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2Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
Tuberculosis (TB) remains one of the gravest global health challenges.

Mycobacterium tuberculosis (M. tuberculosis), the causative agent, employs

sophisticated immune evasion and pathogenesis strategies. Its capability to

thrive within immune cells and incite robust inflammatory responses prolongs

infection and dissemination. Mycobacterial advanced adaptations facilitate

navigation through the human immune system and present a variable

antigenic profile throughout different infection stages. Investigating these

strategies unfolds targeted approaches to effective vaccine development

against TB. This review delves into the most advanced and exhaustive insights

into the immune evasion tactics and pathogenic processes of M. tuberculosis

across various infection stages. The knowledge distilled from this analysis holds

the promise of guiding the creation of innovative TB vaccines and translating

theoretical groundwork into practical immunological defenses.
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Introduction

In the landscape of global health threats, TB, driven by the virulent M. tuberculosis,

firmly stood as a leading cause of infectious mortality, second only to the COVID-19

pandemic in 2022 (1). Despite concerted public health efforts, TB continues to afflict over

10 million individuals annually (1), underscoring the disease’s persistence and reach. The

concerning prevalence of latent TB infection, impacting approximately 25% of the global

population, exemplifies the insidious nature ofM. tuberculosis and the daunting challenge it

poses (2). Currently, the Bacillus Calmette-Guérin (BCG) vaccine is the sole prophylactic

measure authorized for TB, yet it provides limited protection in the adult population. The

discrepancy between the vast scale of infection and the constrained efficacy of existing

vaccines and diagnostics highlights a compelling need for rigorous scientific inquiry into

novel detection and prevention modalities. There is a paramount need for the development

and deployment of innovative, effective strategies that enhance our capacity to accurately
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identify M. tuberculosis infections and fortify our preventive

measures. Embracing novel diagnostic technologies, alongside a

fervent pursuit of vaccine research that aims to transcend the

constraints of current options, is indispensable.

M. tuberculosis, the etiological agent of TB, manifests a complex

array of biological traits that critically impede its prevention and

management. Notably, M. tuberculosis is characterized by a slow

replication rate, typically requiring 24 hours to divide in artificial

culture media or within diseased animal models, which is an

attribute that underpins TB’s chronicity and necessitates

comprehensive, long-term treatment regimens. This inherent

slowness of growth presents a substantial hurdle for researchers

and clinicians alike. Furthermore, M. tuberculosis has evolved the

capacity for dormancy. Within the infected tissues, it can enter a

state of metabolic stasis induced by the host immune response.

While this dormancy curtails the progression of active infection, it is

insufficient for pathogen eradication. Significantly, this latent

reservoir of bacteria can become reactivated and pathogenic once

host immunity diminishes due to either the natural aging process or

immunosuppression, often culminating in a resurgence of the

disease. This dynamic has positioned TB prevention and

treatment at the forefront of modern medical challenges. Central

to the endeavor of combating TB is the elucidation of the

mechanisms underpinning immune recognition and response to

M. tuberculosis. A sophisticated comprehension of infection

dynamics, immune cell functionality, enhancement of host

immune defenses, and the subterfuges M. tuberculosis employs to

escape immune surveillance is imperative. This review delineates

current knowledge about the immunological landscape of TB, with

an emphasis on delineating the complex life cycle ofM. tuberculosis,

its pathogenic processes, and sophisticated immune evasion

strategies. It also concentrates on the imperative of TB vaccine

development, spotlighting the identification of immunodominant

antigens as a cornerstone strategy for pioneering therapeutics.
Earliest events of
M. tuberculosis infection

TB transmission is primarily facilitated by aerosols containing

M. tuberculosis, expelled into the air by individuals with active TB

during activities such as coughing, sneezing, or speaking (3). The

potential forM. tuberculosis to transmit from human to animal has

also been documented, with an early account by Hermann

Tappeiner in Germany, who in 1878 described the transmission

of TB to a dog via inhalation of aerosolized sputum from a TB

patient (4). This observation by Tappeiner is possibly the earliest

recorded evidence of the transmission route of M. tuberculosis (4).

M. tuberculosis is notably highly infectious, with the infectious dose

likely being as low as a single organism (5).

Upon inhalation, M. tuberculosis encounters the alveolar lining

fluid, a critical component of the lung’s innate defenses. This fluid is

rich in soluble factors, including antimicrobial hydrolytic enzymes

(6), which can disrupt the M. tuberculosis cell envelope. The

presence of both M. tuberculosis and its envelope fragments can
Frontiers in Immunology 02
enhance the bactericidal activity of macrophages (7). Additionally,

these hydrolases can degrade several key components of the cell

envelope, such as the carbohydrates arabinose, mannose (Man), and

glucose (Glc), among others (6). These carbohydrates play a crucial

role in the recognition of M. tuberculosis by macrophages, the

regulation of mycobacterial intracellular survival, and the overall

pathogenesis of TB (8, 9).

Treatment of M. tuberculosis with alveolar lining fluid has been

shown to significantly reduce interactions between the bacterium

and macrophages, as well as restrict the intracellular proliferation of

the bacteria within macrophages (6, 10). However, this reduced

interaction and recognition by macrophages might paradoxically

increase the pathogenicity of M. tuberculosis. Intriguingly, the

survival capability of M. tuberculosis does not appear to be

compromised by the absence of its cell envelope, and M.

tuberculosis treated with alveolar lining fluid demonstrates a

marginally faster growth rate compared to untreated cells (6).
M. tuberculosis invasion of alveolar
epithelial cells

Infection occurs in alveolar epithelial cells within 48 hours. In

the early stages of infection, M. tuberculosis demonstrates a specific

affinity for invasion and replication within alveolar epithelial type II

cells (ATII) typically within 48 hours post-inhalation (11–14).

These cells , although non-phagocytic by nature, may

inadvertently provide a conducive environment for bacterial

proliferation, essentially serving as a sanctuary that facilitates M.

tuberculosis growth (15, 16). Moreover, this localization potentially

allows M. tuberculosis to gain direct entry into the host’s lymphatic

and circulatory systems, bypassing the need for transport by carrier

macrophages (12, 17).

The involvement of a heparin-binding hemagglutinin (HBHA)

expressed by M. tuberculosis has been proposed to mediate the

pathogen’s adherence and subsequent internalization into these

nonprofessional phagocytes (16). Investigative work by Pethe

et al. demonstrated the functional significance of HBHA; deletion

of the hbhA locus inM. tuberculosis did not impair bacillary growth

per se but resulted in a significant reduction in the invasion of

alveolar epithelial cells, while phagocytic interactions remained

unaltered (18). Additionally, though equivalent colonization rates

were observed in the lungs of mice infected with wild-type and

DhbhA M. tuberculosis strains, the latter exhibited a profound

deficit in dissemination to distal organs (18).

Post-entry into the alveolar epithelial cells, M. tuberculosis

propagation ensues (12, 13, 17, 19). There are four posited

mechanisms by which inhaled M. tuberculosis may incite

pulmonary infection and orchestrate systemic spread (refer to

Figure 1) (16). The first model involves the mycobacteria directly

binding and entering alveolar epithelial cells, which then lyse to

cause tissue damage and an inflammatory reaction. This process

aids in the spread of the bacteria into the bloodstream. The second

scenario entails the bacteria attaching and entering into alveolar

epithelial cells, transcytosis through the epithelial cells, and being
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delivered to macrophages or accessing the blood vessels themselves.

The third theory proposes that after M. tuberculosis infects alveolar

macrophages, the infected macrophages move into the lung

interstitium, where they trigger an inflammatory response that

draws in more immune cells (16). Additionally, dendritic cells

(DCs) have been speculated to play an instrumental role in

mycobacterial dispersal. Research by Reljic et al. underscores that

DCs migrate into the pulmonary system and phagocytose M.

tuberculosis in less than 48 hours (20), thereafter relocating to

lung-draining lymph nodes, priming T cells for antigen recognition

(21, 22).

For successful infection establishment, mycobacteria must

circumvent anti-bacterial monocyte responses. A genetic variant

screen of Mycobacterium marinum identified the cell-surface lipid

phthiocerol dimycocerosate (PDIM) as vital for eluding such

responses (23). PDIM can infiltrate the alveolar epithelial barrier

and recruit permissive monocytes—their movement is orchestrated

by the chemokine CCL2, distinct from the Toll-like receptor/

myeloid differentiation factor 88 (TLR/Myd88)-dependent

monocytes typified by anti-bacterial attributes (24). The unique

methyl-branched fatty acids present in PDIM are also thought to

increase lipid fluidity within membranes, thereby promoting

bacterial dissemination (24).
Alveolar macrophages create an early
niche for M. tuberculosis

Fourteen days following aerosol exposure, alveolar macrophages

(AMs) emerge as the primary reservoirs ofM. tuberculosis within the

pulmonary tissue of murine models (25). These macrophages are not

mere passive hosts; rather, they are pivotal in shuttlingM. tuberculosis
Frontiers in Immunology 03
from the alveoli to the lung interstitium and subsequently to

monocytes, which are amenable to bacillary replication. Research

indicates that the eradication of AMs correlates with a marked

reduction in mycobacterial burden (26, 27).

