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Colorectal cancer (CRC) remains a significant cause of cancer-related mortality

worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy,

the effectiveness of these conventional treatments is limited, particularly in

advanced cases. Therefore, transition to novel treatment is urgently needed.

Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown

promise in improving outcomes for CRC patients. Notably, patients with

deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H)

tumors often benefit from ICIs, while the majority of CRC cases, which exhibit

proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status,

generally show resistance to this approach. It is assumed that the MSI

phenotype cause some changes in the tumor microenvironment (TME), thus

triggering antitumor immunity and leading to response to immunotherapy.

Understanding these differences in the TME relative to MSI status is essential

for developing more effective therapeutic strategies. This review provides an

overview of the TME components in CRC and explores current approaches

aimed at enhancing ICI efficacy in MSS CRC.
KEYWORDS
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1 Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer, accounting for

10.2% of all cases globally, and it is the second leading cause of cancer mortality, responsible

for 9.2% of cancer death (1). Standard treatments for CRC include surgery, chemotherapy,

radiotherapy, and targeted therapy, such as epidermal growth factor receptor (EGFR)
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inhibitors (e.g., cetuximab) and vascular endothelial growth factor

receptor (VEGFR) inhibitors (e.g., bevacizumab) (2, 3).

Unfortunately, the prognosis for patients with metastatic CRC

remains poor, with over 80% of these patients succumbing to the

disease within 5 years of diagnosis (4, 5).

Immunotherapy, which harnesses and modulates the patient’s

immune system to combat cancer, is a promising treatment avenue.

Immune system distinguishes self from non-self through the

interaction between T-cell receptors (TCRs) and peptides by

major histocompatibility complex (MHC) molecules on the

surface of all cells, including tumor cells (6, 7). Co-stimulatory or

co-inhibitory ligands can modulate the TCR-MHC signaling

pathway, a mechanism often exploited by tumor cells to evade

immune surveillance (8, 9). Immune checkpoint inhibitors (ICIs),

which target co-inhibitory pathways such as cytotoxic T

lymphocyte antigen 4 (CTLA4) and programmed cell death 1

(PD-1) on T cells, as well as programmed death ligand 1 (PD-L1)

on tumor and immune cells, can restore T-cell function and

enhance antitumor immunity (10). While ICIs have shown

impressive efficacy in cancers like lung cancer and melanoma,

their success in CRC varies significantly with disease stage and

molecular subtype, underscoring the molecular heterogeneity

of CRC.

Microsatellites, defined as short series of DNA repeats, are

susceptible to occur replication errors typically corrected by the

mismatch repair (MMR) system. Patients with the dMMR

phenotype often exhibit MSI in tumor microenvironment (TME), a

feature present in approximately 15% in CRC cases (11).

Dysfunctional MMR systems lead to higher tumor mutational

burdens (TMBs) in MSI tumors compared to microsatellite stable

(MSS) tumors, generating a more robust antitumor immune response
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(12). Previous studies have shown that patients with dMMR/MSI-

high (MSI-H) CRCs exhibit an objective response rate (ORR) of

approximately 60% when treated with ICIs (13, 14), leading the FDA

to approve ICIs for dMMR/MSI-H CRC patients (10). In contrast,

MSS CRCs—which represent approximately 85% of metastatic CRC

cases—demonstrate an ORR of only 5%–10% (10).

Immunophenotyping and antigenome meta-analyses reveal

that MSI CRCs have a TME enriched in CD4+ and CD8+ T cells

and depleted of myeloid-derived suppressor cells (MDSCs),

underscoring the critical role of the TME in determining

immunotherapy efficacy (15). However, among MSI tumors,

those with mutations in genes involved in antigen processing and

presentation, such as B2M, TAP1, TAP2, NLRC5, and RFX5, may

still evade immune surveillance and show limited response to

immunotherapy, which provides a clue of immunotherapy

resistance of MSS phenotype (16–18). The mechanisms

underlying immunotherapy resistance in these cases remain

unclear and warrant further investigation.
2 Tumor immune microenvironment
in CRC

The TME, where tumors reside, is composed of immune cells,

blood vessels, extracellular matrix (ECM), fibroblasts, and various

signaling molecules (19, 20). Interactions between malignant and

nonmalignant cells within TME are crucial for cancer development,

progression, metastasis, and therapeutic outcome (21–23). Notably,

the composition and spatial distribution of TME differ between

MSS and MSI CRCs (10). Table 1 provides a summary of the

characteristics of cellular components within the TME.
TABLE 1 Characteristics of cellular components in TME.

Immune cells Inducible factors Productions Expression preference Prognosis

CD8+ TIL IL-2, IL-4, IL-7, IL15, IFN-g Perforin, granzymes, granulysin, Fas
ligand, TNF-a

MSI Good

Th1 IL-12 and IFN-g IFN-g, TNF-a, MSI Good

Th17 TGF-b and IL-6 17A, IL-17F, IL-21, IL-22, TGF-b,
IFN-g, TNF-a

MSS Poor

Treg TGF-b and IL-12 TGF-b, IFN-g, IL-10 MSS Polarize

gd T cell IL-8 and VEGF IFN-g (Vd1 T), IL-17 (Vd2T) MSI Polarize

MDSC PGE2, IL-6, VEGF, IL-1b,
IL-17, TGF-b

IL-10, TGF-b, iNOS, ARG1 MSS Poor

TAM M1: IFN-g, LPS, TNF-a M1: IL-6, IL-23, ROS M2:pMMR M1: good;

M2: IL-4, IL-10,
IL-13, glucocorticoid

M2: IL-10, IL-1b M2: poor

TAN N1: IFN-g N1: IL-12, IL-18, IL-17, IL-23 and
TNF-a

MSS Polarize

N2:IL-8, TGF-b N2: arginase, MMP-9, VEGF

NK cells IL-12, IL-15, and IL-18 IFN-g, IL-10, IL-13, TNF-b, and
GM-CSF

MSI Good

DCs Flt3L IL-12, IL-6, TNF-a, and IL-1b MSI Good
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2.1 T cells

T cells, the most abundant immune cells in TME, are

traditionally categorized into two main subsets: CD8+ and CD4+

T cells, each equipped with TCRs composed of an alpha and a beta

chain (24). Tumor antigens are initially recognized and processed

by antigen-presenting cells (APCs), such as dendritic cells, and

subsequently presented on MHC class I and MHC class II

molecules to CD8+ T cells and CD4+ T cells, respectively,

collectively driving a robust antitumor immune response.
2.1.1 CD8+ T cell
CD8+ cytotoxic T lymphocytes (CTLs) are the primary T-cell

subset responsible for directly killing tumor cells in the antitumor

immune response. These cells are activated by cytokines such as

interleukin-2 (IL-2), IL-4, IL-7, IL-15, and interferon-g (IFN-g). In
TME, chemokines like CCL5 and CXCL9/10/11 bind to CXCR3 on

CD8+ T cells, recruiting them to the TME, where they exert

cytotoxic effects by secreting perforin, granzymes, granulysin, Fas

ligand, and tumor necrosis factor a (TNF-a) (25–28). CD8+ T-cell
infiltration is known to correlate strongly with improved patient

survival and reduced recurrence risk, particularly in advanced cases

(T4, N1-2), regardless of DNAMMR deficiency, POLE mutation, or

chromosomal instability status (29, 30).

