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Causal relationship, shared genes
between rheumatoid arthritis
and pulp and periapical disease:
evidence from GWAS and
transcriptome data
Huili Wu1†, Lijuan Wang1† and Chenjie Qiu2*

1Department of Endodontics, Changzhou Stomatological Hospital, Changzhou, China, 2Department
of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
Objective: Patients with rheumatoid arthritis (RA) have an increased risk of

developing pulp and periapical disease (PAP), but the causal relationship and

shared genetic factors between these conditions have not been explored. This

study aimed to investigate the bidirectional causal relationship between RA and

PAP and to analyze shared genes and pathogenic pathways.

Methods: We utilized GWAS data from the IEU Open GWAS Project and employed

fiveMendelian randomizationmethods (MREgger,weightedmedian, inversevariance

weighted, simple mode, and weighted mode) to investigate the bidirectional causal

relationship between RA and PAP. Transcriptome data for RA and irreversible pulpitis

(IRP) were obtained from the GEO database. Hub genes were identified through

differential analysis, CytoHubba, machine learning (ML), and other methods. The

immune infiltration of both diseases was analyzed using the ssGSEAmethod. Finally,

we constructed a regulatory network for miRNAs, transcription factors, chemicals,

diseases, and RNA-binding proteins based on the identified hub genes.

Results: RA was significantly associated with an increased risk of PAP (OR = 1.1284,

95% CI 1.0674-1.1929, p < 0.001). However, there was insufficient evidence to

support the hypothesis that PAP increased the risk of RA. Integrating datasets and

differential analysis identified 84 shared genes primarily involved in immune and

inflammatory pathways, including the IL-17 signaling pathway, Th17 cell

differentiation, and TNF signaling pathway. Using CytoHubba and three ML

methods, we identified three hub genes (HLA-DRA, ITGAX, and PTPRC) that are

significantly correlated and valuable for diagnosing RA and IRP. We then constructed

a comprehensive regulatory network using the miRDB, miRWalk, ChipBase,

hTFtarget, CTD, MalaCards, DisGeNET, and ENCORI databases.

Conclusion: RA may increase the risk of PAP. The three key genes, HLA-DRA,

ITGAX, and PTPRC, have significant diagnostic value for both RA and IRP.
KEYWORDS

rheumatoid arthritis, pulp and periapical disease, irreversible pulpitis, Mendelian
randomization, hub genes
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Introduction

Dental pulp is a type of connective tissue located inside teeth,

encased by dentin and enclosed within the pulp cavity. It

communicates with periapical tissue through the apical foramen

or accessory root canals. Endodontic disease, encompassing pulp

and periapical diseases (PAP), was influenced by various factors

such as microbial infection, stimulation from drugs and filling

materials, temperature changes, electrical currents, pressure

variations, and trauma (1). The initial response to pulp

stimulation was inflammation. Pathogen invasion of the pulp

triggered immune and inflammatory responses, leading to

pulpitis. Mild invasive factors can cause reversible pulpitis, where

the inflammation was controlled and the pulp was repaired.

However, severe invasive factors resulted in irreversible pulpitis

(IRP), ultimately causing pulp necrosis. When bacteria invaded the

periapical tissue, it can lead to acute or chronic inflammation of this

area (2). Endodontic disease was prevalent, with 52% of adults

worldwide experiencing apical periodontitis (AP) in at least one

tooth (3). Moreover, it was associated with systemic conditions such

as metabolic disorders, autoimmune and cardiovascular diseases,

adverse pregnancy outcomes, and mental illnesses (4, 5).

Rheumatoid arthritis (RA) is a chronic autoimmune disease with a

complex pathogenesis, primarily characterized by progressive joint

damage and extra-articular manifestations, leading to joint pain,

stiffness, and functional impairment (6). Beyond its impact on

joints, numerous recent studies have identified a potential

correlation or causal relationship between RA and various oral

diseases, including changes in oral microbiota (7, 8), oral health

issues (9), periodontitis (10, 11), and Sjogren’s syndrome (12, 13).

