group compared to the normal control

group, while CSF1 and HHIP showed higher expression in the

IVDD group.
3.6 GSVA analysis of model genes and its
correlation with immune cells

In the training set, GSVA of the five model genes (Figures 6A–J)

revealed the following: GO function in the MET low expression

group was mainly enriched in the binding of cell adhesion protein

involved in communication between the bundle of HIS cells and

Purkinje myocytes (Figure 6A), and the high expression group of

the KEGG pathway was mainly enriched in metabolism of

xenobiotics by cytochrome p450 pathway (Figure 6B). The GO

function of the HHIP high expression group was mainly enriched in

ISG15 protein conjugation (Figure 6C), and the KEGG pathway was

mainly enriched in glycosphingolipid biosynthesis globo series and

tryptophan metabolism (Figure 6D). The GO function in the low

CSF1 expression group was mainly enriched in the negative

regulation of endothelial cell chemotaxis (Figure 6G), and the

KEGG pathway was mainly enriched in metabolism of

xenobiotics by cytochrome p450 and Glycosaminoglycan

biosynthesis keratan sulfate, whereas the KEGG pathway in the

high-expression group was mainly enriched in Protein export and

circadian rhythms in mammals (Figure 6H). Moreover, the

correlation between the five model genes and 28 immune cells

was analyzed (Figure 6K). The analysis revealed that CSF1 was

positively correlated with natural killer cells, central memory CD8 T

cells, and CD56 bright natural killer cells while showing negative
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correlations with natural killer T cells and activated CD4 T cells.

HHIP exhibited a significant negative correlation with CD56 bright

natural killer cells. TOX had the strongest positive correlation with

T follicular helper cells, followed by immature B cells. These

findings suggest that these model genes are involved in the

immune regulation processes during IVDD progression.
3.7 Construction of drug regulatory
network and ceRNA network

Based on the five model genes, we identified potential

therapeutic drugs using the gene-drug interaction data in DGIdb

and demonstrated the interactions between the drugs and model

genes using Cytoscape (Figure 7A). Information on the source,

interaction type, and score of the target drugs is shown in

Supplementary Table S4. According to the ‘ Interaction Score ‘ in

DGIdb, a total of 52 potential drugs were identified, 50 drugs were

targeted at MET, and 2 drugs were targeted at CSF1. No potential

drugs for HHIP, SPRY1, and TOX were found. Additionally, to

uncover the potential post-transcriptional regulatory mechanisms

of the five model genes, a lncRNA-miRNA-mRNA regulatory

network was constructed. miRNAs targeting the five model genes

were predicted using miRanda, miRDB, miRWalk, and TargetScan,

selecting those with a score of 1 across all four databases.

SpongeScan was then used to predict lncRNA-miRNA

interactions, and the complete ceRNA network was constructed

using Cytoscape (Figure 7B). Within each lncRNA-miRNA-mRNA

regulatory axis, lncRNAs can enhance the expression levels of the

model genes by inhibiting the corresponding miRNAs. For instance,

LINC00173 may indirectly upregulate CSF1 expression by

suppressing miR-939-5p, thereby enhancing its role in regulating

the survival, proliferation, and differentiation of hematopoietic

progenitor cells. Overall, this ceRNA network helps to elucidate

the potential post-transcriptional regulatory mechanisms in IVDD

and provides a reference for subsequent therapeutic strategies.
4 Discussion

IVDD is a primary cause of lower back pain, with its etiology

rooted in various factors such as genetic predisposition (21),

mechanical stress (22), trauma (23), smoking (24), obesity (25),

and aging (26). The extrusion of nucleus pulposus tissue during

IVDD, which has autoantigenic properties, can trigger an immune-

inflammatory response (27, 28), compressing the nerves or spinal

cord, leading to immune cell infiltration of the intervertebral tissues

(29–31), and causing low back pain that affects the mobility of both

lower limbs (32). The lymphatic system, a crucial component of the

circulatory system, is essential for maintaining tissue fluid balance,

lipid absorption, immune surveillance, and the transport of

immune cells (33). Current research generally agrees that the

process of IVDD involves changes in the distribution of

lymphatic vessels. Specifically, during the degeneration of a

normal IVD, lymphatic vessels are accompanied by blood vessels

from the surrounding tissues into the degenerated IVD tissue. The
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proteases, inflammatory cytokines, and growth factors present in