In MSS CRC, immune evasion often occurs through reduced

CD8+ T-cell infiltration in the tumor center and functional

exhaustion of these cells. In CRC, CD8+ T-cell density is generally

lower in the tumor center than at the invasive margin, with higher

central infiltration levels associated with better overall survival (31).

Moreover, while CD8+ T-cell densities in stroma were similar in

both MSS and MSI CRCs, as well as that in the tumor glands, MSI-

H tumors tend to exhibit greater CD8+ T-cell density in both the

tumor core and invasive margin (32). Studies have shown that

CD8+ T cells in MSI-H tumors are more abundant and exhibit

enhanced cytotoxic activity (33–37).

In MSS CRC, TIM-3+PD-1+CD8+CILs often accumulate with

exhaustion phenotype, highlighting the role of co-inhibitory signal

in T-cell dysfunction (38). Research has indicated that cholesterol

accumulation in TME may exacerbate endoplasmic reticulum (ER)

stress, which upregulates inhibitory receptors such as PD-1, 2B4,

TIM-3, and LAG-3 on CD8+ T cells. Notably, inhibition of the ER

stress sensor XBP1 or reduction of cholesterol has been shown to

restore CD8+ T-cell antitumor activity (39). Furthermore, high level

of IL-2 in TME can enhance inhibitory receptors’ expression and

reduce cytokine and effector molecule production in CD8+ T cells

through the activation of the STAT5 pathway (40). TOX, a

transcription factor closely associated with T-cell exhaustion, is

necessary for T-cell persistence within tumors; TOX deletion

impairs T-cell survival, suggesting that T-cell exhaustion may

serve as a regulatory mechanism to prevent overactivation and

subsequent cell death in chronic immune responses (41).
2.1.2 CD4+ T cell
CD4+ helper T lymphocytes are crucial players in the immune

response, not only activating other immune cells like B cells and
Frontiers in Immunology 03
cytotoxic T cells but also differentiating into subsets with diverse

functions, including T helper (TH) 1 cells, TH2 cells, TH17 cells,

TH9 cells, follicular helper T (Tfh) cells, and regulatory T (Treg)

cells (42). Each of these subsets has distinct surface markers,

transcription factors, polarizing cytokines, functions, and cytokine

profiles, as detailed in prior comprehensive review (24). Unlike their

CD8+ counterparts, CD4+ memory T cells are persistently present,

which is vital for a sustained response to tumor antigens (43).

Within TME, each CD4+ subset plays unique and sometimes

contrasting roles, interacting in complex ways. For example, TH1-

derived IFN-g and TH2-derived IL-4 mutually inhibit each other’s

expression (44). TH2 and TH9 lineages, despite sharing

transcriptional pathways like STAT6, exert opposing effects

within the TME, with TH2 generally supporting tumor

progression, whereas TH9 promotes antitumor immunity (44).

TH1 cells are associated with favorable outcomes in CRC, as

they can enhance cancer cell apoptosis, inhibit angiogenesis, and

recruit toxic CD8+ T cells (45, 46). Compared with the MSS

phenotype, MSI CRCs have a higher density of TH1 cells,

underscoring their antitumor role within TME (32, 47). TH1 cells

have also been reported to reshape the tumor-associated myeloid

cell network, promoting interferon-activated antigen presentation

and iNOS-expressing tumoricidal effector phenotypes, which

together indirectly eradicates interferon-unresponsive and MHC-

deficient tumors (48). TH2 cells, traditionally involved in immunity

to parasites and allergic diseases, have recently been observed to

exhibit antitumor activity through cytokines such as IL-4 and IL-5

(49). However, the TH2 cluster expression does not correlate with

CRC patient prognosis (45). The role of TH2 cells in the TME

remains complex and warrants further investigation to better

understand their potential contributions to CRC outcomes.

TH17 cells play a crucial role in mucosal defense by producing

various pro-inflammatory cytokines, including IL-17A, IL-17F, IL-

21, IL-22, and TNF-a (50). They are activated through TGF-b and

IL-6 via the p-STAT3 and RAR-related orphan receptor-gt (ROR-
gt)-dependent pathways, while IL-23 serves as a growth and

stabilizing factor (51). Within TME, TH17 cells are recruited by

chemokines CCL4, CCL17, CCL20, and CCL22 (52). Research has

demonstrated the pro-tumorigenic role of TH17 cells through

several mechanisms (1): reducing CD8+ T-cell infiltration by

inhibiting the production of chemokines CXCL9 and CXCL10

and downregulating CXCR3 expression via the IL-17A/STAT3

signaling pathway; (2) creating an immunosuppressive TME by

recruiting and accumulating MDSCs; (3) impeding antigen

presentation by dendritic cells (DCs) to CD4+ T cells through

upregulation of nitric oxide (NO) levels; (4) enhancing the

immunosuppressive capacity of mesenchymal stem/stromal cells

(MSCs) and macrophage, thus facilitating tumor progression; and

(5) inducing the expression of immunosuppressive mediators,

including IL-6, TGF-b, and CCR6 (53–58). Nearly two-thirds of

primary sporadic CRCs exhibit increased levels of TH17 cells,

which is associated with poor prognosis (45). Compared to MSI-

H tumors, MSS tumors show a higher proportion (approximately

40%) of TH17-cell-infiltrated phenotype (47, 59). Among patients

with MSS CRC, those with lower IL-17A+ cell infiltration have

shown better tumor control rates following anti-PD-1
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immunotherapy (60), making IL-17 a potential target. Interestingly,

owing to the presence of different IL-17 subtypes, TH17 cells can

exhibit dual roles. Besides a protumor role, IL-17F has been shown

to have antitumoral effects, and intraepithelial IL-17+ cell

infiltration is positively associated with an improved prognosis

(61, 62). Additionally, TH17 lineage can exert antitumorigenic

effects by recruiting immune cells such as DCs, CD4+ T cells, and

CD8+ T cells (52). This dual functionality might explain the

association between tumor-infiltrating TH17 cells and favorable

prognosis in cancers like oral squamous cell carcinoma, gastric

cancer, and cervical cancer (63–65).
2.1.3 Regulatory T cells
Regulatory T cells (Tregs), characterized by high expression of

CD25 and the transcription factor forkhead box protein P3 (FOXP3),

play a crucial role in maintaining tolerance to self-antigens and

immune homeostasis through production of TGF-b and IFN-g, as
well as direct cell-to-cell contact (66, 67). Within CRC TME, Tregs

are induced by TGF-b and IL-12 and recruited by chemokines such

as CCL1, CCL3, CCL4, CCL17, CCL20, and CCL22 (68, 69). The

conversion of naive and memory conventional T cells to Tregs is

facilitated by immature APCs and MDSCs (70). Tregs suppress

antitumor immunity by inducing apoptosis in CD8+ T cells,

producing IL-10 to inhibit NK cells and conversion of TH17 and

TH1 cells, thus creating an immunosuppressive TME that supports

CRC progression (71, 72). Elevated levels of Tregs have been detected

in peripheral blood, tumor-draining lymph node, and tumor site of

CRC patients (68, 71, 73). In particular, intratumor Tregs

demonstrate higher suppressive activity (74). Compared to MSI

subtypes, higher expression levels of FOXP3 and TGF-b are

observed in MSS CRC (75), which is paralleled by the decreased

number of CD8+ lymphocytes (76). Moreover, depletion of Tregs

related to increased MSI phenotype correlated with T-cell response,

which indicates the important role of Tregs to shape a suppressive

TME in the MSS phenotype (77).