Notably, periodontitis and pulpitis shared similar pathogenic factors

such as bacterial infection, inflammation, and immune responses (14).

Early research revealed that free plasma cells producing rheumatoid

factors were detected in the periapical lesions of 6% of RA patients

(15). A systematic review comprising five studies found a significant

correlation between RA and AP, with the incidence of AP in the RA

group ranging from 1.53% to 75% (16). Another cross-sectional study

reported that the incidence of AP in the RA group (4.3%) was

significantly higher than in the control group (2%), with an odds

ratio (OR) of 2.193 (17). Shiori et al. used SKG mice to investigate the

effect of RA on immune response disruption in pulpitis and periapical

periodontitis. They found that 14- and 28-days post-surgery, the

number of apoptotic cells in the pulp and periapical tissues of SKG

mice was higher than in the control group. This suggested that RA-

related immune response disruption was associated with prolonged

inflammation in pulpitis and periapical periodontitis (18). Therefore,

there appears to be a potential correlation between RA and PAP,

warranting further exploration into their interrelationship.

Mendelian randomization (MR) is a powerful analytical

technique in epidemiological research that leverages genetic

variations strongly correlated with exposure factors as

instrumental variables to assess causal relationships between these

factors and health outcomes. The essence of MR lies in using genetic

data as a bridge to explore causality between a specific exposure and
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a particular outcome. Traditional observational studies often face

limitations, such as the inability to fully account for reverse causality

and confounding factors, which can result in biased associations

and conclusions (19). Confounding factors in observational studies

may create false associations between exposures and outcomes. MR

mitigates this issue by using genetic variations that are randomly

assigned at conception, making them unlikely to be linked with

confounding factors (20). Additionally, traditional observational

studies frequently struggle with reverse causality, where it remains

unclear whether the exposure leads to disease or the disease affects

the exposure. MR circumvents this issue because genetic variations

are determined at conception and are not influenced by future

disease onset (21). With the advent of large-scale GWAS, MR

analysis has become more powerful and feasible, enabling

researchers to explore causal relationships between various

diseases and risk factors with greater precision (22). Furthermore,

due to its strong evidential support and cost-effectiveness, MR

provides a robust scientific foundation for understanding the

relationship between genes and diseases. This, in turn, aids in the

development of personalized treatment strategies and advances

the field of precision medicine. Despite some cross-sectional and

cohort studies examining the relationship between RA and PAP, the

existing evidence remains inadequate. To address this gap, we

propose to explore the causal relationship between RA and PAP

using MR analysis. Additionally, advancements in high-throughput

sequencing technology have led to an increase in the use of

transcriptome data to analyze potential relationships and

pathogenic pathways between diseases. Previous research has

examined the correlation between RA and periodontitis (23).

Building on this foundation, we plan to further investigate the

common pathways, hub genes, and regulatory networks between

RA and IRP through public databases.
Materials and methods

Data source and processing

We acquired GWAS summary data pertaining to RA and PAP

through the IEU Open GWAS Project (https://gwas.mrcieu.ac.uk/).

The RA data (ID: ebi-a-GCST90018910) was retrieved from the EBI

database, encompassing 8,255 cases and 409,001 controls (24). The

PAP data (ID: finn-b-K11-PULP_PERIAPICAL) comprised 5,354

cases and 195,395 controls. Both datasets primarily represented

European populations. Additionally, transcriptome data for RA and

IRP were sourced from the GEO database (https://www.ncbi.nlm.

nih.gov/geo/), alongside relevant clinical information. For RA,

synovial tissue expression profiles were gathered from the

GSE55235, GSE55457, and GSE77298 datasets, while for IRP,

inflamed or normal pulp expression profiles were acquired from

the GSE77459 and GSE92681 datasets. Subsequently, utilizing the

respective platform information, gene symbols were standardized.