the degenerated IVD matrix facilitate this process (9). Abnormal

lymphatic vessel formation induced by IVDD may resemble that

observed in lymphedema, obesity, and cancer, closely correlating

with the occurrence and progression of the disease (34). Modulating
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lymphatic vessel formation could potentially become a future

therapeutic target for IVDD. However, the mechanistic

association between lymphatic vessels and IVDD remains

unconfirmed, with a scarcity of relevant research. In this study, a

diagnostic signature related to lymphatic vessels was generated by
FIGURE 5

Construction and diagnostic value of the diagnostic model. (A) Model gene nomogram for the diagnosis of IVDD; (B) Calibration curve evaluation of
the nomogram model; (C) DCA curves of the nomogram prediction; (D) ROC curves evaluating the diagnostic effect of five model genes in the
training set; (E) The entire ROC curve for the five model genes in the training set; (F) ROC curves evaluating the diagnostic effect of five model
genes in the validation set; (G) The entire ROC curve for the five model genes in the validation set; (H–L) Differential expression of model genes in
the training set, MET (p = 0.0045), SPRY1 (p = 0.012) and TOX (p = 3.2 × 10-5) were lowly expressed in the IVDD group, and CSF1 (p = 0.0018) and
HHIP (p = 0.049) were highly expressed in the IVDD group, p < 0.05 was statistically significant. DCA, Decision Curve Analysis; ROC, Receiver
operating characteristic.
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integrating gene expression profiles and LAGs using machine

learning algorithms. The performance of the diagnostic model

was evaluated using both training and external validation sets. In

addition, GSVA was used to explore the potential mechanisms of

the model genes and their correlation with immune cell infiltration

and to predict potential drugs and ceRNA networks targeting the

model genes. Our results may offer potential applications for IVDD

patients, such as early diagnosis and the selection of new

therapeutic targets.

In this study, three IVDD-related datasets were initially

acquired from the GEO database and merged to form the training

set, with GSE150408 serving as the validation set. Bioinformatic

techniques were then used to examine the immune cell

characteristics within the training set, revealing significant

statistical discrepancies in CD8+ T cells and neutrophils. IVDD

samples showed a significant increase in neutrophils and a marked

decrease in CD8+ T cells compared to the control group. This is

consistent with the findings of Kaneyama et al. (35) that nucleus

pulposus (NP) tissue extruded from degenerated IVD induces an

immune response, leading to infiltration of immune cells that

disrupt the physiological barrier of IVD cells, resulting in NP cell

apoptosis. We then screened DEGs and LAGs from the training set

and four databases (GeneCards, MSigDB, Gene Ontology, KEGG),

and obtained 15 DELAGs in the training set after taking

the intersection.
Frontiers in Immunology 10
Subsequently, functional enrichment analysis was performed on