In recent years, the association between Tregs and prognosis of

CRC patients has been controversial (78–81). This paradox may be

explained by several factors. Both CD4+CD25+ natural Tregs

(nTregs), which primarily suppress self-reactive T cells, and

induced Tregs (iTregs), which maintain immune homeostasis,

express FOXP3 during maturation (82, 83). Additionally, FOXP3

is not exclusive to Tregs, as some non-regulatory T cells and even

tumor cells may also express this marker (84). Besides Foxp3, other

surface markers expressed on Tregs, such as CTLA-4, LAG3, GITR,

HLA-DR, ICOS, and CD127, are also essential for Treg

functionality (85). These markers provide a foundation for novel

strategies to improve homogeneous Treg purification. For example,

based on CD45RA and HLA-DR expression, Tregs can be classified

into three distinct subpopulations: naïve Tregs (CD45RA+, HLA-

DR−), memory Tregs (CD45RA−, HLA-DR−), and memory/

activated Tregs (CD45RA−, HLA-DR+) (86). Tregs may initially

have a protective function by suppressing cancer-associated

inflammation in early-stage CRC; however, they may adopt a

pro-inflammatory phenotype as the cancer progresses to

advanced stages (87). These findings suggest that previous studies
Frontiers in Immunology 04
focusing solely on FOXP3 expression may not fully capture the role

of Tregs in the TME. Identifying additional biomarkers, such as

HLA-DR and TGF-b, may help in isolating functionally suppressive

Tregs more accurately.

2.1.4 gd T cell
In addition to the predominant CD4+ and CD8+ T cells

expressing ab TCRs, a subset of primarily CD4/CD8 double-

negative T cells with gd TCRs has garnered attention as a

promising immune cell population for next-generation cancer

immunotherapy. These gd T cells can recognize antigens directly

on the cell surface, independent of MHC presentation, and are

found at lower expression levels in the colonic tissue of CRC

patients compared to healthy controls (88–91). In CRC, two main

subtypes of gd T cells are observed: those with variable region 1 of d
chain (Vd1), which primarily produce IFN-g, and those expressing

Vd6, which exhibit inflammatory properties through production of

IL-17A (90, 92).

In the early stages of CRC, gd T cells display cytotoxic markers

and contribute to tumor surveillance and regression through IFN-g
production. However, as the tumor progresses, tumor-infiltrating gd
T cells can acquire a pro-tumorigenic profile, characterized by IL-17

secretion (90, 93, 94). A study by Sumana et al. identified a positive

correlation between the expression levels of perforin and granzymes

and MSI-H status, as well as higher levels of activated memory

CD4+ T cells, gd T cells, and M1 macrophages, suggesting a

potential antitumor role of gd T cells in MSI-H CRC (95).

Because of the diverse functional roles of gd T cells throughout

tumorigenesis, it is challenging to define their precise role in MSS

and MSI CRC without taking into account tumor stage and gd T-

cell subtype. To date, differences in the function and presence of gd
T cells between MSS and MSI CRC remain largely unexplored.

2.1.5 NK T cell
Apart from CD8+ T cell and NK cell, there is another cytotoxic

subset, NK T cells, which exhibit characteristics of both

conventional T cells and NK cells (96). Owing to the expression

of both NK cell- and T cell-associated functional molecules, NKT

cells can be activated in a T cell-like manner via recognition of

glycolipids in the context of CD1d molecules and in an NK cell-like

manner through inhibitory and stimulatory signals (97, 98). In

addition to killing target cells directly, they are potent immune

regulators by secreting TH1-, TH2-, TH17-, Treg-, and TFH cell-

associated cytokines (99). Based on their TCR diversity, NKT cells

can be divided into two subtypes: type I and type II NKT cells. Type

I NKT cells recognize the glycosphingolipid a-galactosylceramide

(a-GalCer) or its synthetic analogs, presented by MHC I-like CD1d

molecules, while type II NKT cells recognize non-a-GalCer
molecules presented by CD1d molecules (100). So far, it is found

that type I NKT cells can be divided into five different functional

subsets: TH1-, TH2-, TH17-, Treg-, and TFH-like type I NKT cells,

while only two type I NKT cells were identified, TH1- and TH2-like

subtypes (96). In TME, type I NKT cells generally play an antitumor

role to inhibit tumor development and metastasis, while type II

NKT cells associated with immunosuppression and tumor
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progression (101–103). CRC patients with high numbers of tumor-

infiltrating type I NKT cells tend to have relatively favorable clinical

outcome (104). However, tumor-infiltrating type I NKT cells

exhibit impaired antitumor ability with decreased production of

IFN-g, which indicate that type I NKT cells might switch from a

TH1- toward a TH2-like NKT cell subset in TME (105). Currently,

owing to their variable population and function, NK T cells become

a potential target to reshape TME. However, there is still an urgent

need to expand and identify the NK T-cell population and the

interaction between NK T cells and TME.
2.2 NK cells

NK cells, the cytotoxic members of the versatile family of innate

lymphoid cells (ILCs), are capable of eliciting a robust and immediate

antitumor response (106). Activated by cytokines such as IL-12, IL-

15, and IL-18 produced by APCs, NK cells exert their antitumor

effects in the TME throughmechanisms including perforin/granzyme

exocytosis, engagement of death receptors (such as Fas-FasL and

TRAIL-TRAILR), and secretion of effector cytokines IFN-g and TNF-
a (107). In peripheral blood, nearly 90% of NK cells are characterized

as CD56dim, CD16+, perforin+, expressing receptors such as CXCR1,

CXCR2, CXCR4, and CX3CR1, which enable antibody-dependent

cell-mediated cytotoxicity (ADCC) (108–110). In contrast, CD56bright

NK cells, which express CCR7, CXCR3, CXCR4, and CD62L, are

known for producing cytokines including IFN-g, IL-10, IL-13, TNF-
b, and GM-CSF, and often exhibit protumorigenic potential (111,

112). In the TME, TGF-b—a key immunosuppressive molecule—

alters the balance between NK cell subsets by downregulating

chemokines associated with CD56dim NK cells (CXCL1, CXCL2,

CXCL1, and CXCL8) and upregulating those linked to CD56bright NK

cells (CXCL9, CXCL10, CCL19, and CCL5) [33,34]. Notably,

neutralization of TGF-b has been shown to restore the antitumor

responses of both T cells and NK cells (113, 114).