The expression matrices underwent normalization using the

“normalizeBetweenArrays” function within the “limma” package,
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with batch effects mitigated through the “combat” function of the

“sva” package. Consequently, an integrated expression matrix for

RA was established, comprising 37 negative control (NC) and 39

RA samples, while a corresponding matrix for PAP encompassed 11

NC and 13 IRP samples. The detailed information of the above

dataset is shown in Table 1, and we have also drawn a flowchart to

show the entire research process more clearly (Figure 1).
Mendelian randomization

Based on the fundamental assumptions of MR analysis

(association, independence, and exclusivity), we systematically

screened Instrumental variables (IVs). Specifically, single

nucleotide polymorphisms (SNPs) associated with RA were

utilized for forward MR analysis, while those linked to PAP were

employed for reverse MR analysis. To ensure the selection of SNPs

closely linked to the exposure factors, a stringent significance

threshold of p < 5 × 10-6 was set. Additionally, a linkage

imbalance window of 10,000 kb with an r2 < 0.001 was applied to

guarantee the independence of the chosen genetic variants.

Ultimately, 59 SNPs were identified as IVs for RA, and 14 SNPs

were designated as IVs for PAP (Supplementary Tables S1, S2). The

robustness of the association between IVs and exposure was

assessed using the F-value, with IVs possessing an F-value below

10 deemed weak and consequently excluded. Notably, all IVs

selected through the aforementioned screening exhibited F-values

exceeding 10 (Supplementary Tables S1, S2). Subsequently, we

employed five MR methods to scrutinize the causal relationship

between RA and PAP, with the IVWmethod serving as the primary

analytical approach. Concurrently, supplementary methods

including the simple model, weighted model, weighted median,

and MR Egger were utilized to corroborate the robustness of the

findings. Moreover, comprehensive analyses encompassing

heterogeneity, pleiotropy, and sensitivity were conducted.

Heterogeneity among IVs was evaluated using the Cochrane Q-

test, where a significance level of p value < 0.05 indicated the

presence of heterogeneity. To assess horizontal pleiotropy, MR

Egger analysis, including an intercept test, was employed. A p

value > 0.05 signified the absence of pleiotropy. Causal relationships
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were visually depicted through forest and scatter plots, while

sensitivity analysis, employing the leave-one-out method to gauge

the impact of individual SNPs on the results, was performed.

Additionally, heterogeneity was visualized using funnel plots to

provide a comprehensive assessment of the MR analysis.
Definition of PAP, IRP and RA

The MR study utilized GWAS data from the FinnGen research

project, which integrates health and genetic data from the Finnish

Health Registries. The analysis was adjusted for covariates such as

gender, age, genotyping batch, and the first ten genetic principal

components. The PAP in this study is defined using International

Classification of Diseases (ICD) codes: Hospital discharge with

ICD-8: 522; ICD-9: 522; and ICD-10: K04 (14). Inflamed pulp

tissues were extracted from teeth diagnosed with IRP in accordance

with the endodontic diagnostic system of the American Association

of Endodontists. Teeth affected by periodontitis were excluded.

Patients with compromised immune systems or those on

medications known to influence immune response were also

excluded from the study (25, 26). In addition, RA patients were

classified based on the American College of Rheumatology criteria

valid during the sample assessment period (27, 28).
Differential expression analysis

Differential expression analyses were performed between NC

and RA samples, as well as between NC and IRP samples, utilizing

the “limma” package. This analysis aimed to discern genes

exhibiting significant differential expression, employing stringent

criteria of adjusted p value < 0.05 and |log2FC| > 1. Visualization of

these differentially-expressed genes (DEGs) was accomplished

through volcano plots and heatmaps, aiding in the elucidation of

distinct expression patterns between the studied groups.
Enrichment analysis

The “clusterprofiler” package was employed to undertake a

comprehensive functional enrichment analysis of DEGs,

incorporating Gene Ontology (GO), Kyoto Encyclopedia of Genes

and Genomes (KEGG), and Disease Ontology (DO) analyses. Within

the GO analysis, DEGs were categorized into three distinct domains:

biological processes (BP), cellular components (CC), and molecular

functions (MF), thereby providing a holistic view of their functional

implications. KEGG analysis was leveraged to elucidate potential

pathways associated with the DEGs, offering insights into the

biological mechanisms underlying the observed expression changes.