DELAGs. According to GO analysis, DELAGs were enriched in both

BP and MF. BP mainly includes branching epithelial cell and structure

morphogenesis, regulation of animal organ morphogenesis, branching

structure, and epithelial cell morphogenesis. MF mainly includes

growth factor activity, transmembrane receptor protein tyrosine

kinase activity, virus receptor activity, transmembrane receptor

protein kinase activity, exogenous protein binding, growth factor

binding, protein tyrosine kinase activity, and protein phosphatase

binding. KEGG enrichment analysis revealed that DELAGs primarily

influenced the Rap1 signaling pathway, MAPK signaling pathway, Ras

signaling pathway, and PI3K-Akt signaling pathway in the IVDD

group. The Ras signaling pathway is closely linked to inflammatory

responses (36). Both the MAPK signaling pathway (23) and PI3K-Akt

signaling pathway have been extensively linked to the occurrence and

progression of IVDD. PI3K-Akt signaling pathway is involved in IVD

cell proliferation, senescence, and apoptosis, and activation of this

pathway can delay the progression of IVDD by upregulating SOX9

expression (37). Furthermore, studies indicate that cyclic mechanical

stretching can ameliorate NP cell degeneration via the PI3K-Akt

signaling pathway (38–40). GSEA unveiled that the genes within the

IVDD group are predominantly associated with the Notch and Ras/

ERK signaling pathways. Notably, a study delineated that the activation

effects of Notch signaling exert cell type-specific influences on genes

regulating IVD matrix synthesis and degradation metabolism (41).
FIGURE 6

GSVA of model genes in the training set and their correlation with 28 immune cells. (A, B) GO and KEGG analysis in GSVA of MET; (C, D) GO and
KEGG analysis in GSVA of HHIP; (E, F) GO and KEGG analysis in GSVA of SPRY1; (G, H) GO and KEGG analysis in GSVA of CSF1; (I, J) GO and KEGG
analysis in GSVA of TOX; (K) Correlation between five model genes and 28 immune cells, red represents positive correlation, blue represents
negative correlation, the darker the color the stronger the correlation. *p<0.05, **p<0.01, ***p<0.001.
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Specifically, the activation of Notch signaling can promote the

expression of matrix degradation genes in anulus fibrosus (AF) and

ATDC5 cells and inhibit the expression of matrix anabolism genes. In

NP cells, this effect inhibited the expression of matrix degradation

genes (including MMP3, MMP13, Adamts4, and Adamts5), and

attenuated the expression of MMP13 induced by TNF-a and

macrophages. In addition, it has been demonstrated that the

expression of Notch signaling molecules and their downstream target

genes can be detected in AF and NP cells in IVD tissues (42), with a

significant increase in Notch signaling activity noted in degenerated

IVD tissue compared to healthy human IVD (43).

In comparison to conventional statistical models, machine

learning can provide better predictive performance and capture

the complex interactions among predictors and the non-linear
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relationship between predictors and outcomes (44). Based on this,

we employed four machine-learning algorithms and identified the

top 5 genes (MET, HHIP, SPRY1, CSF1, and TOX) in the XGB

model as model genes through comparative analysis. To validate the

reliability of these model genes, we constructed a diagnostic model

for predicting IVDD utilizing these five model genes. It is necessary

to note that evaluation of model performance and external

validation are imperative for the constructed model (45). The

dataset utilized for external validation should also differ from the

training set in terms of both temporality and geography, as external

validation constitutes the model’s redevelopment process on a

validation set (46, 47). Calibration and discrimination are some of

the most basic and important indicators for model performance

(48). Calibration refers to the degree of consistency between the
FIGURE 7

Drug regulatory network and ceRNA network. (A) Prediction of drug-gene interactions for model genes, orange represents model genes, purple
represents predicted drugs; (B) ceRNA network, orange circle represents model gene, green hexagon represents miRNA, and blue diamond
represents lncRNA.
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predicted risk of predictors and the observed results, which can be