Like T cells, NK cell function is regulated by signals from

activating or inhibitory receptors (115). Activating receptors include

natural killer group 2-C (NKG2C), NKG2D, DNAX accessory

molecule-1 (DNAM-1), CD161, and natural cytotoxicity receptors

(NCRs), such as NKp30, NKp44, and NKp46. Inhibitory receptors

comprise NKG2A and killer cell immunoglobulin (Ig)-like receptors,

such as CD158a and CD158b (116). In CRC, NK cells exhibit reduced

expression of the natural cytotoxicity receptors NKp44 and NKp46

compared to healthy controls, with functional exhaustion of NK cells

correlating with shorter overall survival (116, 117). Moreover, in CRC,

higher activation levels of NK cells have been positively associated

with MSI status (118).
2.3 MDSC

MDSCs are characterized by their strong immunosuppressive role

and related to poor prognosis (119). MDSCs induced by

proinflammatory mediators, produced during cancer-related chronic

mucosal inflammation, such as prostaglandin E2 (PGE2), IL-6, VEGF,

IL-1b, S100A8/A9 proteins, and the complement component 5a (C5a)
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(120). Local hypoxia, low pH and exosomes secreted by tumor cells

also could activate MDSCs (121–126). Moreover, IL-17 plays a crucial

role in the induction, expansion, and suppressive function

development of MDSCs (127). The suppressive role of MDSCs in

cancer mostly contributes to the activation of two enzymes, inducible

NO synthase (iNOS) and arginase-1 (ARG1), impeding proliferation

and proper functioning of T cells through depletion of L-arginine

(128–131). Moreover, MDSCs activate Tregs and anergy of NK cells by

secretion of IL-10 and TGF-b, with TGF-b also inducing MDSCs and

the epithelial-to-mesenchymal cell transition (EMT) process (132–

135). MDSCs can also regulate VEGF bioavailability through inducing

high levels of matrix metalloprotease 9 (MMP9) and pro-MMP9 to

stimulate tumor growth and metastases in CRC (136, 137). Based on

cell surface markers and cell morphology, the MDSC population can

be divided into granulocytic/polymorphonuclear MDSCs (G-MDSCs/

PMN-MDSCs, CD33+ CD11b+ HLA-DRlowCD15+ cells) settling in

the peripheral lymphoid organs, and monocytic MDSCs (M-MDSCs,

CD33+ CD11b+ HLA-DRlowCD14+ cells) existing in the tumor bed

(138–140). PMN-MDSCs are mainly responsible for reactivating

oxygen species (ROS) production, while M-MDSCs have high

expression of longer activity iNOS (140, 141). In addition, enhanced

infiltration of Tregs and MDSCs was detected in MSS and MSI-L

tumors than its counterpart with the MSI-H phenotype (142).
2.4 Tumor-associated macrophages

Macrophages, a key component of the mononuclear phagocytic

system (MPS), are essential for maintaining innate immune response,

tissue homeostasis, and inflammation (143). Tumor-associated

macrophages (TAMs) represent a major population within the

immune cell component of the TME, recruited by various

chemokines, including CCL2 and CCL5 and colony-stimulating

factor 1 (CSF1) (144, 145). TAMs can be broadly divided into two

distinct subtypes: classically activated M1 macrophages and

alternatively activated M2 macrophages (146–148). M1

macrophages, which are activated by cytokines such as IFN-g,
lipopolysaccharide (LPS), and TNF-a, contribute to antitumor

inflammation by promoting a TH1 response and secreting pro-

inflammatory mediators, including IL-6, IL-23, and ROS (149, 150).

In contrast, M2 macrophages, induced by IL-4, IL-10, IL-13 or

glucocorticoids, secrete anti-inflammatory cytokines like IL-10 and

IL-1b, and they play a role in promoting angiogenesis, tissue

remodeling, injury repair, tumor initiation, and progression (151,

152). During the initial stages of tumor development, TAMs are

primarily composed of M1 macrophages, which promote antitumor

responses. However, as neoplasia progresses, there is a shift towards a

predominance of M2 macrophages in the TME leading to antitumor

activation, while after neoplasia formation, M2 macrophages are

predominantly recruited in TME (152, 153). In CRC, tumor cells

have been shown to increase the population of M2 TAMs through the

PI3K/AKT signaling pathway (154, 155). Notably, M1 and M2

macrophages exhibit a degree of plasticity, with the ability to

transition between states, suggesting the therapeutic potential of

inducing a switch from M2 to M1 phenotypes (156, 157).

Consistently, these macrophage subtypes are associated with
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opposite prognoses in CRC: M1 macrophage infiltration is correlated

with favorable outcomes, whereas M2 TAMs are linked to poorer

prognosis (158, 159). Compared to dMMR CRC, pMMR CRC shows

enhanced M2 macrophage polarization, which is associated with poor

survival in these cases (160). Furthermore, a recent multi-omic of MSS

patients revealed that a higher density of M2 macrophage is positively

correlated with improved response rate to immunotherapy (161).
2.5 Tumor-associated neutrophils

In human peripheral blood, neutrophils comprise 50%–70% of

the circulating leukocytes and serve as the primary defense against

infection (162, 163). Within TME, neutrophils are recruiting by

chemokines secreted by tumor cells, notably through the CXCL1,

CXCL2, CXCL5, and CXCL8 signaling axes that interact with

CXCR1/2 receptors (164, 165). Tumor-derived GM-CSF can

activate neutrophils and induce PD-L1 expression via the JAK/

STAT3 signaling pathway (166). Neutrophils in the TME, known

as tumor-associated neutrophils (TANs), can be polarized into either

antitumor (N1) or protumor (N2) phenotypes, depending on the

activating factors (167). N1-TANs, induced by IFN-g, enhance tumor

cytotoxicity and attenuate immunosuppression by producing TNF-a,
intercellular adhesion molecule-1 (ICAM-1), ROS, and apoptosis-

related factor (Fas). They also reduce the expression of arginase, a

contributor to immunosuppression (167, 168). In addition, N1-TANs

can release various chemokines and cytokines that stimulate immune

cell proliferation and activation, thereby initiating antitumor immune

responses (169). For example, TANs can recruit and activate CD8+ T

cells by secreting CCL-3, CXCL-10, TNF-a, and IL-12 (170), and can
activate NK cells and DCs through IL-18 and TNF-a release,

respectively (171, 172). In contrast, N2-TANs, which are induced

by TGF-b, promote tumor growth and participate in tumor

migration and metastasis by upregulating arginase, MMP-9, VEGF,

and additional chemokines (167, 173). As tumors progress, the N1

phenotype can convert into the N2 phenotype (174). In CRC, the

prognostic value of TAN infiltration remains debated. For example, a

study by Maria et al., using CD66b and myeloperoxidase (MPO) as

neutrophil markers, found that higher infiltration of TANs correlated

with improved prognosis and favorable response to 5-fluorouracil (5-

FU)-based chemotherapy, suggesting a predominantly antitumor role

for TANs (175). Conversely, other studies have identified TAN

infiltration as an unfavorable prognostic marker, with higher TAN

density frequently observed in MSS CRC (176–178). This paradox

may be attributable to issues such as inconsistent marker selection,

limited sample sizes, and unaddressed confounding factors (163).
2.6 Dendritic cells

DCs, as specialized professional APCs induced by Flt3L, play a

pivotal role in initiating, coordinating, and amplifying antitumor
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immune responses (179–181). DCs encompass two primary subsets:

classical/conventional DCs (cDCs) and plasmacytoid DCs (pDCs)

(182, 183). The cDC subset is further divided into CD141+ cDC1,

which presents antigens on MHC I for CD8 T cells priming by cross-

presentation, and CD1c+ cDC2, which presents MHC II to activate

CD4 T cells (184). pDCs, capable of producing large amounts of type

I interferons (IFNs) during virus infection, play an essential role in

maintaining immune tolerance in autoimmune conditions (185, 186).