Furthermore, DO enrichment analysis was instrumental in identifying

diseases closely linked to the DEGs, enhancing our understanding of

their pathological relevance. To ensure robust results, stringent

screening criteria were applied, with significance thresholds set at a p

value < 0.05 and a q value < 0.05 for the enrichment analyses.
TABLE 1 The detailed information of included datasets in the study.

Datasets Platform Diseases
Cases:
Controls

ebi-a-GCST90018910 – RA 8255: 409001

finn-b-
K11-PULP_PERIAPICAL

– PAP 5354: 195395

GSE55235 GPL96 RA 10: 10

GSE55457 GPL96 RA 10: 13

GSE77298 GPL570 RA 11: 16

GSE77459 GPL17692 IRP 6: 6

GSE92681 GPL16956 IRP 5: 7
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Protein-protein interaction network

The DEGs were utilized as input for constructing a PPI network

via the STRING website (https://cn.string-db.org/), with a

minimum required interaction score set at 0.40. Subsequently,

these interactions were imported into Cytoscape software to

identify potential candidate genes. Initially, the MCODE plug-in

was employed to identify significant modules within the network,

utilizing a cluster score threshold greater than 3. Functional

annotation via KEGG analysis was performed on these modules

to elucidate potential biological functions. Next, three centrality

algorithms (Betweenness, Closeness, and Degree) within the

CytoHubba plug-in were utilized to score the nodes in the PPI

network, aiming to identify the top 20 genes based on their
Frontiers in Immunology 04
importance in network connectivity. The union of genes obtained

through these algorithms constituted the pool of candidate

important genes for further analysis.
Machine learning algorithms

Three ML algorithms, namely the least absolute shrinkage and

selection operator (LASSO), support vector machine - recursive

feature elimination (SVM-RFE), and random forest (RF), were

harnessed to uncover hub genes associated with IRP. LASSO

regression, grounded in the principles of linear regression, leverages

gene expression profiles to pinpoint pivotal genes. Dimensionality

reduction was achieved through the “glmnet” package, employing the
FIGURE 1

The flowchart of the study.
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smallest lambda value as the threshold. SVM-RFE ranks features based

on their scores obtained from training the model, iteratively

eliminating features with the lowest scores until the desired number

of features is reached, aligning with the maximummargin principle of

SVM. In our investigation, SVM-RFE was implemented using the

“e1071” package. RF, recognized for its adeptness in sifting through

extensive datasets to identify the gene set with minimal error rate, was

employed to accurately identify potential disease biomarkers.

Candidate genes were scrutinized using the “randomForest”

package, and the top 10 genes with relative importance scores were

designated as key features. Subsequently, an intersection operation was

conducted on the selected genes identified by the three algorithms to

procure stable and comprehensive diagnostic markers for IRP (29).
Immune infiltration evaluation