The transition of M. tuberculosis-infected AMs from the

alveolar space into the lung interstitium is contingent upon two

critical elements: MyD88/IL-1 signaling and the ESX-1 secretory

system (25). Interleukin-1 (IL-1), a versatile cytokine, is implicated

in the modulation of vascular permeability, angiogenesis, and the

inflammatory response to infectious agents (28, 29). In the context

of TB infection, IL-1 has been identified as having an intricate

protective function. MyD88 serves as a universal adaptor molecule

that connects the IL-1 receptor and Toll-like receptors (TLRs) to

downstream signaling pathways. Activation of MyD88/IL-1

signaling in alveolar epithelial cells contributes to enhanced

alveolar permeability, thereby allowing the influx of immune cells

such as neutrophils and facilitating the transit of infected AMs

across the alveolar epithelium into the lung interstitium (25).

The ESX-1 system, encoded by the region of difference 1 (RD1)

locus of M. tuberculosis, has been characterized as a virulence

determinant essential for phagosomal escape, enabling the

bacteria to gain access to the macrophage cytosol (30). Early

secreted Ag of 6 kDa (ESAT-6), one of the components secreted

by the ESX-1 system, augments the migration of M. tuberculosis

from the phagosome to the cytoplasm (30–33). The cytosolic

presence of ESAT-6 is implicated in the activation of the NLRP3

inflammasome complex, including ASC and caspase-1, a process

instrumental for the liberation of IL-1 (Figure 2) (32). Concurrently,

there is evidence suggesting that the activation of NLRP3 could

facilitate further bacterial egress from the phagosome by instigating

necrotic cell death, a phenomenon that appears to be TLR2-MyD88

dependent (33–35).
FIGURE 1

Theories of how inhaled M. tuberculosis might cause an infection in the lung and spread to other areas. The first proposed model delineates a direct
binding of M. tuberculosis to alveolar epithelial cells, culminating in cellular lysis, which triggers an inflammatory cascade and consequent tissue
damage, thereby paving a pathway for hematogenous spread. In an alternate scenario, M. tuberculosis gains entry into alveolar epithelial cells and,
through transcytosis, traverses these cells to either directly invade macrophages or access the vasculature. A third hypothesis posits that alveolar
macrophages, upon phagocytosing M. tuberculosis, migrate to the pulmonary interstitium and vascular systems, serving as vectors for the
pathogen’s mobility. The final conjecture suggests that dendritic cells resident in the alveoli may capture M. tuberculosis and subsequently transport
it to proximal lymph nodes. Collectively, these models underpin our understanding of the initial pulmonary infection dynamics and the potential
systemic spread of M. tuberculosis, crucial for informing the development of targeted interventions.
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Eventually persistent infection
develops in the pulmonary interstitium

M. tuberculosis invasion of macrophages

As mycobacterial infection progresses to the pulmonary

interstitium, a pivotal phase in the establishment of a persistent

infection unfolds through its invasion of macrophages. The

infiltration of AMs into the lung interstitium results in the

subsequent recruitment and infection of additional macrophage

populations. To counteract M. tuberculosis invasion, macrophages

deploy a repertoire of defense strategies, including phagosome-

lysosome fusion to degrade pathogens, recruitment of hydrolytic

lysosomal enzymes, production of reactive oxygen species (ROS)

and reactive nitrogen species (RNS), antigen presentation,

upregulation and mobilization of major histocompatibility

complex class II (MHC class II) molecules, autophagy, and

induction of apoptosis (36). Studies have shown that selective

ablation of distinct macrophage subtypes escalates the pulmonary

M. tuberculosis load in murine models, underscoring the pivotal

role of monocyte-derived macrophages in containing M.

tuberculosis (26).

While AMs are often the initial phagocytes to encounter M.

tuberculosis, their ability to impede intracellular M. tuberculosis

proliferation seems compromised compared to interstitial

macrophages (IMs), which exhibit a more robust bacteriostatic

effect (26, 27). M. tuberculosis exhibits a higher replication rate
Frontiers in Immunology 04
and a reduced stress response within AMs. Bacterial burden is

decreased when AM is depleted, whereas it is elevated when IM is

depleted, highlighting macrophages’ differential roles and

reiterating the importance of IMs in infection control (26).

Notably, IMs possess more enduring stability and a shorter

lifespan than AMs (37).

Divergent metabolic pathways are implicated in the variations

observed in the bactericidal capabilities of different macrophage

populations. Transcriptomic analyses reveal that AMs exhibit

augmented fatty acid uptake and b-oxidation, whereas IMs are

predominantly glycolytic (26). Given that M. tuberculosis

intracellularly harvests cholesterol and fatty acids from the host

cell, it’s plausible that the metabolic pathways active in AMs confer

a nutritive edge to M. tuberculosis (38–41). Additionally, the

interplay between macrophages and CD4+ T cells is critical for

the containment ofM. tuberculosis. It is suggested that macrophages

exerting a restrictive impact on M. tuberculosis are those that have

engaged effectively with CD4+ T cells, emphasizing the reliance of

macrophage-mediated control of M. tuberculosis on this

cellular interaction.
Strategies of M. tuberculosis for
immune evasion

M. tuberculosis employs a suite of sophisticated strategies to

evade the host immune system, enabling the pathogen to sustain a

chronic infection despite the robust inflammatory response
FIGURE 2

The infected alveolar macrophages (AM) stimulate the MyD88/IL-1 signaling pathway to facilitate their translocation to the pulmonary interstitium.
Following M. tuberculosis infection, the ESX-1 secretion system of M. tuberculosis orchestrates the disruption of phagosomal membranes within the
AM, a critical event facilitating mycobacterial entry into the macrophage cytoplasm. This invasion triggers the assembly of the NLRP3, ASC, and
caspase-1 inflammasome complex, resulting in a surge of cytokine production, notably interleukin-1 (IL-1). IL-1, in turn, activates the MyD88/IL-1
signaling cascade in neighboring alveolar epithelial cells, leading to enhanced alveolar permeability. The culmination of these molecular events
facilitates the migration of the infected AMs from the alveolar space into the pulmonary interstitium, underscoring a crucial step in the progression
of M. tuberculosis infection within the lung parenchyma.
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mounted by IMs (refer to Figure 3 and Table 1 for an overview of

evasion mechanisms). Upon phagocytosis, M. tuberculosis faces an

oxidative onslaught, as macrophages initiate a respiratory burst

aiming to obliterate the bacilli. Remarkably, M. tuberculosis

demonstrates resilience against DNA damage induced by

oxidative stress, succumbing only under conditions of extreme

oxidative stress (91). An alternative sigma factor, SigH, plays a

pivotal role in enabling M. tuberculosis to re-establish oxidative

equilibrium following exposure to oxidative stress (79). During the
Frontiers in Immunology 05
macrophage respiratory burst, reactive oxygen species (ROS) and

nitrogen intermediates are generated. The robust cell wall of M.

tuberculosis efficiently mitigates ROS damage (97), and the enzymes

katG and trxB2—whose expression is significantly upregulated in

response to H2O2 and NO—contribute to mycobacterial resistance

against oxidative reactions (91, 98).

The disruption of phagolysosomal fusion, a seminal strategy

utilized by M. tuberculosis, was documented as early as 1971 (99).

M. tuberculosis disrupts cellular compartment integrity, including
FIGURE 3

Immune events in macrophage during M. tuberculosis infection. (A) Mechanisms of host cell death during M. tuberculosis infection. (B) Mechanisms
of mycobacterial immune evasion in macrophage. M. tuberculosis is absorbed in phagosomes. WhiB3, Lip Y, ICL-1, and other M. tuberculosis factors
(purple) aid in the bacilli’s resistance to low pH, ROS, and RNS. PDIM and ESX-1 encourage phagosomal damage. (1, 2) Ubiquitin (Ub) ligases bind the
phagosome and M. tuberculosis to attract autophagy receptors, which is blocked by PknG, PPE68 and other factors. The phagophore membrane
interaction of LC3 and its subsequent fusion with the lysosome directs M. tuberculosis toward xenophagy. (3) The LC3-associated phagocytosis
(LAP) pathways are involved in the macrophage autophagy-mediated elimination of M. tuberculosis. (4) Mycobacteria-containing phagosomes fuse
to lysosomes, which is inhibited by the glycolipids of M. tuberculosis. Rv0888 and Rv0081 help M. tuberculosis with the utilization of nutrients
in macrophage.
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TABLE 1 List of antigens by which M. tuberculosis overcomes killing by macrophage.