DCs enhance infiltration and toxicity of TH1, NK, and CD8+ T cells

by enhancing their migration through CCR7 expression, upregulating

co-stimulatory molecules such as CD80, CD83, and CD86, and

secreting of pro-inflammatory cytokines like IL-12, IL-6, TNF-a,
and IL-1b (187–190). However, within TME, DC function is

frequently impaired by immunosuppressive signals from tumor

cells. This impairment is a key contributor to immune evasion,

tumor growth, metastasis initiation, and treatment resistance in

various cancers, including CRC (187, 188, 191–195). In TME,

TGF-b, TNF-a, IDO-1, PGE2, IL-6, IL-10, VEGF, and GM-CSF

hinder DC migration, antigen presentation, and the effective

activation of T cell and NK (196, 197). In CRC specifically, the

density of mature DCs ranks lowest in metastatic sites, intermediate

in primary tumor sites, and highest in normal mucosa (198, 199). In

addition, mature DCs are typically localized in the invasive margin

and form clusters with T cells with tertiary lymphoid structures

(TLS), whereas immature DCs are more dispersed through the tumor

stroma, underscoring the suppressive effects of TME on DC

maturation and function (200, 201). Recent findings have also

highlighted a deficiency of activated T cells and DCs in MSS CRCs

and liver metastasis, where enhanced DC infiltration combined with

immune checkpoint blockade (ICB) treatment significantly improved

survival in murine models (202).
3 Current therapeutic strategies

Since initial immunotherapy trials in CRC revealed substantial

efficacy differences between MSS and MSI-H subtypes, research

efforts have largely pivoted to focus on the MSS subtype. A

landmark phase 3 open-label trial, KEYNOTE-177, compared the

efficacy of pembrolizumab to standard chemotherapy in patients

with MSI-H and dMMR CRC, demonstrating a significantly

improved progression-free survival (PFS) in the immunotherapy

group (16.5 vs. 8.2 months). This trial marked a milestone in CRC

immunotherapy, establishing pembrolizumab as the new first-line

treatment for patients with MSI-H/dMMR mCRC (203).

Additionally, the combination of CTLA-4 and PD-1 inhibitors

has been shown to improve survival in patients with MSI-H/

dMMR mCRC and has been approved as a second-line treatment

option (204). In contrast, immunotherapy attempts in MSS CRC

have yielded unsatisfactory outcomes. As the MSS phenotype

represents the majority of CRC cases, numerous strategies are

being explored to enhance immunotherapy efficacy in MSS CRC.
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The current clinical trials investigating these approaches are

summarized in Table 2.
3.1 Combination with chemotherapy

Chemotherapy, a cornerstone of cancer treatment, has been

shown to impact immune cells directly, in addition to its cytotoxic

effects on malignant cells. In the murine model, cyclophosphamide

appears to enhance TH1 differentiation and reduce Treg by

mediating an IRF1-dependent, IL-12-mediated response (205).

Agents like 5-fluorouracil (5-FU) and gemcitabine have been

found to selectively decrease the frequency of MDSCs in the

spleen and tumor bed, without directly affecting T cells, DCs, NK

cells, or B cells. The elimination of MDSCs, in turn, promotes IFN-g
production by infiltrating CD8+ T cells (206). Furthermore,

cyclophosphamide, paclitaxel, and doxorubicin can repolarization

of macrophages from an M2 to an M1 phenotype, shifting them

towards a more pro-inflammatory, antitumor function (207, 208).

Chemotherapy also exerts differing effects on TME of primary and

metastatic lesions. An analysis of immune profiles in primary tumor

and paired metastasis tissue samples from patients with MSS CRCs

revealed that increased expression of CD8 and PD-L1 was higher in

metastatic sites following neoadjuvant FOLFOX treatment (folinic

acid, 5-FU, and oxaliplatin) (209). Beyond MSI CRCs, studies

indicate that a subset of MSS CRCs exhibit high CD8+

infiltration, suggesting potential sensitivity to immunotherapy

(38). A phase II clinical trial (NCT04262687) is currently

investigating the efficacy of PD-1 inhibitors in patients with high

immune infiltration. However, for the majority of MSS CRC cases,

the combination of PD-1 inhibitors and chemotherapy has shown

limited effectiveness. Recent research trends are exploring the

potential of this combination in neoadjuvant settings, as seen in

clinical trials NCT05914389, NCT05359393, and NCT05576480.
3.2 Combination with radiotherapy

Radiotherapy also plays a pivotal role in remodeling antitumor

immunity and enhancing immunotherapy efficacy. Studies have

shown that radiation exposure can induce M1 polarization,

enhance NK cell infiltration, and reduce TGF-b levels, collectively

contributing to an immune-stimulatory environment (210–212). In

the VOLTAGE-A phase I b/II study (NCT02948348), neoadjuvant

chemoradiotherapy (CRT) followed by nivolumab and radical

surgery was tested in patients with MSS locally advanced rectal

cancer, with 30% of patients achieving a pathologic complete

response (pCR), which show a great potential of this combination

(213). Post-surgical pathological analysis revealed that a PD-L1

tumor proportion score (TPS) of ≥1% and a CD8+ T cell-to-

effector Treg ratio of ≥2.5 were associated with a higher pCR rate.

Current clinical trials are further investigating the efficacy of

combining radiotherapy with PD-1 monoclonal antibody therapy

in patients with metastatic CRC (NCT05160727, NCT04659382,

NCT04030260, and NCT03104439).
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3.3 Combination with anti-
angiogenic agent

VEGF, known for promoting tumor vessel growth, also plays an

immunosuppressive role by increasing the recruitment of Tregs and

MDSCs and inhibiting the differentiation and activation of

DCs. Antiangiogenic agents targeting the VEGF/VEGFR pathway,

such as bevacizumab, can help mitigate VEGF-associated

immunosuppression (214). In the phase II AtezoTRIBE trial,

patients with metastatic CRC received FOLFOXIRI plus

bevacizumab with or without the addition of atezolizumab. In the

pMMR subgroup, disease progression was observed in 81% of

patients in the control group versus 70% in the atezolizumab

group, indicating a potential synergistic effect between

atezolizumab and bevacizumab (215). However, another phase II

trial comparing mFOLFOX6 plus bevacizumab alone or with

avelumab, showed no significant difference in median PFS

between experimental and control groups (216).
3.4 Combination with an anti-EGFR agent

Cetuximab, a chimeric IgG1 monoclonal antibody targeting

EGFR, is a first-line treatment for advanced CRC. Recent studies

have shown that cetuximab administration can increase CD3+ T,

CD8+ T, and NK cells, while decreasing Tregs (217). The phase II

AVETRIC trial investigated the efficacy and safety of first-line

mFOLFOXIRI combined with cetuximab and avelumab in RAS

wild-type mCRC patients, reporting an impressive 98% disease

control rate (DCR) at the ASCO meeting, highlighting the potential

of cetuximab combined with immunotherapy. A phase II study

(NCT03608046) is currently evaluating avelumab combined with

cetuximab and irinotecan for patients with refractory MSS CRC.