Leveraging the expression profiles, we examined the relative

infiltration levels of 23 immune cell types employing the ssGSEA

algorithm, implemented via the “GSVA” package. Disparities in

immune infiltration between NC and disease samples were

scrutinized through heatmaps and violin plots. In order to delve

into the influence of diagnostic markers on immune infiltration

regulation in IRP and RA, correlation analysis was conducted

between diagnostic markers and immune cells.
Regulatory network construction

To delve deeper into the potential roles of three hub diagnostic

genes, we constructed an extensive array of regulatory networks,

encompassing miRNA-gene, transcription factor (TF)-gene,

chemical-gene, disease-gene, and RNA binding protein (RBP)-gene

networks. Initially, we employed the miRDB and miRWalk databases,

imposing a screening condition of a minimum of 20 pairings, to

identify miRNAs regulating the hub genes. MiRNAs intersecting

between the two databases were deemed to possess regulatory

potential over the hub genes. Subsequently, we utilized the hTFtarget

and ChipBase databases to identify common TFs and construct a

regulatory network for TF-mRNA interactions. For predicting

potential drugs targeting the hub genes, we leveraged the CTD

database with an interaction count ≥ 2. Additionally, to pinpoint

diseases closely associated with the hub genes, we utilized the

DisGeNET and MalaCards databases to identify common diseases

and construct disease networks. Furthermore, to predict the potential

binding of RBPs to hub mRNAs, we explored the ENCORI database,

setting the screening criteria to CLIP data from ≥ 1 dataset, thereby

identifying RBPs with binding potential to hub genes. The

aforementioned five regulatory relationships were integrated into

Cytoscape software for network visualization and construction.
Statistical analysis

TheWilcoxon test was utilized to compare continuous variables

between the two groups, assessing differences in a robust and non-
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parametric manner. To gauge the diagnostic efficacy of markers, the

area under the curve (AUC) of the receiver operating characteristic

(ROC) was computed. Spearman’s test was employed to scrutinize

correlations between continuous variables, offering insights into

potential associations. All analyses and visualizations were

performed either using R software or via an online platform,

ensuring comprehensive and accessible data exploration. A

significance threshold of p value < 0.05 was applied for

statistical inference.
Results

Mendelian randomization analysis

Our forward MR analysis delving into the causal relationship

between RA and PAP yielded noteworthy findings. We uncovered a

significant correlation, demonstrating that RA was associated with

an increased risk of PAP (Figures 2A, B). Employing the IVW

method, our investigation revealed a causal link between RA and

PAP (OR = 1.1284, 95% CI 1.0674-1.1929, p < 0.001). This outcome

was corroborated by both the Weighted Median method (OR =

1.1086, 95% CI 1.0128-1.2135, p = 0.0254) and the Weighted Mode

method (OR = 1.1201, 95% CI 1.0269-1.2217, p = 0.0132)

(Figure 2E). Notably, Cochrane’s Q-test indicated no significant

heterogeneity among the included IVs (p > 0.05). Further support

for our findings emerged from MR Egger regression (intercept t =

0.0039, p = 0.536), which confirmed the absence of horizontal

pleiotropy (Table 2). Additionally, sensitivity analysis demonstrated

the robustness of our results, with no significant alterations upon

exclusion of any single SNP, thus enhancing the credibility and

stability of our MR findings (Figure 2C). Furthermore, the funnel

plot exhibited symmetrical distribution around both sides of the

IVW and MR Egger analyses (Figure 2D).

In our MR analysis exploring the causal relationship between

PAP and RA, we did not identify a significant correlation between

PAP and RA (Figures 2F, G). Utilizing the IVW method, we

discerned a causal association between PAP and RA (OR =

1.1436, 95% CI 1.0273-1.2732, p = 0.0142), which was supported

by the MR Egger method (OR = 1.4028, 95% CI 1.0529-1.8691, p =

0.0411) (Figure 2J). However, the effect values of simple mode and

weighted mode went in the opposite direction. Cochrane’s Q-test

revealed no significant heterogeneity among the incorporated IVs

(p > 0.05). Additionally, MR Egger regression (intercept t = -0.031

p = 0.163) lent further credence to our findings by indicating the

absence of horizontal pleiotropy (Table 2). Consistent with our

earlier analysis, sensitivity testing affirmed the reliability of our

results, with no notable changes upon exclusion of any single SNP

(Figure 2H). Moreover, the funnel plot exhibited symmetrical

distribution around both sides of the IVW analysis (Figure 2I).
Differential expression analysis