evaluated by calibration curves (49). Within this study, the

calibration curve of the diagnostic model closely matches the

observed results curve, indicating that the diagnostic model we

constructed has a high predictive ability for IVDD. Concurrently, as

a calibration supplement, we introduced the DCA, a method to

determine whether the information provided by the prediction

model for decision-making in clinical practice is more beneficial

than harmful (50). In this study, the DCA of the model gene in the

training set consistently favors patients, demonstrating the model

gene’s stable diagnostic value for IVDD. Moreover, the model must

also possess the discriminatory ability to differentiate between true

positives and true negatives, typically assessed using the C-index,

which is akin to the AUC in ROC; higher values indicate a stronger

ability of the model to distinguish between true positives and true

negatives (51). The C-indexes of the model genes in the training and

validation sets were 0.973 and 0.772, respectively, and the accuracy

was 0.933 and 0.735, respectively. These findings suggest that the

diagnostic model constructed based on the model genes has a high

degree of confidence in distinguishing between the normal group

and the IVDD group. Notably, the overall efficacy of the model gene

surpasses that of the five individual model genes, which is consistent

with the multi-molecular driving properties of IVDD. Moreover,

the expression levels of these five model genes in the original data

display significant disparities between the normal and IVDD

groups, with MET, SPRY1, and TOX demonstrating lower

expression in IVDD samples compared to the normal group,

potentially acting as protective genes for IVDD, while CSF1 and

HHIP exhibit increased expression in IVDD samples, which could

be used as the risk gene of IVDD. Thymocyte Selection Associated

High Mobility Group Box (TOX) is a nuclear DNA-binding protein

that plays an important role in the development of CD4+ T cells,

NK cells, and intrinsic lymphocytes and is a key regulator of

Exhausted T cell development (52). T-cell exhaustion is a

pervasive phenomenon that serves to prevent immune

overactivation and establish immune homeostasis in response to

chronic inflammatory stimuli while limiting T-cell-mediated

immunopathology (53). In this process, TOX induces CD4+ T

cells to produce IL-10, thereby regulating inflammation (54). The

exogenous addition of IL-10 has been demonstrated to alleviate IL-

1b-induced degeneration of NP cells. Furthermore, IL-10 treatment

has been shown to significantly suppress mRNA expression of type

X collagen, as well as degradation of aggrecan and type II collagen,

through the inhibition of the p38/MAPK pathway. In addition, IL-

10 up-regulates mRNA expression of SOX9, exerting a protective

effect against IVD (55). Hedgehog interacting protein (HHIP) is a

type I transmembrane glycoprotein that plays a role in a number of

biological processes, including development and angiogenesis (56,

57). Cross-sectional studies have found that circulating HHIP levels

are significantly elevated in overweight/obese women and positively

correlate with blood glucose, insulin, and body mass index, while

HHIP levels are regulated by blood glucose and insulin levels.

Obesity is currently acknowledged as an independent risk factor

for the onset of Intervertebral Disc Disease (IVDD) and is

significantly correlated with elevated levels of IL-6 and systemic
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pro-inflammatory cascades. Therefore, increased circulating levels

of HHIP may be linked to the activation of inflammatory pathways

associated with IVDD degeneration. Intervertebral disc

degeneration (IVDD) is a multifactorial disease. Genetic

susceptibility, mechanical stress, obesity, and smoking have all

been identified as risk factors for IVDD. While there is limited

research directly examining the association between the

aforementioned model genes and IVDD, further investigation

into the pathogenesis of IVDD and a more detailed analysis of

the functions of the five model genes may gradually elucidate the

interactions between them.

To further explore the biological functions of the model gene,

we conducted Gene Set Variation Analysis (GSVA) and immune

cell correlation analysis. The results revealed that CSF1 is primarily

enriched in the biosynthesis process of glycosaminoglycans (GAG).

It has been established that GAG plays a pivotal role in the human

IVD. During IVDD, proteoglycans containing GAG are degraded

and depleted, resulting in the loss of extracellular matrix integrity

(58), and abnormal changes in GAG chain replacement during

degeneration exacerbate this process (59). Hence, to maintain

normal IVD function, high concentrations, and highly charged

proteoglycans must be sustained, enabling functional proteoglycans

to possess as many sulfated GAG chains as possible. However,

enzymes involved in GAG biosynthesis (such as XT-1 and GlcAT-I)

are downregulated with age and degeneration, resulting in

weakened proteoglycan function and abnormal elongation of

GAG chains (60, 61). Thus, we hypothesize that CSF1 mediates

pathological changes in IVD by regulating GAG biosynthesis.