Additionally, clinical trials (NCT05409417 and NCT04745130)

are comparing the efficacy of cetuximab with anti-angiogenic

agents (bevacizumab and regorafenib) in combination with

immunotherapy for CRC patients.
3.5 Combination with tyrosine
kinase inhibitors

Regorafenib is a multi-targeted small-molecule tyrosine kinase

inhibitor approved for the treatment of refractory and mCRC. It

achieves antitumor effects by inhibiting various tyrosine kinases

involved in tumor growth, angiogenesis, and metastasis. In the phase

Ib trial REGONIVO, 25 patients with CRC (24 pMMR-MSS and 1

dMMR-MSI-H) received a combination of nivolumab and regorafenib,

achieving an objective response rate (ORR) of 36% and a PFS of 7.9

months (218). However, in a subsequent phase II clinical trial of the

same combination in 70 patients with pMMR/MSS CRC, ORR

dropped to 7%, with a PFS of just 1.8 months (219). Another phase

Ib/II study combining regorafenib and toripalimab reported an

improved ORR of 15.2% and a DCR of 36.4% (220). Given the

limited efficacy of these combinations, researchers are now exploring
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TABLE 2 Current clinical trials for MSS CRCs.

Study Treatment Phase Patient Primary
endpoint

Status

NCT04262687 Capecitabine + Oxaliplatin + Bevacizumab + Pembrolizumab II MSS mCRC with high
immune infiltrate

PFS Recruiting

NCT05914389 Capox ± Envafolimab ± Clostridium butyricum + Colectomy II Locally advanced MSS CRC TRG0/1 Recruiting

NCT05359393 A combination therapy including tislelizumab II MSS rectal cancer With
resectable liver/
pulmonary metastasis

NED rate Not yet
recruiting

NCT05576480 SCRT + Penpulimab + CAPEOX II MSS locally advanced
rectal cancer

pCR Not yet
recruiting

NCT05160727 Radiotherapy + Tislelizumab + Irinotecan II MSS/PMMR mCRC ORR Recruiting

NCT04659382 XELOX + Bevacizumab + Atezolizumab + SIRT II MSS/PMMR mCRC PFS Recruiting

NCT04030260 Regorafenib + PD-1 antibody + Radiotherapy II MSS/PMMR mCRC PFS Recruiting

NCT03104439 Nivolumab + Ipilimumab + Radiation II MSS/MSI CRC DCR Recruiting

NCT03608046 Avelumab + Cetuximab + Irinotecan II MSS mCRC ORR Recruiting

NCT05409417 Tislelizumab + XELOX and Bevacizumab/FOLFOX
and Cetuximab

II/III MSS CRC with liver metastasis Conversion rates, R0
resection rate, safety

Recruiting

NCT04745130 Sintilimab and regofinib ± cetuximab II MSS/MSI-L/PMMR CRC OS Recruiting

NCT04362839 Regorafenib + Ipilimumab + Nivolumab I MSS mCRC DLT Active

NCT05382741 Adjuvant Durvalumab+ Regorafenib/observation II Stage IV CRC DFS Recruiting

NCT04963283 Cabozantinib + Nivolumab II MSS mCRC DCR Recruiting

NCT03170960 Cabozantinib + Atezolizumab I/II Metastatic solid tumor MTD, ORR Active

NCT03539822 Cabozantinib + Durvalumab ± Tremelimumab I/II Gastrointestinal malignancies MTD, ORR Recruiting

NCT03668431 PDR001 + Dabrafenib + Trametinib II mCRC with BRAF
V600E mutation

ORR, safety Recruiting

NCT03374254 Pembrolizumab + mFOLFOX7 ± Binimetinib I mCRC DLT Active

NCT04294160 Dabrafenib + LTT462 ± Trametinib/LXH254/TNO155/
Spartalizumab/Tislelizumab or Dabrafenib + trametinib
+ TNO155

I mCRC with BRAF
V600E mutation

DLT, safety Active

NCT03711058 Copanlisib + Nivolumab I/II Relapsed/refractory MSS CRC DLT/ORR Active

NCT05627635 FOLFOX + Bevacizumab + Botensilimab + Balstilimab I/II MSS mCRC ORR, safety Recruiting

NCT03442569 Nivolumab + Ipilimumab + Panitumumab II MSS mCRC ORR Active

NCT03642067 Nivolumab + Relatlimab II Advanced MSS CRC ORR Recruiting

NCT05731726 Serplulimab + CAPEOX + Celecoxib II Advanced MSS/MSI-L/
PMMR CRC

pCR rate Recruiting

NCT03800602 Nivolumab + Metformin II Refractory MSS CRC ORR Active

NCT05243862 PolyPEPI1018 + Atezolizumab II MSS mCRC Safety Recruiting

NCT05141721 Fluoropyrimidine + Bevacizumab ± Atezolizumab Ipilimumab
GRT-C901/GRT-R902 (Neoantigen Vaccine)

II/III MSS mCRC ctDNA decrease, PFS Recruiting

NCT05733611 RP2/RP3 + Atezolizumab + Bevacizumab II Advanced MSS/PMMR CRC ORR Not yet
recruiting

NCT04301011 TBio-6517 ± Pembrolizumab I/II MSS CRC ORR, safety Active

NCT05061017 Nivolumab + Pixatimod II MSS mCRC ORR Recruiting

NCT05279677 FMT + Sintilimab + Fruquintinib II Advanced CRC ORR Recruiting

NCT04729322 FMT + Pembrolizumab/Nivolumab II
PD-1 non-responding
dMMR CRC

ORR Recruiting
F
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regorafenib in conjunction with two ICIs—nivolumab and ipilimumab

(NCT04362839)—and as part of adjuvant therapy (NCT05382741) to

assess potential improvements in treatment outcomes.

Cabozantinib, a small-molecule multi-tyrosine kinase inhibitor

targeting kinases such as VEGFR2, MET/HGF, AXL, MER, and

TYRO3, has demonstrated antitumor activity in the preclinical CRC

model. It enhances the immune environment by reducing the

function of Tregs and increasing cytokine production (221–223).

In the CAMILL trial, 17 patients with MSS CRC were treated with a

combination of cabozantinib and durvalumab, showing potential

efficacy with ORR of 23.5% and a DCR of 88.2%. The median PFS

was 4.6 months, and the OS reached 9.6 months (224).

The RAS/BRAF/MEK/ERK pathway, which operates

downstream of various growth factor receptors, including EGFR, is

often overexpressed and activated in CRC, particularly in cases with

dysregulated MAPK pathway signaling (225). Studies have shown

that dysregulation in this pathway is linked to reduced T-cell

infiltration, activation of MDSCs, DC function, and lower

expression of inhibitory molecules such as CTLA4, PD-L1, PD-L2,

LAG3, and TIM3, contributing to an immunosuppressive TME (226,

227). These findings suggest a potential synergy between

immunotherapy and selective RAS/BRAF/MEK/ERK pathway

inhibitors in patients with pMMR/MSS mCRC. However, a phase

III trial (COTEZO) evaluating the combination of atezolizumab and

MEK inhibitor cobimetinib versus atezolizumab alone or regorafenib

in patients with chemo-refractory CRC did not meet its primary

endpoint, showing no significant difference in PFS or ORR between

the treatment arms (228). Ongoing clinical trials are now assessing

the efficacy of PD-1/PD-L1 inhibitors combined withMEK inhibitors

(NCT03668431, NCT03374254, and NCT04294160).
3.6 Combination with a PI3K inhibitor