Overview Effector Mechanism References

Impairing the integrity of
membrane compartments

PDIM
PDIM together with ESX-1 cause phagosomal

membrane damage and the rupture
of macrophage

(42)

Inhibition of host-mediated ubiquitination

Protein kinase G (PknG)
PknG functions as an atypical ubiquitinating

enzyme to inhibit ubiquitination
in macrophage

(43)

PPE68/Rv3873

PPE68 inhibits NF-kB and AP-1 signaling
activation as well as the generation of TNF-a,
IL-6, and NO via interacting with macrophage

ubiquitin ligase (E3)

(44)

Rv0222

Through interaction with the host E3 ubiquitin
ligase ANAPC2, Rv0222 prevents

ubiquitination and activation of TRAF6 by
facilitating the binding of the protein tyrosine

phosphatase SHP1 to the adaptor
protein TRAF6

(45)

PE_PGRS38

PE_PGRS38 binds to herpesvirus-associated
ubiquitin-specific protease (HAUSP, USP7)
and modifies the level of ubiquitination of

diverse substrate proteins

(46)

Inhibition of autophagy

PknG

PknG enhances the initiation of autophagy but
suppresses autophagosome maturation, which
results in a general blockage of autophagy flux

and increased intracellular survival
of pathogens

(47)

Eis

Mycobacteral Eis performs crucial functions in
controlling macrophage autophagy,

inflammatory reactions and cell death through
a mechanism reliant on reactive oxygen species

(ROS) and up-regulation of IL-10

(48, 49)

Phosphoribosyltransferase (PRT)

To increase intracellular bacterial viability, PRT
promotes histone hypermethylation in genes

relevant to autophagy, which
suppresses autophagy

(50)

Sulfoglycolipids (SLs) and phthiocerol
dimycocerosates (DIMs)

Various strategies are used by SLs and DIMs in
human macrophages to regulate autophagy-

related processes
(51)

PE/PPE protein family

PE/PPE proteins suppress autophagy and
improve intracellular bacterial survival by
enhancing mTOR activity and lowering

production of TNF-a and IL-1b

(52)

PE/PPE protein family
PE_PGRS20 and PE_PGRS47 interacted with
the Ras-related protein Rab1A in order to

prevent the beginning of autophagy
(53)

PE/PPE protein family
By reducing the activity of extracellular signal-
regulated kinase 1/2 (ERK1/2), PPE51 inhibits
autophagy and impedes bacterial phagocytosis

(54)

Inhibition of apoptosis

PknE
PknE, which increases macrophage viability
through blocking apoptosis, is crucial for M.

tuberculosis survival
(55)

SigH
SigH may increase the pathogen’s persistence
by lowering the apoptosis of infected monocyte

(56)

Mannose-capped lipoarabinomannan (ManLAM)

ManLAM-dependent suppression of
macrophage apoptosis is achieved by
upregulating antiapoptotic B-cell CLL/
lymphoma 2 (Bcl2) family member A1

(57)

(Continued)
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TABLE 1 Continued

Overview Effector Mechanism References

Cpn60.2
Cpn60.2 prevents macrophage apoptosis by

interacting with host mortalin
(58)

PE_PGRS18
PE_PGRS18 primarily increases pathogen

survival in macrophage by reducing
macrophage apoptosis

(59)

PE_PGRS62
By interfering with ER stress-mediated

apoptosis, PE_PGRS62 increases the survival of
mycobacteria in macrophage

(60)

PE31 (Rv3477)

PE31 increases GTPase guanylate binding
protein-1, which attenuates macrophage

apoptosis and facilitates mycobacteria staying
within cells

(61)

PPE10 (Rv0442c)
PPE10 uses the linear ubiquitin chain assembly

complex HOIP-NF-kB signaling axis to
suppress macrophage apoptosis

(62)

Rv3033
In macrophage, mycobacteria-secreted

virulence factor Rv3033 effectively thwarts
mycobacteria-induced early and late apoptosis

(63)

Promotion of apoptosis

ESAT-6
ESAT-6-induced apoptosis facilitates the
transmission of bacteria from cell to cell

(64)

PPE32
PPE32 triggers macrophage apoptosis and

reduces macrophage cell viability
(65)

Promotion of necrosis

Bcl-2
Bcl-2 causes macrophage necrosis and

prevents apoptosis
(66)

Bcl-xL

Bcl-xL causes necrosis by triggering the action
of RIPK3 and blocking the activation of

caspase 8
(67)

Inhibition of pyrotosis PknF
By inhibiting the NLRP3 inflammasome and
pyroptosis, PknF of M. tuberculosis plays a
significant role in innate immune evasion

(68)

Promotion of pyrotosis

Rv3361c-Rv3365c
Rv3361c-Rv3365c inhibit macrophage
pyroptosis through a process involving

cytoplasmic surveillance proteins
(69)

ESX-1
ESX-1 promotes macrophage pyroptosis, which
is mediated by caspase-1/NLRP3/gasdermin D

(70)

Cytokines, necrosis, apoptosis, autophagy PE_PGRS41

PE_PGRS41 enhances macrophage necrosis
while suppressing apoptosis and autophagy
and lowering the synthesis of TNF-a, IL-1b,

and IL-6

(71)

Ubiquitination, apoptosis PtpA

PtpA inhibits ubiquitination dependent on the
pathways of Jnk and p38 as well as NF-kB

(72)

PtpA inhibits the activation of the JNK/p38
MAPK pathway and cell apoptosis that

TRIM27 promotes
(73)

Survival under stress

WhiB3
WhiB3 combines with critical host gases and
metabolic signals to keep the redox balance

(74)

Lip Y, ICL-1, Tgs-1
Lip Y, ICL-1, and Tgs-1 are proteins involved
in lipid metabolism for M. tuberculosis to resist
the oxidative stress caused by macrophages

(74)

PhoPR
Activation of WhiB3 by PhoPR aids

mycobacterial resistance to macrophage-caused
low pH

(75)

GlnR (76)

(Continued)
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TABLE 1 Continued

Overview Effector Mechanism References

By directly triggering the expression of whiB3,
the nitrogen regulator GlnR regulates SL-1
lipid anabolism and cell adaptability to

redox stress

RegX3
The cytosolic redox sensor WhiB3 is activated

by RegX3 to resist low pH
(77)

PPE2
PPE2 suppresses NADPH oxidase-mediated

ROS production in macrophage to promote M.
tuberculosis survival

(78)

SigH
SigH is crucial for M. tuberculosis to restore
oxidative equilibrium after oxidative stress

(79)

NapM
NapM prevents mycobacterial DNA synthesis

and shields the bacteria from dying
under stress

(80)

Lipid metabolism

Rv0888

Rv0888 has strong sphingomyelinase activity
that cleaves sphingomyelin, a key lipid in
eukaryotic cells, into phosphocholine and

ceramide, which are used by M. tuberculosis as
a source of several vital nutrients

(81)

Rv0081
Rv0081 facilitates mycobacterial utilization of
cholesterol, subversion of lysosomal trafficking

and formation of granulomas
(82)

Promotion of host-pathogen interaction Peptidyl prolyl isomerase A (PPiA)
PPiA interacts with the host integrin receptor
and causes granuloma-like lesions in mice,

which accelerates the progression of the disease
(83)

Inhibition of inflammasome activation Zmp1
Zmp1 blocks the processing of IL-1b and the
activation of inflammasomes, which inhibits

macrophage elimination of pathogens
(84)

Inhibition of inflammatory cytokines Mycolic acid
Mycolic acid binds to TREM2 on

macrophages, inhibiting their ability to
fight bacteria

(85)

Multiple mechanisms

ESX-1

ESX-1 substrates are associated with
mycobacteria’s ability to damage membranes

(86, 87)

Members of the ESX-1 system inhibit
autophagy in order to facilitate mycobacteria

escape into the cytoplasm
(88, 89)

ESX-1 leads to host cell apoptosis (42)

KatG

KatG decreases lysosomal delivery to the
phagosome and is essential for the M.

tuberculosis Beijing strain to avoid starvation-
induced autophagic constraint

(90)

M. tuberculosis detoxifies H2O2 with the aid
of KatG

(91)

DosS
DosS is involved in the inhibition of TNF-a
and autophagy pathways and is necessary for

mycobacterial replication
(92)

Rv1515c

Rv1515c leads to increased bacterial tolerance
to several stresses and increased cellular

survival in macrophage
(93)

Rv1515c reduces antigen presentation by
lowering the expression of MHC-I/MHC-II

and co-stimulatory signals, decreasing
phagolysosomal maturation and modulating

pro-inflammatory cytokine production

(94)

(Continued)
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macrophage membranes, phagosomes, and phagolysosomes,

through mechanisms dependent on ESX-1 and PDIM (42, 86, 87,

100). ESX-1, part of the M. tuberculosis-specific type VII secretion

system (encompassing ESX-1–5), plays a crucial role in this process

(87, 101). The type VII secretion system’s impairment is associated

with the attenuation observed in the Mycobacterium bovis BCG

strain (30, 101, 102). Membrane perforation is facilitated by the

primary effector of the ESX-1 system, ESAT-6 (ESX-A), and its

substrate, CFP-10 (ESX-B), while ESX system components ESX-3,

ESX-H, and ESX-G prevent phagolysosome maturation (103–107).

Furthermore, M. tuberculosis manipulates autophagy and cell

death pathways to evade innate immune detection (108–114).

Autophagy, the process by which cytoplasmic components are

degraded or recycled, is inhibited by members of the ESX-1

system, permitting mycobacterial escape into the cytoplasm (88,

115). ESX-A (ESAT-6) is implicated in inducing necrosis in infected

host cells, a mechanism that facilitates bacterial dissemination and

hinders macrophage containment of the infection (89, 103, 116).

Consequently, M. tuberculosis has evolved multiple evasion tactics,

including oxidative stress resistance, inhibition of phagolysosome

maturation, escape into the cytosol, and manipulation of apoptosis

or necrosis pathways, to transcend innate immune defenses and

foster an environment conducive to its latent propagation.
Neutrophils-mediated immunoreaction
during M. tuberculosis infection

During M. tuberculosis infection, the host’s immune system

mobilizes different myeloid lineage cells to combat the pathogen,

including neutrophils, DCs, and various macrophage subsets, aside

from AM. Neutrophils, known for their short lifespan, stand at the

forefront of the host’s innate immune defenses as professional

phagocytes (117). Although neutrophils are activated by M.

tuberculosis and employ a range of antimicrobial effector

mechanisms, these efforts fall short in controlling the infection.

Instead, the interaction between neutrophils and M. tuberculosis

frequently culminates in necrotic cell death of the neutrophils.