Research has shown that during IVDD, immune cells, and

their inflammatory factors can infiltrate the IVD through

defects in the cartilaginous endplate and AF, accelerating

catabolism and inducing inflammatory responses (62). Therefore,

immunotherapy targeting immune cells is viewed as a novel strategy

to alleviate IVDD (63). Meanwhile, genes associated with immune

cells may also serve as biomarkers for IVDD (64). Based on this, we

analyzed the inter-association between model genes and 28 immune

cells. The findings revealed significant correlations between TOX,

CSF1, and HHIP and immune cells, mainly focusing on Natural

killer cells, CD8/CD4 T cells, and Immature B cells. It has been

reported that activated natural killer cells are involved in the

pathological process of IVDD (65). Further studies revealed that

natural killer cells mainly have cytotoxic effects on NP cells (66).

During IVDD, the protruding IVD tissue initiates an immune

response, with the adaptive immune response being primarily

manifested by the activation of T cell and B cell subsets (67).

CD4 T cell subsets are involved in the regulation of inflammatory

responses and offer potential targets for immunotherapy in IVDD

(68). Upon activation, B cells produce antibodies, which are

involved in the immune regulation and inflammatory response of

IVDD (67). However, aberrant T-cell differentiation can result in

the overexpression of inflammatory cytokines and the aberrant

expression of B cells, both of which are critically linked to IVDD

(67, 69).

Furthermore, we have identified potential therapeutic

candidates for IVDD. DGIdb employs a data-mining approach to
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identify potential therapeutic targets or priority drug development

based on specific genes (70). A total of 52 potential drugs for the

treatment of IVDD were identified based on DGIdb. The majority

of these drugs target the MET gene, followed by the CSF1 gene.

Mesenchymal to epithelial transition factor (MET), also known as

Cellular-mesenchymal to epithelial transition factor (c-Met) or

Hepatocyte growth factor receptor (HGFR), is a member of the

Protein tyrosine kinases family (71). c-MET is a specific receptor for

hepatocyte growth factor (HGF). It has been reported that c-MET is

expressed in NP cells, and activation of signaling by HGF binding to

c-MET promotes cell proliferation and exerts anti-inflammatory

effects (72). During IVDD, inflammatory stimuli enhance c-MET

expression, while HGF treatment leads to decreased c-MET

expression. Meanwhile, HGF treatment enhances hypoxia-

inducible factor-1a (HIF-1a) expression to promote NP cell

proliferation (73). In addition, activation of HGF/c-MET

signaling inhibits the elevation of cyclooxygenase-2, MMP-3, and

MMP-9 in NP cells after TNF-a stimulation (72). It has been

demonstrated that apoptosis and ECM degradation play key roles in

the progression of IVDD (74, 75). Thus, it is evident that HGF

targeting c-MET has a protective effect on NP cells and can delay

the process of IVDD by promoting cell proliferation and inhibiting

the degradation of ECM. Colony-stimulating factor-1 (CSF1), also

known as macrophage colony-stimulating factor (M-CSF), controls

macrophage production, differentiation, and function (76, 77).