The PI3K/Akt pathway is frequently activated in various

cancers and contributes to carcinogenesis by promoting cell

proliferation, survival, metabolic reprogramming, invasion, and

metastasis, while inhibiting autophagy and senescence. Recent

studies have indicated that PI3K/Akt pathway status can

significantly influence the immune microenvironment (229). In

patients with CRC, mutations in the PI3K/Akt pathway have

emerged as an independent predictor of immunotherapy

response, correlating to better OS and increased immune cell

infiltration, such as M1 macrophages, neutrophils, and NK cells,

within TME (230). Copanlisib, a pan-class I PI3K IV inhibitor, has

shown promising preclinical antitumor activity in CRC (231). A

phase I/II clinical trial (NCT03711058) is currently underway to

evaluate the efficacy and safety of combining copanlisib with

nivolumab in patients with relapsed/refractory MSS CRC.
3.7 Combination with novel ICIs

CTLA-4, another checkpoint, is expressed on the surface of

activated T cells, where it competes with CD28 receptors for
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binding to B7 ligands on APCs, leading to anergy in T cells (232).

CTLA-4 expression is primarily regulated by FOXP3 on Tregs,

thereby contributing to an immunosuppressive TME (233). The

combined blockade of PD-1 and CTLA-4 has shown synergistic

clinical benefit, resulting in regulatory approval for conditions such as

metastatic melanoma, advanced renal cell carcinoma, and metastatic

CRC with the MMR/MSI-H phenotype (234). The CCTG CO.26

study was the first to demonstrate that anti-PD-L1 combined with

anti-CTLA-4 could extend OS in patients with refractory MSS CRC

compared to best supportive care (BSC) (235). Ongoing clinical trials

are assessing the efficacy of combining PD-1 and CTLA-4 blockade

with additional treatments, such as FOLFOX and bevacizumab

(NCT05627635) or panitumumab (NCT03442569).

LAG-3 is an inhibitory signaling expressed on both CD4+ and

CD8+ T cells upon antigen simulation (236). It is constitutively

expressed on FOXP3+ Tregs, resulting in elevated levels of

immunoregulatory cytokines IL-10 and TGF-b, which suppress

tumor-specific T-cell responses (236). Preclinical studies indicate

that dual blockade of LAG-3 and PD-1 can restore T-cell function

and reverse anergy. In a phase I clinical trial, the combination of an

anti-LAG-3 antibody (favezelimab) and an anti-PD-1 antibody

(pembrolizumab) in patients with advanced MSS mCRC

demonstrated promising antitumor ability with an OS of 8.3

months and a median PFS of 2.1 months (237). Currently, a

phase II study (NCT03642067) is underway to assess the safety

and efficacy of nivolumab in combination with relatlimab in

patients with advanced MSS CRC.
3.8 Combination with other drugs

Temozolomide (TMZ) is an oral alkylating agent methylating

the O6 position of guanine in DNA, providing therapeutic efficacy

in several solid tumors such as glioma, glioblastoma,

neuroendocrine tumors, melanoma, and sarcomas. O6-

methylguanine methyltransferase (MGMT), a DNA repair

enzyme encoded by the MGMT gene, plays a crucial role in

repairing DNA damage caused by alkylating agents and is

associated with the reduced therapeutic efficacy of TMZ (238).

Epigenetic silencing of MGMT, primarily through methylation of

its promoter region, is observed in approximately 40% of CRC cases

(239). The ORR of patients with MGMT-methylated mCRC treated

with TMZ was 12% (240). Acquired resistance to TMZ is often

linked to hypermutation and the emergence of mutations in MMR

genes, particularly MSH6 (239). The ARETHUSA trial

(NCT03519412) analyzed tissue and circulating tumor DNA

(ctDNA) in patients with MGMT-deficient, MMR-proficient,

RAS-mutant mCRC treated with TMZ priming. Findings showed

increased TMB and MSH6 mutation in 94% of cases post-TMZ

treatment. A subset of patients with TMB > 20 mutations per

megabase, subsequently treated with pembrolizumab, achieved

disease control (238). These promising results suggest that TMZ

could serve as a priming agent for re-sensitizing pMMR/MSS CRCs

to ICIs. Supporting these findings, the phase II MAYA trial

(NCT03832621) administrated two cycles of TMZ followed by a
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combination of ipilimumab and nivolumab in patients with chemo-

refractory MSS CRC and MGMT silencing, yielding an improved

ORR of 45%, an 8-month PFS rate of 36%, and an OS of 18.4

months (239).

Cyclooxygenase enzyme-2 (COX-2) expression is significantly

elevated in 79% of MSS CRC, compared to only 48% of MSI CRC

and is associated with poorer OS (241, 242). Prostaglandin E2

(PGE2), a product of COX-2, can activate MDSCs via STAT3

phosphorylation, leading to suppressed CD8+ T-cell proliferation,

reduced cytotoxicity against tumor cells, and impaired macrophage

phagocytosis of cancer cells through the EP4-PI3K-Akt-ND-1

signaling pathway (243–250). Preclinical studies suggest that COX

inhibitors could serve as effective adjuvant for ICIs, potentially

reactivating immunosuppressive TME in MSS CRCs (251). The

NICHE study (NCT03026140) explored the neoadjuvant

administration of ipilimumab and nivolumab, with or without

celecoxib, in patients with pMMR CRC. Results showed that 4 of

15 patients (27%) in the non-celecoxib group experienced

pathological responses, whereas 4 of 7 patients (57%) in the

celecoxib group achieved pathological responses (252). An

ongoing phase II study (NCT05731726) is investigating the role

of celecoxib as part of a neoadjuvant treatment regimen combined

with PD-1 monoclonal antibody and chemotherapy in locally

advanced CRC patients with the pMMR/MSS phenotype.

Accumulating evidence shows that metformin, a medication

primarily used to treat type II diabetes, may regulate tumor cell

metabolism through reducing their oxygen consumption,

alleviating tumor hypoxia, and supporting the activity of cytotoxic

T lymphocytes within tumor tissues (253). A phase II clinical trial

(NCT03800602) is investigating the efficacy of combining

metformin with nivolumab in the treatment of refractory MSS CRC.
3.9 Combination with a bispecific antibody

A bispecific antibody is engineered to recognize two distinct

antigens, effectively bridging the tumor cell and the T cell to bolster

immune activity against tumor cells (254). Cibisatamab

(RO6958688), the most extensively studied bispecific antibody in

CRC, targets CEA on colorectal tumor cells and CD3 on T cells,

promoting increased T-cell infiltration, activation, and PD-1/PD-L1

upregulation (255). Preclinical studies have demonstrated that

combining PD-1/PD-L1 blockade with an anti-CEA/CD3

bispecific antibody can significantly enhance T cell-mediated

antitumor activity (256). A phase I study comparing the efficacy

of anti-CEA/CD3 bispecific antibody as monotherapy versus in

combination with atezolizumab (NCT02650713) in patients with

mCRC showed that combination therapy notably improved

outcomes, particularly in patients with MSS CRC (257).
3.10 Combination with vaccines

Cancer vaccines aim to stimulate an antitumor response by

isolating and presenting tumor-specific antigens. DCs, as pivotal

APCs, are considered promising vectors for cancer vaccines.
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However, two phase II clinical trials assessing the efficacy of an

autologous tumor lysate DC vaccine—both as monotherapy and in

combination with avelumab—in patients withMSS CRC demonstrated

that while the vaccine induced a tumor-specific immune response, it

did not yield significant clinical benefits (258, 259).