Subsequently, these necrotic cells are phagocytosed by

macrophages, a process which paradoxically fosters the

proliferation of M. tuberculosis and precipitates the recruitment of

additional neutrophils to the site of infection (118, 119).
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Adaptive immunity to M. tuberculosis

Following the initial implantation of bacteria into the

pulmonary system, the priming of adaptive immune responses in

the lung-draining lymph nodes typically commences within a two-

week period. This pivotal process is subsequently followed by the

infiltration of adaptive immune cells into lung tissue, which

becomes actively engaged in combating the infection over the

course of an additional one to two weeks. The initiation and

orchestration of adaptive immune responses are fundamentally

dependent on the early intervention of the innate immune

system, underscoring its critical role in the host’s defense

mechanism against M. tuberculosis infection.
Cellular immunity in
M. tuberculosis infection

In the investigation of cellular immunity againstM. tuberculosis

infection, Wolf et al. illuminated the critical role of DCs after

exposing mice to GFP-expressing M. tuberculosis. They found that

DCs, which are professional antigen-presenting cells (APCs), were

frequently infected in the lungs and migrated to the draining lymph

nodes (120). These cells are instrumental in eliciting adaptive

immunity by presenting M. tuberculosis antigens via MHC-II and

co-stimulatory molecules, thus initiating antigen-specific T

cell responses.

The essential role of MHC-II-restricted CD4+ T cells in

mounting a defense against tuberculosis becomes evident in

individuals with HIV-related CD4+ T cell impairments, who

exhibit a higher susceptibility to the disease (121). This

significance is further underscored by studies utilizing CD4+ T

cell depletion in non-human primates (NHP) and MHC-II deletion

in mice (122, 123). While CD8+ T cells are vital for the

immunological response to M. tuberculosis, their presence cannot

compensate for the deficiency of CD4+ T cells (122). Mice deficient

in the Th1-polarizing cytokine interleukin-12 (IL-12) or the

transcription factor T-bet, responsible for specifying the Th1

lineage, succumb shortly after M. tuberculosis exposure,

highlighting the dependence of host resistance to mycobacterial

infection on Th1-oriented CD4+ T cells (124, 125). The arrest in

bacterial growth is achieved when T cells, attracted to the lungs,
TABLE 1 Continued

Overview Effector Mechanism References

Mycobacterial glycolipids

The macrophage response is hindered by the
glycolipids in the mycobacterial envelope,
which bind to TLR2 on the macrophage to
prevent NF-kB activation and production of

cytokines and costimulatory molecules

(95)

PE13 (Rv1195)

PE13 facilitates macrophage apoptosis in the
late stage of infection

(96)

PE13 increases bacteria survival in stressful
environments such low pH, SDS, and H2O2

(96)
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interact with infected cells, recognize the antigens, and activate

myeloid cells to halt the replication of ingested bacteria (125–127).

The study of individuals afflicted by diseases caused by less

virulent mycobacteria reveals that genetic mutations impairing the

IL12/IFN-g pathway predispose individuals to mycobacterial

infections (128). The pivotal effector mechanism of cell-mediated

immunity is believed to be activated macrophages by type-1

Interferon g (IFN-g). This cytokine, primarily produced by

natural killer (NK) and Th1 cells, is regulated by IL-12, secreted

by dendritic cells and macrophages. IFN-g, in concert with tumor

necrosis factor a (TNF-a), triggers the microbicidal activities of

macrophages essential for eliminating the intracellular pathogen.

CD8+ T cells also play a crucial protective role against

mycobacterial infections. Mice lacking either TAP-1 (transporter

associated with antigen processing 1) or b2 microglobulin, crucial

components for MHC-I antigen presentation, display impaired

CD8+ T cell responses and succumb more rapidly post-M.

tuberculosis infection compared to wild-type controls (129, 130).

Mott et al. have shown that high intracellular levels of M.

tuberculosis induce macrophage death (131). This allows other

macrophages to scavenge the resulting cellular debris and

indirectly present the TB10.4 antigen to CD8+ T cells. CD8+ T

cells’ ability to produce cytolytic effector molecules, such as perforin

alongside IFN-g and TNF-a, to lyse M. tuberculosis-infected

macrophages, is vital for curbing bacterial proliferation (130).

Moreover, CD8+ T cells’ capacity to release granulysin for direct

bacilli destruction within macrophages underscores their
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importance in the immune response to M. tuberculosis (130, 132).

Assistance from CD4+ T cells mitigate CD8+ T cell exhaustion and

enhances their functional activities. The collaborative action of

CD4+ and CD8+ T cells improve the survival outcomes of

infected mice (133).
Strategies of M. tuberculosis for cellular
immune evasion

M. tuberculosis employs a myriad of strategies to circumvent

cellular immune defense mechanisms, resulting in substantial

bacterial loads in the lungs even in the presence of robust

adaptive immune responses. This evasion of cellular immunity is

intricately illustrated in Figure 4 and Table 2. The transport of M.

tuberculosis from the pulmonary site to proximal draining lymph

nodes is facilitated by DCs, which play a pivotal role in T cell

activation during the infection (154). Instead of adhering to the

canonical MHC-II antigen presentation pathway, infected DCs

exploit a kinesin-2 dependent mechanism for antigen conveyance,

thereby impairing the efficacy of CD4+ T cell stimulation (134). M.

tuberculosis further undermines immune defenses by producing

effector molecules that derail DC phagosome maturation and

integrity, significantly hampering T cell priming.

Saini et al., through genome-wide analysis, spotlight the

mycobacterial PE_PGRS47 protein as an autophagy inhibitor that

constrains the delivery of MHC-II-restricted antigen by M.
FIGURE 4

Adaptive immune response during M. tuberculosis infection. Dendritic cells (DCs) exhibit a delayed migration and antigen presentation to lymph
nodes after M. tuberculosis infection. Compared to uninfected DCs, infected DCs are less efficient in stimulating T cells. GroEL2, PDIM and MPT64
suppress the maturation and activation of DCs. By preventing antigen presentation, EsxH, PE_PGRS47, 19-kDa lipoprotein, TDM, and NuoG
postpone T cell activation. B cell function is also compromised during M. tuberculosis infection. Atypical memory B cells (aMBCs) express a variety of
inhibitory receptors and resist antigen stimulation, making it difficult to stimulate them to replicate or release cytokines or antibodies. The
proliferation of aMBCs obstructs the establishment of TB immunity. Additionally, it is difficult for T cells killing in granulomas because they are
located far from infected center. IL-10 and transforming growth factor-b (TGF-b) play a role in the granuloma’s localized T cell suppression.
Tryptophan can be produced by M. tuberculosis in order to resist T cells killing. Mycobacterial lipoglycans, mycolic acids, MPT70 and ESAT-6 cause
T cells dysfunction and exhaustion. M. tuberculosis selectively elicits T cell responses to decoy antigens, which is poorly presented by infected cells.
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TABLE 2 List of antigens by which M. tuberculosis overcomes adaptive immunity.

Overview Effector Mechanism References

Delaying the
development of

adaptive immunity

Kinesin-2 of DCs

As bacterial antigens in M. tuberculosis-infected DCs are
exported via kinesin 2-dependent vesicular transport rather than
the MHC class II antigen presentation pathway, these DCs are

less effective in stimulating T cells than uninfected DCs

(134)

MPT64 (Rv1980c)
DCs exposed to MPT64 develop into myeloid-derived suppressor

cells (MDSCs)
(135)

PDIM
PDIM lowers the expression of CD86 and IL-12, suppresses the
activation of DCs and macrophages, and prevents the priming

and development of polyfunctional T cells
(136)

GroEL2
The cleaved form of GroEL2, which is abundant in M.

tuberculosis, is not able to promote the maturation of DCs or the
presentation of antigen

(137)

EsxH
EsxH prevented macrophages and DCs from stimulating CD4+

T lymphocytes
(138)

PE_PGRS47
The PE_PGRS47 protein prevents mycobacteria-infected DCs
from presenting antigen in an MHC class II-restricted pathway

(139)

19-kDa lipoprotein

Through a mechanism depended on Toll-like receptor 2 (TLR2),
19-kDa lipoprotein inhibits MHC class II production and

antigen processing, enabling M. tuberculosis to avoid detection
by CD4+ T cells

(140)

Trehalose 6,6’-dimycolate (TDM)
TDM on mycobacterial surface inhibits macrophage antigen
presentation and reduces the expression of surface markers

on macrophages
(141)

NuoG
The inhibition of neutrophil apoptosis by NuoG leads to a

delayed activation of CD4+ T cells
(142)

Resistance to T
cells killing

Tryptophan
M. tuberculosis can produce tryptophan in response to stress to

prevent amino acid starvation caused by T cells
(143)

The expression of
immunodominant
proteins by M.

tuberculosis causes T
cell exhaustion

ESAT-6
Functional exhaustion limits the ability of ESAT-6-specific T

cells to provide protection
(144)

CD4+ T cells produce
insufficient effects

Lipoarabinomannan and other
mycobacterial lipoglycans

T cell responses are inhibited by M. tuberculosis lipoglycans that
are carried by bacterial vesicles and released from

infected macrophages
(145)

Mycolic acids
Mycobacterial mycolic acids bind to the inhibitory receptor

Clec12A to limit T cell responses
(146)

MPT70
IFN-g causes MPT70 level to increase in infected macrophages,
and high MPT70 expression results in highly differentiated CD4+

T cells with reduced protective potential
(147)

Expression of decoy
antigens by M.