Patients with IVDD are infiltrated with a large number of

inflammatory cells, of which macrophages are the main

inflammatory cells capable of infiltrating into the NP, and the

number of macrophages is positively correlated with the grade of

IVDD (66, 78). Macrophages that migrate to degenerating

intervertebral discs (IVDs) differentiate into distinct cellular

phenotypes (M1 or M2 type) in response to the local

microenvironment. This differentiation process is regulated by a

number of factors. It was demonstrated that p38 activation in NP

cells could induce macrophage differentiation towards the M1

phenotype by modulating the local pro-inflammatory

microenvironment. Conversely, blocking p38 activation in NP

cells could inhibit M1 phenotypic differentiation and reduce CSF1

and IFN-g secretion by NP cells, while simultaneously neutralizing

CSF1 and IFN-g-induced macrophage differentiation towards the

M1 phenotype (79). In addition, CSF1 is also associated with

microglial activation and proliferation. When NP is exposed to

the dorsal root ganglia of the spinal cord, there is an upregulation of

CSF1 expression in the dorsal root ganglia of the spinal cord and

CSF1 receptor (CSF1R) in spinal cord microglia, which are

activated at this time, and this behavior contributes to the

pathogenesis of discogenic back pain through central sensitization

(76). In summary, MET and CSF1 may be potential therapeutic

targets for IVDD, but their specific mechanisms in IVDD

development and progression require further experimental

elucidation and assessment. Additionally, the drugs targeting

these two genes based on theoretical prediction also need to be

verified by more in-depth animal experiments and clinical trials

after elucidating the mechanism of action of the two genes.
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Recently, non-coding RNAs have been identified as pivotal

regulators of gene expression (80). According to reports, non-

coding RNAs can modulate the activation of autophagy in

immune cells, thereby participating in the mediation of IVDD by

directly or indirectly targeting autophagy-related genes and

associated signaling pathways (81–83). Furthermore, lncRNA,

miRNA, and mRNA can form ceRNA networks to regulate the

occurrence and progression of IVDD (84, 85). We constructed

potential ceRNA regulatory networks targeting these five model

genes, providing new insights into the regulatory mechanisms and

targeted therapies for IVDD. Within the constructed ceRNA

network, multiple nodes have been reported to participate in the

regulation of intervertebral disc degeneration (IVDD). LINC00969

is highly expressed in NP tissues and cells of IVDD patients,

promoting IVD degeneration by sponging miR-335-3p and

modulating NLRP3 inflammasome activity (86). In NP cells,

overexpression of LINC00689 mediates autophagy via the miR-

3127-5p/ATG7 axis, facilitating NP cell proliferation and

suppressing apoptosis (87). NR2F1-AS1 is upregulated in IVD

tissues of IVDD patients or NP cells treated with IL-1b or TNF-

a, exacerbating IL-1b-induced extracellular matrix degradation and

NP cell apoptosis, and regulates IVDD progression through miR-

145-5p-mediated FOXO1 signaling pathway (88).

Although our results show accurate diagnostic efficacy of the

model genes and have been validated in external datasets, there

remain some limitations that require clarification. First, the sample

size of gene expression profiles obtained from public databases is

slightly insufficient, and individual differences between samples

may affect the generalizability of the results. Furthermore,

although we used cross-validation in model training, the relatively

small sample size may still lead to overfitting of the model, thus

affecting the robustness and generalizability of the results.

Therefore, we will increase the sample size in future studies to

avoid these problems and thus improve the accuracy of model

prediction. Secondly, the lack of detailed clinical characteristics in

the acquired data, such as age, degree of IVDD graded by

Pfirrmann, duration of the disease, affected IVD level, and IVDD

type (spinal stenosis, degenerative spondylolisthesis, intervertebral

disc disease), which limits us to further reveal the potential

association between model genes and certain traits. In addition,

the targeted drugs and ceRNA regulatory networks derived from the

model genes are at the analysis and hypothesis stage, requiring

further validation through in vitro and in vivo experiments. Future

studies will involve the design of prospective research to gather

more comprehensive and multidimensional data for the verification

of our findings. Meanwhile, various molecular biology techniques

will be employed to conduct in vitro and in vivo experiments,

aiming to fully understand the role of model genes and their

potential regulatory mechanisms in IVDD.

5 Conclusions

In this research, four machine-learning methods were used to

screen five model genes associated with lymphatic vessels, namely
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MET, HHIP, SPRY1, CSF1, and TOX. A diagnostic model with high

predictive value was constructed based on these genes, effectively

identifying patients with IVDD. Furthermore, potential therapeutic

drugs for these model genes were predicted, and a lncRNA-miRNA-

mRNA regulatory network was developed. Through comprehensive

analysis, the potential association between lymphatic vessels and the

occurrence and progression of IVDD was explored. Further

research is urgently needed to validate and elucidate the

regulatory mechanisms between them. Ultimately, our research

provides novel insights into the pathogenesis of IVDD and

contributes to the discovery of new therapeutic targets.
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