Granulocyte-macrophage colony-stimulating factor (GM-CSF)

is an important growth and differentiation factor for DCs. The

GVAX colon vaccine, composed of GM-CSF-expressing irradiated

tumor cells, is designed to induce T-cell immunity (260). Preclinical

studies have demonstrated that dual blockade of PD-1 and CTLA-4,

combined with the GM-CSF gene-transfected GVAX vaccine,

effectively induced tumor rejection and restored T-cell activity in

CRC murine models (261). In a phase II study (NCT02981524), the

efficacy of GVAX combined with pembrolizumab was assessed in

patients with pMMR CRC; although it failed to meet its primary

objective, with no objective responses observed, biochemical

responses (≥30% decline in CEA) were achieved in 7 out of 17

patients (41%) (262).

PolyPEPI1018 is a cancer vaccine consisting of six synthetic

peptides derived from seven tumor-associated antigens (TAAs)

commonly expressed in CRCs. In OBERTO-101 study,

PolyPEPI1018 was administered as an interim therapy between

first-line induction and maintenance treatment in 11 previously

treated patients with MSS mCRC, resulting in an increased density

of tumor-infiltrating lymphocytes (TILs) and a broad antitumor T-

cell response (263). Following these promising results, a phase II

clinical study (NCT05243862) is currently recruiting to further

investigate the safety and efficacy of combining PolyPEPI1018

with atezolizumab.

Neoantigens are tumor-specific antigens produced by somatic

mutations, and personalized neoantigen vaccines have demonstrated

the ability to induce robust antitumor immune responses across

multiple cancer types, including MSS CRC (264). When combined

with PD-1 blockade, these vaccines produce a synergistic effect by

enhancing neoantigen-specific CD4+ and CD8+ T-cell responses

(265, 266). The efficacy of combining personalized neoantigen

vaccines with immunotherapy for MSS CRC is currently under

investigation in a clinical trial (NCT05141721).
3.11 Combination with an oncolytic virus

Oncolytic viruses (OVs), such as adenovirus, vaccinia virus, and

herpes simplex virus, are genetically modified to selectively or

preferentially infect cancer cells, resulting in direct lysis of tumor

cells and induction of an antitumor immune response (267).

Moreover, OVs engineered with cytokines like GM-CSF, IL-15,

and TNF superfamily members can enhance this immune response

by activating immune cells, including CD4+ and CD8+ T cells, and

increasing the expression of perforin and granzyme B in the TME.

This process effectively transforms “cold” tumors into “hot” ones

(268–270). The combination of OVs with ICIs has shown

synergistic effects in preclinical CRC models (271, 272). A phase

1b clinical study of OV (Pexa-Vec) combined with ICIs in patients

with CRC demonstrated an acceptable safety profile and achieved a

67% radiographically stable disease rate, resulting in further trails to
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evaluating the efficacy of Pexa-Vec (273). Two additional clinical

studies are ongoing to further evaluate the efficacy of this

combination (NCT05733611 and NCT04301011).
3.12 Combination with other therapies

Toll-like receptor 9 (TLR9), a pattern recognition receptor, is

expressed on B cells and plasmacytoid DCs in humans (274).

Pixatimod, a TLR9 pathway activator, inhibits the infiltration of

TAMs, stimulates DCs, and activates NK cells (275). A phase Ib

clinical trial evaluated the safety and efficacy of pixatimod combined

with nivolumab in 25 participants with microsatellite-stable (MSS)

metastatic CRC (mCRC), achieving PR in 3 participants and SD in 8

participants, which meets its primary endpoint and warrants further

investigation (276). A phase II clinical trial (NCT05061017) is

currently recruiting to further investigate this combination in

MSS mCRC.

Fecal microbiota transplantation (FMT) offers a promising

approach to modify the gut microbiome with a favorable safety

profile. Preclinical studies have shown that microbiome

manipulation can enhance the antitumor activity of ICIs, likely

due to alterations in glycerophospholipid metabolism and increased

expression of IFN-g and IL-2 in TME (277). Two clinical trials

(NCT05279677 and NCT04729322) are currently investigating the

efficacy of combining FMT with ICIs.
4 Conclusion

Despite considerable advancements in immunotherapy,

specifically ICIs, the efficacy of these treatments remains limited

for the majority of CRC patients, especially those with MSS and

pMMR tumors. Given that MSS/pMMR CRC represents a

substantial proportion of cases, there is an urgent need to develop

novel therapeutic strategies. The TME plays a significant role in

determining treatment responses, with variations in immune cell

composition and activity affecting the efficacy of ICIs in MSS CRC.

As we have discussed, CRCs exhibit distinct TME profiles

depending on their MSI status. MSI CRCs tend to have an

inflammatory TME, characterized by a significant increase in

plasma cells, CD8+ T cells, activated memory CD4+ T cells,

follicular T helper cells, NK cells, M1 macrophages, and

neutrophils, alongside a marked reduction in Tregs (278).

Additionally, the TME of MSI CRCs shows higher levels of

inflammatory cytokines, including TNF-a, perforin, granzyme,

IL-1, IL-6, and IFN-g (279). Some components of the TME, such

as TH17 cells, Tregs, gd T cells, TAMs, TANs, and NK T cells,

exhibit dual functions depending on the specific context,

contributing to the complex network of interactions within the

TME (92, 152, 153, 167, 280). Furthermore, the TME is highly

dynamic throughout CRC progression and metastasis. For example,

TAMs initially exhibit an inflammatory profile dominated by

antitumor M1 macrophages, but over time, as the tumor

progresses, the TME shifts to a more pro-tumorigenic

environment with an increased presence of M2 macrophages
Frontiers in Immunology 11
(152, 153). The roles and properties of individual TME

components can change significantly during tumor progression

and in response to treatment. Given the dynamic nature of the

TME, comprehensive and functional characterization of its

components at different stages of tumor development is crucial.

This will help identify CRC patient subgroups most likely to benefit

from TME-modulating therapies and determine the optimal timing

for these treatments.

Recent studies underscore the potential of combination therapies

involving ICIs and traditional treatments such as chemotherapy and

radiotherapy, as well as targeted approaches such as tyrosine kinase

inhibitors, anti-angiogenic agents, and EGFR inhibitors, to re-

sensitize MSS CRC to immunotherapy. Emerging strategies

incorporating bispecific antibodies, cancer vaccines, OVs, and fecal

microbiota transplantation (FMT) also show promise in enhancing

immune responses within the TME, converting it from an

immunosuppressive to an immunostimulatory state. Personalized

approaches, including neoantigen vaccines and other novel ICIs

targeting checkpoints like CTLA-4 and LAG-3, may further

optimize treatment efficacy by addressing specific immune

evasion mechanisms.

While these approaches hold promise, clinical efficacy and long-

term outcomes for MSS/pMMR CRC patients remain to be

conclusively determined. Future research and clinical trials will be

essential to better understand the complex interactions within the

TME and to develop integrated, personalized therapeutic strategies

that leverage the latest advancements in immuno-oncology.
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