tuberculosis did not
confer protection

TB10.4
Decoy antigen TB10.4 impedes the expansion of CD8+ T

lymphocytes that identify mycobacterial epitopes provided by M.
tuberculosis-infected macrophages

(148)

Ag85B
Ag85B-specific T cells first proliferate before beginning to decline
four weeks after the infection. The pathogen’s low expression of
Ag85B limits the protective ability of Ag85B-specific T cells

(144)

Inhibition of T cell
function (in the
TB granuloma)

IL-10
Protective immunity is inhibited by IL-10, which is generated by

macrophages, neutrophils, CD4+ T cells and Tregs
(149)

TGF-b
TGF-b limits T cell proliferation, survival, and function inside

the tuberculosis granuloma
(150)

Indoleamine 2,3-dioxygenase (IDO) enzyme
By blocking IDO activity, granuloma organization is changed,

causing a greater number of T cells to migrate to the lesion core
and display high proliferation

(151)

(Continued)
F
rontiers in Immunology
 1
1
 frontiersin.org

https://doi.org/10.3389/fimmu.2024.1440935
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2024.1440935
tuberculosis-infected dendritic cells (139). Additional hurdles, such

as the pathogen’s slow replication rate, its inhibition of host cell

apoptosis, and the sluggish activation and migration of DCs,

collectively contribute to the delayed initiation of adaptive

immunity. These elements synergistically facilitate the

establishment and persistence of M. tuberculosis infection within

the lungs.

Despite prompt lung infiltration by antigen-specific T cells,

their attempts to clear the infection are thwarted by M. tuberculosis

through multiple mechanisms. Effective suppression of intracellular

M. tuberculosis necessitates the direct recognition of infected cells

by CD4+ T cells (155). Yet, the physical separation between T cells

and their infected targets often presents a significant obstacle.

Furthermore, membrane vesicles containing M. tuberculosis cell

envelope lipoglycans, released by infected macrophages, can impede

CD4+ T cell activation, as evidenced by diminished interleukin-2

(IL-2) secretion and impaired T cell proliferation (145).

Another challenge arises when CD4+ T cells encounter

consistently expressed antigens like ESAT-6, leading to their

proliferation within the lung parenchyma and subsequent

functional exhaustion or progression towards terminal

differentiation, diminishing their defensive capabilities (144). M.

tuberculosis strategically redirects T cell focus towards

immunodominant, yet nonprotective antigens that are

ineffectively presented by infected cells (148).

In summation, the adaptive immune response against M.

tuberculosis is significantly delayed and inadequate, characterized

by an orchestrated evasion strategy that leverages both the

manipulation of antigen presentation and the impairment of T

cell function, thereby enabling the pathogen’s sustained survival

within the host.
Humoral immunity in
M. tuberculosis infection

An increasing body of research suggests that antibodies and B

cells may confer protection against M. tuberculosis infection (156–

162). The role of humoral immunity in the context of M.

tuberculosis infection has been substantiated by a plethora of

serological studies, which reveal that despite being an intracellular

bacterium, M. tuberculosis elicits a comprehensive humoral

response against a diverse array of mycobacterial antigens in

humans (163). Animal models deficient in humoral immunity

and B cell function exhibit increased susceptibility to tuberculosis

infection, underscoring the importance of these immune

components (161, 164–167). Additionally, the passive transfer of
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monoclonal antibodies targeting M. tuberculosis has been shown to

ameliorate infections in mice, further supporting their protective

role (168–180). In humans, elevated titers of certain IgG are

typically observed in tuberculosis patients. However, the absence

of galactose in the carbohydrates linked to the Fc region of IgG

impairs the protective function of these antibodies, as demonstrated

by Olivares et al., where mice treated with deglycosylated IgG did

not exhibit protection (181). This finding indicates that IgG

glycosylation is necessary for immunoglobulin to confer a

protective effect against TB in mice.

Antibody-mediated opsonization is believed to confer

protective benefits at the onset of infection. This is predominantly

achieved through the enhancement of mycobacterial antigen uptake

by phagocytic cells (160). The process is facilitated via Fc receptor

(FcR)-mediated phagocytosis, which subsequently leads to an

increase in intracellular pathogen elimination (182).

In addition to providing direct assistance with phagocytosis,

antibodies can modulate the complement system, thereby

catalyzing inflammation and further enhancing phagocytic

activity (183). During complement receptor-mediated

phagocytosis of M. tuberculosis, altered Ca2+ signaling has been

observed. The suppression of this Ca2+ signaling pathway by M.

tuberculosis indicates that such alterations in macrophage activation

significantly contribute to the inhibition of phagosome-lysosome

fusion, consequently promoting the intracellular survival of the

mycobacteria (184).

Furthermore, antibodies targeting the cel l-surface

lipopolysaccharide of M. tuberculosis may expedite pathogen

clearance, thereby attenuating the possibility of detrimental

interference with immune responses. The mycobacterial surface

material lipoarabinomannan (LAM) has been associated with

several detrimental effects on immune system function. In mice,

LAM-binding antibodies significantly reduced the amount of LAM

deposited in the spleen, suggesting that these antibodies may play a

role in altering the course of mycobacterial infection (171, 185).

Antibodies carry with them the dual capability to either dampen

or amplify inflammatory responses due to their constituents of pro-

and anti-inflammatory molecules (186). This multifaceted

functionality permits antibodies to regulate the intensity of the

immune response, potentially mitigating the tissue-damaging

consequences of uncontrolled granuloma—a process intricately

described in subsequent sections. Pro-inflammatory antibodies

can assist hosts with insufficient inflammatory responses, while

anti-inflammatory antibodies may benefit hosts experiencing

excessive inflammation that leads to tissue damage (156).

In summary, the humoral immune response against M.

tuberculosis is marked by a multilayered mechanism involving
TABLE 2 Continued

Overview Effector Mechanism References

Inhibition of B
cell function

B cell
B cell function is damaged during active TB and latent TB
infection, and this B cell dysfunction weakens cellular

host immunity
(152)

Atypical memory B cells (aMBCs)
The growth of aMBCs is stimulated by TB, and it is possible that

aMBCs impede the development of immunity against TB
(153)
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phagocytic enhancement, complement activation, pathogen

clearance, and modulation of the inflammatory milieu. This

intricate interplay between various antibody-mediated activities

plays an essential role in shaping the course and outcome of M.

tuberculosis infection.
Strategies of M. tuberculosis for humoral
immune evasion

Recent investigations have unveiled novel strategies by which

M. tuberculosis subverts humoral immunity, particularly impacting

the functional capacity of certain B lymphocytes—a phenomenon

comprehensively illustrated in Figure 4 and Table 2. These B cells

manifest a compromised state evidenced by their diminished

cytokine secretion, immunoglobulin production, and proliferative

ability (152). This dysfunctional B cell phenotype, frequently

termed ‘atypical’, has been observed in the milieu of various

infectious diseases, notably chronic or recurrent infections such as

malaria, and infections caused by hepatitis B and C viruses, as well

as HIV (153, 187, 188).

The role of atypical B cells within the immune landscape

remains an enigma, yet they are hypothesized to exert detrimental

effects on pathogen-specific immune responses. The concerns pivot

around the observed elevated concentrations of these cells during

infection, which may signify a potential hindrance to the efficacy of

the humoral response (153). As such, mycobacterial ability to

induce and sustain the proliferation of atypical B cells represents

another facet of its immune evasion repertoire, possibly allowing

the pathogen to persist by attenuating the protective functions

typically mediated by conventional B lymphocytes.
Formation of the granuloma

The formation of the granuloma constitutes a hallmark

histological feature of tuberculosis infection. Granulomas are

structured aggregates predominantly comprised of both infected

and uninfected macrophages at various stages of differentiation (as
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depicted in Figure 5) (189–191). Within these complex formations,

macrophages undergo epithelioid transformation, become lipid-

laden foamy cells, or coalesce into multinucleated giant cells. This

central macrophage hub is encircled by a heterogeneous population

of immune cells including neutrophils, DCs, T cells, B cells, and

fibroblasts. Gradual development of hypoxia within the granuloma

culminates in necrotic death of cells, leading to the formation of a

necrotic cell-free zone known as the caseum (192).

Granulomas serve a dual role; they are essential host defense

structures that contain the bacterial spread and also provide a niche

wherein M. tuberculosis can reside and potentially persist in a

dormant state until conditions favor reactivation and proliferation.

While the immune response helps to eradicate bacteria from some

granulomas, in others, the bacteria can survive and proliferate. Early

granulomas with high bacterial loads are influenced by mast cells,

type 2 immunity, and tissue remodeling. In contrast, low-burden,

late-forming granulomas are associated with a response involving

cytotoxic T cells and type 1-type 17 immunity (193).

Immunologically, granulomas are characterized by an

inhibitory milieu, with the immune-regulatory cytokine IL-10

implicated in compromising T cell activity within this

environment (149, 194, 195). Moreover, T cell suppression within

the granuloma is further enhanced by transforming growth factor-b
(TGF-b). Disruption of TGF-b signaling in T cells has been shown

to augment IFN-g production and enhances T cell accumulation

within granulomas (150). Notably, CD4+ T cells are predominantly

localized at the periphery of granulomas, maintaining a distance

from the centrally located infected macrophages, potentially

limiting their effectiveness in controlling the infection (150, 151).

Mycobacterial lipids play a pivotal role in the pathogenesis of

granuloma formation. They not only impair the antimicrobial

capabilities of macrophages but also promote the recruitment of

additional macrophages, ultimately facilitating the dissemination of

M. tuberculosis (196). Granulomas harboring M. tuberculosis

can remain stable for extended periods, often spanning decades

(197). However, factors such as the organism’s capacity for

immunosuppression can jeopardize the granuloma’s integrity,

potentially leading to its rupture and consequent dissemination of

a substantial number of viable bacilli.
FIGURE 5

The composition and rupture of granuloma. Macrophages consume the bacilli when they enter the lung. In order to sterilize the infected
macrophages, more immune cells are enlisted, which causes the granuloma formation. Latent infection persists in healthy individuals but
reactivation is possible. When M. tuberculosis is reactivated for some reason, the bacteria multiply and the bacterial load rises to an unmanageable
level. At this point, the granuloma bursts, releasing the bacteria into the airways.
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Pulmonary and
extrapulmonary tuberculosis

The clinical manifestations of TB are contingent upon the

anatomical site of the M. tuberculosis proliferation within a host.

As an obligate aerobe,M. tuberculosis exhibits a predilection for the

pulmonary system, whereby pulmonary TB can manifest as

persistent cough, often accompanied by hemoptysis or sputum

production, chest pain, and a protracted cough persisting beyond

three weeks. General systemic symptoms attributable to TB may

include malaise, anorexia, significant weight loss, febrile episodes,

chills, and nocturnal hyperhidrosis. Other organs afflicted by M.

tuberculosis may present with localized symptoms reflective of the

pathogen’s dissemination.

Pulmonary immune responses elicited by mycobacterial

infection are characterized by the activation of AMs, DCs, and

inflammatory mediators, which in turn recruit and activate

monocytes, neutrophils, T cells, and B cells. These inflammatory

events culminate in granuloma formation. However, the persistent

inflammatory response associated with M. tuberculosis infection

provokes tissue necrosis, chronic lung inflammation, airway

remodeling, and fibrotic alterations (198–204). The ensuing

chronic obstructive pulmonary pathology ultimately culminates in

irreversible airflow obstruction, potentially escalating to chronic

respiratory failure and mortality (205, 206).

Beyond the pulmonary confines, M. tuberculosis can travel

through the blood or lymphatic system from the primary lung

lesions to disparate organ systems—this process characterizes

extrapulmonary TB, accounting for approximately 15% of TB cases

(207). Following the initial aerosolized infection and lung invasion,M.

tuberculosis colonizes adjacent lymph nodes before gaining access to

the bloodstream via the lymphatic network (illustrated in Figure 6)

(208). Both immunocompetent and immunocompromised

individuals are susceptible to extrapulmonary TB, although

individuals living with HIV bear a heightened risk for

extrapulmonary manifestations, particularly within the lymphatic

system, with widespread dissemination, and affecting the central

nervous system (CNS) (209). This complex pathology underscores

the necessity for robust diagnostic and treatment strategies to mitigate

the extensive spectrum of TB disease.
Designing tuberculosis vaccines based
on pathogenesis

The global tuberculosis vaccine pipeline currently includes 17

candidates undergoing clinical trials, which we have organized and

evaluated in Table 3. Although many of these candidates have

successfully entered Phase I clinical trials, only a limited number

have progressed to large-scale studies (227). A significant factor

contributing to this limited advancement is the diminished efficacy

of the vaccines.

To effectively counter TB, vaccine development must be intricately

informed by a nuanced understanding of the pathogenesis of M.
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tuberculosis. An optimized vaccine would preemptively hinder M.

tuberculosis from entering host cells, amplify both innate and adaptive

immune responses, and surmount the bacterium’s immune evasion

tactics. Nearly all of the antigens known to be involved in the

pathogenic process of M. tuberculosis are summarized in Tables 1,

2. The development of new tuberculosis vaccines can consider

combining these appropriate antigens.

The interplay of surface adhesion molecules is crucial for the

invasion of host cells by mycobacteria, facilitating their association

with and entry through host cellular receptors (228, 229). Various

adhesion molecules, such as HBHA and fibronectin-binding

proteins (FnBPs), significantly contribute to bacterial colonization

by promoting the internalization of M. tuberculosis into host cells

(230). The application of anti-HBHA antibodies to wild-type

mycobacteria significantly inhibits their ability to disseminate

following intranasal infection (231). These interactions with host
FIGURE 6

M. tuberculosis infection progression. (1) People get TB by breathing
in the bacteria’s air. (2) Initial infection is developed in lung and go
on to become granuloma. The early infection site impacts the
surrounding lymph nodes as well. (3) Once the bacteria leave the
lung and enter the lymphatic system, they most likely find their way
into the circulatory system via the thoracic duct’s entrance into the
subclavian vein. (4) Extrapulmonary TB is caused by the
hematogenous spread of M. tuberculosis.
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TABLE 3 The TB vaccine pipeline 2024.

Adjuvant Evaluation References

Not Available Not Available (210)

Not Available

The RUTI vaccine
shows acceptable safety

and promising
immunogenicity but

requires further research
to address local adverse
reactions and optimize
immune response.

(211)

Not Available

DAR-901 primarily
induced Th1 responses.
Although DAR-901
responses were more

moderate, BCG
generated greater CD4+

T cell responses than
placebo. A three-dose
course of 1 mg DAR-
901 did not stop initial
or ongoing Interferon
Gamma Release Assay
(IGRA) conversion.

(212–214)

Not Available

MTBVAC demonstrates
promising safety and

immunogenicity profiles
in both adults and
infants, suggesting
potential as a future

tuberculosis
vaccine candidate.

(215)

Not Available

The effectiveness of the
H4:IC31 vaccination was
30.5% (P=0.16), but the
BCG vaccine had an
efficiency of 45.4%

(P=0.03) in reducing the
rate of sustained

QuantiFERON-TB Gold
In-tube assay

(QFT) conversion.

(216)

Not Available (210)
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Type Number Name Stage Sponsor Antigen Vector

Inactivated
vaccines

1 Immuvac (MIP) III
Indian Council of
Medical Research,

Cadila Pharmaceuticals
M. indicus pranii Not Available

2 RUTI IIb Archivel Farma, S.L

Liposome
suspension of

mycobaterial cell
wall

nanofragments

Not Available

3 DAR-901 IIb
Dartmouth, St.
Louis University

Inactivated
M. obuense

Not Available

Live
attenuated
vaccines

1 MTBVAC III

Biofabri, Bharat Biotech,
University of Zaragoza,

IAVI, TBVI, HIV
Vaccine Trials Network

Mtb103 without
phoP (Rv0757)

and
fadD26 (Rv2930)

Not Available

2 BCG (Revaccination) IIb
Bill & Melinda Gates

Medical
Research Institute

BCG Not Available

3 BCG (Travel vaccine) III BCG Not Available
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TABLE 3 Continued

Adjuvant Evaluation References

The aim of this study is
to determine if adult

travelers to regions with
high TB rates can reduce
their risk of contracting

TB by eliciting an
immunological response
after receiving a single
dose of the BCG pre-
travel immunization.

Not Available

VPM1002 demonstrates
superior safety

compared to BCG, with
significantly lower rates

of severe adverse
reactions such as

lymphadenopathy and
injection site

complications. While
slightly less

immunogenic than BCG,
VPM1002 shows

promising results and is
advancing to phase 3
trials for further

assessment of efficacy
and safety in infants in
sub-Saharan Africa.

(217)

MPL+QS-21
+cholesterol (AS01E)

M72/AS01E vaccine
showed about 50%

protection against TB in
adults infected with M.
tuberculosis over 3 years,
suggesting it could be
valuable for global TB
control. The immune
responses it triggered
lasted up to 36 months,
supporting its potential

in future studies
involving

diverse populations.

(218)

xtran 500 kDa and DEAE-
xtran 500 kDa coated with

The GamTBvac vaccine
demonstrated tolerability

(219)
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Type Number Name Stage Sponsor Antigen Vector

Henry M. Jackson
Foundation for the
Advancement of
Military Medicine

4 VPM1002 III

Serum Institute of India
Private Limited, Vakzine

Projekt
Management GmbH

VPM1002 is a
recombinant

BCG vaccination
strain that
expresses

listeriolysin and
lacks urease C

Not Available

Subunit
vaccines

1 M72/AS01E III
Bill & Melinda Gates
Medical Research

Institute, GSK Vaccines
Mtb32A-Mtb39A Not Available

2 GamTBvac III
Gamaleya Res. Centre,

MoH Russia
Not Available

D
D

e
e
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Adjuvant Evaluation References

CpG oligonucleotides are
included in the adjuvant

and exhibited an
acceptable safety profile.
The findings of antigen-
specific IFN-g release,

Th1 cytokine-expressing
CD4+ T-cells, and IgG
responses from the

vaccine support further
clinical testing
of GamTBvac.

lucopyranosyl lipid adjuvant
GLA)-stable emulsion (SE)

In adult healthcare
workers who had not
previously infected M.
tuberculosis but had
received a BCG

vaccination, the ID93 +
GLA-SE vaccine elicited
antigen-specific cellular
and humoral immune

responses with a
tolerable safety profile.

(220)

ytosine guanine dinucleotide
(BCG-cpg-DNA) and
aluminum hydroxide of

BCG (BC02)

In mice, the AEC/BC02
vaccination produced

robust cellular
immunological

responses, as evidenced
by a high frequency of
antigen-specific T cells
that secrete IFN-g.

(221)

CAF®10b

Unlike BCG, H107e
possesses eight distinct
protective antigens. Mice
were able to develop
long-lasting immunity
and Th17 responses
specific to BCG after

receiving a single dosage
of H107e/CAF®01

combined with BCG.

(222)

Not Available

Aerosol delivery of
AdHu5Ag85A vaccine is

safe, induces robust
respiratory mucosal

(223)
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DBD-Ag85a,
DBD-

ESAT6-CFP10

3
ID93+GLA-
SE (QTP101)

IIa NIAID, NIH
Rv1813, Rv2608,
Rv3619, Rv3620

Not Available
G

4 AEC/BC02 IIa
Anhui Zhifei Longcom
Biopharmaceutical

Co., Ltd.

Ag85b,
ESAT6-CFP10

Not Available

C

5 H107e/CAF10b I Statens Serum Institut

PPE68/Rv3873,
ESAT-6/Rv3875,
EspI/Rv3876,
EspC/Rv3615c,
EspA/Rv3616c,
MPT70/Rv2875,
MPT83/Rv2873

Not Available

Viral
vectored
vaccines

1 AdHu5Ag85A I
McMaster

University, CanSino
Ag85A Adenovirus
(
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Vector Adjuvant Evaluation References

immunity, and elicits
systemic T cell

responses, highlighting
its potential for

developing effective
aerosol vaccine strategies

against respiratory
pathogens like TB and

COVID-19.

Recombinant attenuated
influenza vector
(Flu/THSP)

Not Available

A BCG-prime and Flu/
THSP vector boost

vaccination system was
demonstrated to shield

mice against M.
tuberculosis-induced
severe lung damage
because it boosted the
T-cellular immune
response, which is
mediated by antigen

specific CD4+ and CD8+

T-lymphocytes.

(224, 225)

Simian adenoviral
vector (ChAdOx1.85A),
modified vaccinia virus
Ankara (MVA85A)

Not Available

ChAdOx1.85A
+MVA85A were safe for

adults and evoked
polyfunctional CD4+ T
cells (IFN-g, TNF-a, and
IL-2) as well as IFN-g+,
TNF-a+ CD8+ T cells

and Ag85A
IgG responses.

(226)

Not Available Not Available Not Available (210)

Not Available Not Available Not Available (210)
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Type Number Name Stage Sponsor Antigen

2 TB/FLU-05E I

Smorodintsev Research
Institute of Influenza,
Ministry of Health of
the Russian Federation

Truncated NS1
protein NS1(1–

124),
TB10.4, HspX

3
ChAdOx1.85A
+MVA85A

IIa University of Oxford Ag85A

mRNA
vaccines

1 BNT164a1 I
BioNTech,

Gates foundation
Not Available

2 BNT164b1 I
BioNTech,

Gates foundation
Not Available
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cells not only aid in attachment and invasion but also trigger a

series of signaling cascades, including the activation of the

mitogen-activated protein kinases (MAPKs) pathway and

the IFN-g response, which can elicit pro-inflammatory and/or

anti-inflammatory events (229). Moreover, adhesion molecules

interfere with host signaling pathways and modify intracellular

mechanisms, thereby modulating the immune response.

Consequently, targeting these molecules is pivotal for the

development of innovative tuberculosis vaccines and therapeutics.

Augmenting the bactericidal activity of primary mycobacterial

targets—innate immune cells—stands as a critical strategy for

curtailing M. tuberculosis proliferation. Trained immunity refers

to a heightened state of innate immunological readiness that

confers prolonged protection (232). Evidence suggests this

heightened readiness can preserve its protective efficacy for

months, if not years, following exposure to live vaccines (233,

234). Epigenetic and metabolic reprogramming of monocytes and

macrophages constitute the mechanistic underpinnings of trained

immunity, bolstering mycobacterial eradication and fostering

expeditious clearance (235). b-glucan, renowned for immune

potentiation in cancer therapy, exemplifies an agent that has

shown promise in clinical trials for enhancing resistance to

M. tuberculosis infection by stimulating myeloid progenitor

proliferation (236–240). Similarly, the BCG vaccine can induce

preventive innate immunity through the reprogramming of

hematopoietic stem cells towards myelopoiesis in the bone

marrow (241). The exploration of vaccine candidates that amplify

innate immunity and elicit trained immunity could revolutionize

TB vaccine efficacy.

DCs serve as a linchpin in the host’s defensive apparatus as

primary antigen-presenting cells. Bolstering DCs through vaccines

and immunotherapies could potentiate TB mitigation efforts.

Enhancement of glutathione levels within DCs kickstarts the NF-

kB signaling pathway, augmenting DC functionality in their dual

roles of mycobacterial containment and antigen presentation (242).

Exogeneous CD40 stimulation in infected DCs has been observed to

amplify DC efficacy and boost CD4+ T cell responses, which aids in

managing pulmonary bacterial loads (243). The introduction of

antigen-loaded DCs has demonstrated the potential to enhance the

efficacy of BCG vaccines, accentuating the imperative role of DCs in

vaccine success (244).

Immunological research has demonstrated the critical

importance of CD4+ Th1 cells and cytokines such as IFN-g, TNF-
a, and IL-2 in orchestrating host immunity (245). By elucidating

the pathogenesis ofM. tuberculosis, researchers can more accurately

identify antigens that instigate robust T cell responses, necessitating

continued exploration for novel mycobacterial antigens through

bioinformatics and genomics. In the field of immunoinformatics,

computational techniques are employed to address immunological

complexities, enabling the discovery of immunogenic T-cell

peptides from M. tuberculosis, specifically MPT64, PPE68, CFP21,

and Ag85B (246–250). These peptides have shown promising

immunogenicity in laboratory studies and represent candidates

for potential inclusion in future tuberculosis vaccines.

Furthermore, unraveling the mechanisms behind the generation
Frontiers in Immunology 19
and maintenance of memory T cells is crucial for the development

of effective T cell-targeted vaccines (251).

Recent studies have posited a reinforcing role for antibodies in

the defensive cohort againstM. tuberculosis, with antibodies against

capsular polysaccharides conferring protection in various microbial

infections (252). The capsule constituent arabinomannan (AM)

plays a critical role in TB pathophysiology (253), and vaccinations

using AM conjugates have conferred heightened resistance in

murine models (254, 255). HBHA also plays a critical role in the

dissemination of mycobacteria. Studies have shown that coating

BCG with anti-HBHA antibodies significantly reduces spleen

colonization, suggesting that targeting HBHA can be an effective

strategy to limit the spread of mycobacterial infections (231). In

mycobacterium-infected mice, intranasal administration of an IgA

monoclonal antibody targeting the a-crystallin antigen of M.

tuberculosis resulted in a significant tenfold reduction in bacterial

counts within the lungs (174). Furthermore, BCG and several other

antigen-based vaccines elicit humoral responses that enhance TB

prognoses (156).

Confronting mycobacterial adept immune evasion strategies is

another key to vaccine advancement. M. tuberculosis employs

mechanisms to dampen immune responses, devastate immune

cells, and diminish metabolic visibility for persistent cellular

habitation (Tables 1, 2). Targeted disruption of these

mycobacterial evasion pathways will substantially amplify vaccine

potency. For instance, the ESX-1 type VII secretion system is

implicated in facilitating mycobacterial cellular escape and

dissemination, and its incorporation into the BCG genome—

yielding BCG::ESX-1—has shown enhanced protective capacity

against TB (256). The major secretory antigen, the antigen 85

(Ag85) complex, comprising Ag85A, Ag85B, and Ag85C, plays a

crucial role in the pathogenicity of M. tuberculosis. This complex

impedes the formation of phagolysosomes, thereby enabling the

bacteria to overcome the host immune response and persist within

host cells. Given its significant impact on the infection process,

Ag85 molecules are being utilized in diagnostic procedures and the

development of novel vaccines (257). ESAT-6 reduces T cell

activation without altering upstream T cell receptor (TCR)

signaling processes, thereby significantly inhibiting T cell

production of IFN-g in response to M. tuberculosis or TCR

activation (258). ESAT-6 is currently utilized in tuberculosis-

related vaccines, including AEC/BC02 and GamTBvac. The

antigen TB10.4 is expressed by both M. tuberculosis and BCG.

Upon activation, CD8+ T cells specific to the TB10.4 3–11epitope

are recruited to the site of infection following M. tuberculosis

exposure. These cells produce TNF-a and IFN-g, and exhibit

upregulated expression of Fas ligand (FasL) and lysosomal-

associated membrane proteins 1 and 2 (LAMP-1/2, also known as

CD107A/B) (259). The TB-related vaccine TB/FLU-05E, currently

in Phase I clinical trials, employs TB10.4 as one of its antigens.

Collectively, these insights point towards a multifaceted

approach to TB vaccine development, encompassing the targeting

of adhesion molecules, fortification of innate immune responses,

enhancement of DC functionality, discovery of novel antigens, and

interruption of M. tuberculosis immune evasion mechanisms. Such
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a strategy presages advancements in durable and effective vaccines

against TB.

Conclusions

This review sheds light on the mechanisms by which M.

tuberculosis enters host cells, disseminates infection, and evades

the immune system. The vaccines for the future will need to

overcome myeloid cell malfunction and the inability of the innate

and adaptive immune systems caused byM. tuberculosis in order to

eradicate the bacilli. The knowledge of pathogenesis should enable

novel methods to produce effective vaccines, despite the numerous

gaps that still need to be filled.
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211. Nell AS, D'lom E, Bouic P, Sabaté M, Bosser R, Picas J, et al. Safety, tolerability,
and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-
controlled phase II clinical trial in patients with latent tuberculosis infection. PLoS One.
(2014) 9:e89612. doi: 10.1371/journal.pone.0089612

212. Munseri P, Said J, Amour M, Magohe A, Matee M, Rees CA, et al. DAR-901
vaccine for the prevention of infection with Mycobacterium tuberculosis among BCG-
immunized adolescents in Tanzania: A randomized controlled, double-blind phase 2b
trial. Vaccine. (2020) 38:7239–45. doi: 10.1016/j.vaccine.2020.09.055

213. von Reyn CF, Lahey T, Arbeit RD, Landry B, Kailani L, Adams LV, et al. Safety
and immunogenicity of an inactivated whole cell tuberculosis vaccine booster in adults
primed with BCG: A randomized, controlled trial of DAR-901. PLoS One. (2017) 12(5):
e0175215. doi: 10.1371/journal.pone.0175215

214. Lahey T, Laddy D, Hill K, Schaeffer J, Hogg A, Keeble J, et al. Immunogenicity
and protective efficacy of the DAR-901 booster vaccine in a murine model of
tuberculosis. PLoS One. (2016) 11:e0168521. doi: 10.1371/journal.pone.0168521
frontiersin.org

https://doi.org/10.1016/j.vaccine.2004.11.032
https://doi.org/10.1093/intimm/dxl017
https://doi.org/10.1093/intimm/dxl017
https://doi.org/10.1073/pnas.1611776114
https://doi.org/10.4049/jimmunol.1003189
https://doi.org/10.1016/j.femsim.2004.01.004
https://doi.org/10.1016/j.femsim.2004.01.004
https://doi.org/10.1111/j.1365-2249.2004.02593.x
https://doi.org/10.1016/j.ijmm.2008.10.007
https://doi.org/10.1073/pnas.95.26.15688
https://doi.org/10.1111/j.1365-2567.2004.01809.x
https://doi.org/10.1016/j.tube.2008.09.001
https://doi.org/10.1016/j.micinf.2005.12.004
https://doi.org/10.1016/j.tube.2006.01.006
https://doi.org/10.1128/IAI.73.9.6101-6109.2005
https://doi.org/10.1128/IAI.73.9.6101-6109.2005
https://doi.org/10.1016/j.tube.2009.02.003
https://doi.org/10.1016/S1473-3099(06)70658-2
https://doi.org/10.1111/fim.2013.69.issue-3
https://doi.org/10.1073/pnas.1013827107
https://doi.org/10.1084/jem.191.2.287
https://doi.org/10.1128/IAI.68.1.335-341.2000
https://doi.org/10.1136/ard.2009.117101
https://doi.org/10.1172/JCI121960
https://doi.org/10.1172/jci.insight.126492
https://doi.org/10.1038/nri3211
https://doi.org/10.1038/nri.2017.69
https://doi.org/10.1038/ni.1781
https://doi.org/10.1128/IAI.01515-07
https://doi.org/10.1016/j.immuni.2022.04.004
https://doi.org/10.1016/j.immuni.2022.04.004
https://doi.org/10.4049/jimmunol.1601340
https://doi.org/10.1111/j.1365-2249.2004.02577.x
https://doi.org/10.1007/s00018-023-04914-5
https://doi.org/10.1007/978-3-030-66703-0_43
https://doi.org/10.1007/978-3-030-66703-0_43
https://doi.org/10.5455/medarh.
https://doi.org/10.1378/chest.10-3297
https://doi.org/10.1111/crj.12621
https://doi.org/10.3389/fmicb.2018.02603
https://doi.org/10.5588/ijtld.18.0722
https://doi.org/10.5588/ijtld.18.0313
https://doi.org/10.1016/j.tube.2022.102244
https://doi.org/10.1016/S2214-109X(14)70359-6
https://doi.org/10.1016/S2213-2600(21)00561-0
https://doi.org/10.1148/rg.2019190109
https://doi.org/10.1136/pgmj.18.201.139
https://doi.org/10.1093/cid/cis303
https://newtbvaccines.org/tb-vaccine-pipeline/clinical-phase/
https://newtbvaccines.org/tb-vaccine-pipeline/clinical-phase/
https://doi.org/10.1371/journal.pone.0089612
https://doi.org/10.1016/j.vaccine.2020.09.055
https://doi.org/10.1371/journal.pone.0175215
https://doi.org/10.1371/journal.pone.0168521
https://doi.org/10.3389/fimmu.2024.1440935
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2024.1440935
215. Tameris M, Mearns H, Penn-Nicholson A, Gregg Y, Bilek N, Mabwe S, et al.
Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults
and neonates: a randomised controlled, double-blind dose-escalation trial. Lancet
Respir Med. (2019) 7:757–70. doi: 10.1016/S2213-2600(19)30251-6

216. Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N, et al.
Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N
Engl J Med. (2018) 379:138–49. doi: 10.1056/NEJMoa1714021

217. Cotton MF, Madhi SA, Luabeya AK, Tameris M, Hesseling AC, Shenje J, et al.
Safety and immunogenicity of VPM1002 versus BCG in South African newborn babies:
a randomised, phase 2 non-inferiority double-blind controlled trial. Lancet Infect Dis.
(2022) 22:1472–83. doi: 10.1016/S1473-3099(22)00222-5

218. Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E, Salaun
B, et al. Final analysis of a trial of M72/AS01(E) vaccine to prevent tuberculosis.N Engl J
Med. (2019) 381:2429–39. doi: 10.1056/NEJMoa1909953

219. Tkachuk AP, Bykonia EN, Popova LI, Kleymenov DA, Semashko MA,
Chulanov VP, et al. Safety and immunogenicity of the gamTBvac, the recombinant
subunit tuberculosis vaccine candidate: A phase II, multi-center, double-blind,
randomized, placebo-controlled study. Vaccines (Basel). (2020) 8(4):652.
doi: 10.3390/vaccines8040652

220. Choi YH, Kang YA, Park KJ, Choi JC, Cho KG, Ko DY, et al. Safety and
immunogenicity of the ID93 + GLA-SE tuberculosis vaccine in BCG-vaccinated
healthy adults: A randomized, double-blind, placebo-controlled phase 2 trial. Infect
Dis Ther. (2023) 12:1605–24. doi: 10.1007/s40121-023-00806-0

221. Lu JB, Chen BW, Wang GZ, Fu LL, Shen XB, Su C, et al. Recombinant
tuberculosis vaccine AEC/BC02 induces antigen-specific cellular responses in mice and
protects Guinea pigs in a model of latent infection. J Microbiol Immunol Infect. (2015)
48:597–603. doi: 10.1016/j.jmii.2014.03.005

222. Dijkman K, Lindenstrøm T, Rosenkrands I, Søe R, Woodworth JS, Lindestam
Arlehamn CS, et al. A protective, single-visit TB vaccination regimen by co-
administration of a subunit vaccine with BCG. NPJ Vaccines. (2023) 8:66.
doi: 10.1038/s41541-023-00666-2

223. Jeyanathan M, Fritz DK, Afkhami S, Aguirre E, Howie KJ, Zganiacz A, et al.
Aerosol delivery, but not intramuscular injection, of adenovirus-vectored tuberculosis
vaccine induces respiratory-mucosal immunity in humans. JCI Insight. (2022) 7(3):
e155655. doi: 10.1172/jci.insight.155655

224. Vasilyev K, Shurygina AP, Zabolotnykh N, Sergeeva M, Romanovskaya-
Romanko E, Pulkina A, et al. Enhancement of the Local CD8(+) T-Cellular Immune
Response to Mycobacterium tuberculosis in BCG-Primed Mice after Intranasal
Administration of Influenza Vector Vaccine Carrying TB10.4 and HspX Antigens.
Vaccines (Basel). (2021) 9(11):1273. doi: 10.3390/vaccines9111273

225. Sergeeva M, Romanovskaya-Romanko E, Zabolotnyh N, Pulkina A, Vasilyev K,
Shurigina AP, et al. Mucosal Influenza Vector Vaccine Carrying TB10.4 and HspX
Antigens Provides Protection against Mycobacterium tuberculosis in Mice and Guinea
Pigs. Vaccines (Basel). (2021) 9(4):394. doi: 10.3390/vaccines9040394

226. Wilkie M, Satti I, Minhinnick A, Harris S, Riste M, Ramon RL, et al. A phase I
trial evaluating the safety and immunogenicity of a candidate tuberculosis vaccination
regimen, ChAdOx1 85A prime - MVA85A boost in healthy UK adults. Vaccine. (2020)
38:779–89. doi: 10.1016/j.vaccine.2019.10.102

227. Lai R, Ogunsola AF, Rakib T, Behar SM. Key advances in vaccine development
for tuberculosis-success and challenges. NPJ Vaccines. (2023) 8:158. doi: 10.1038/
s41541-023-00750-7

228. Kline KA, Fälker S, Dahlberg S, Normark S, Henriques-Normark B. Bacterial
adhesins in host-microbe interactions. Cell Host Microbe. (2009) 5:580–92.
doi: 10.1016/j.chom.2009.05.011

229. Govender VS, Ramsugit S, Pillay M. Mycobacterium tuberculosis adhesins:
potential biomarkers as anti-tuberculosis therapeutic and diagnostic targets. Microbiol
(Reading). (2014) 160:1821–31. doi: 10.1099/mic.0.082206-0
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