Utilizing two distinct datasets, GSE77459 and GSE92681, a

cohort comprising 24 samples including both NC and IRP
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samples underwent a rigorous normalization process coupled with

batch correction. Visual representation through box plots vividly

illustrated the discernible disparities pre- and post-batch correction,

affirming the successful mitigation of batch effects (Figure 3A).
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Employing the “limma” package for differential analysis, we

identified a collective of 332 DEGs, with 281 exhibiting

upregulation in IRP samples and 51 displaying downregulation

(Figures 3B, C). Similarly, our investigation encompassed three
FIGURE 2

Mendelian randomization revealed the bidirectional causal relationship between RA and PAP. (A) Scatter plot of SNPs related to RA and the risk of
PAP. (B) Forest plot of SNPs associated with RA and the risk of PAP. (C) Leave‐one‐out of SNPs associated with RA and the risk of PAP. (D) Funnel
plot for RA on PAP. (E) Associations of genetically predicted RA and the risk of PAP. (F) Scatter plot of SNPs related to PAP and the risk of RA.
(G) Forest plot of SNPs associated with PAP and the risk of RA. (H) Leave‐one‐out of SNPs associated with PAP and the risk of RA. (I) Funnel plot for
PAP on RA. (J) Associations of genetically predicted PAP and the risk of RA. RA, Rheumatoid arthritis; PAP, Pulp and periapical disease; SNP, Single
nucleotide polymorphism.
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datasets, namely GSE55235, GSE55457, and GSE77298,

incorporating a combined total of 66 samples inclusive of both

NC and RA samples, which underwent analogous batch correction

procedures. Visual scrutiny via box plots unveiled the successful

alleviation of batch effects subsequent to correction (Figure 3D).

Subsequent differential analysis, supplemented by volcano and

heatmap, facilitated the identification of 505 genes exhibiting

aberrant expression in RA samples. Of these, 344 genes were

upregulated while 161 genes were downregulated in RA

(Figures 3E, F). Consequently, we plan to pursue a comparative

analysis by intersecting the DEGs identified in both diseases to

glean further insights.
Enrichment analysis

Through the intersection of DEGs, a comprehensive set of 84

genes was identified, showcasing aberrant expression patterns in

both diseases (Figure 4A). Functional enrichment analysis

elucidated their involvement primarily in processes pertinent to

leukocytes or lymphocytes, including but not limited to leukocyte

migration, leukocyte-mediated immunity, and mononuclear cell

differentiation. Furthermore, CC analysis unveiled associations with

endocytic vesicles or MHC protein complexes. Notably, MF analysis

underscored significant enrichment of DEGs in immune-related

binding activities (Figure 4B). KEGG pathway analysis offered

insights into the intricate involvement of these DEGs in immune-

related pathways such as cytokine signaling, chemokine signaling,

IL-17 signaling, as well as differentiation pathways of T-helper cell

subsets (Th1, Th2, and Th17). Additionally, these pathways were

linked to immune-related disorders including rheumatoid arthritis,

inflammatory bowel disease, asthma, type 1 diabetes, and

autoimmune thyroid disease (Figure 4C). Furthermore, DO

analysis corroborated the association of DEGs not only with

bacterial infectious diseases but also with a spectrum of immune-

related disorders (Figure 4D). Collectively, these findings suggest a

plausible correlation between the co-occurrence of the two diseases

and the infiltration of immune cells such as leukocytes, as well as the

dysregulation of immune-related pathways.
Hub genes identification

We employed the identified DEGs to construct a PPI network

via the STRING website. The resulting network exhibited a

substantial complexity, comprising 84 nodes interconnected by
Frontiers in Immunology 07
399 edges, indicative of extensive protein interactions (Figure 4E).

Subsequent analysis utilizing the MCODE plug-in allowed us to

discern two significant modules within the network. Module 1

prominently featured associations with hematopoietic cell lineage,

Th17 cell differentiation, cytokine-cytokine receptor interaction,

and primary immunodeficiency pathways. Conversely, Module 2

showcased connections with IL-17, TNF, and chemokine signaling

pathways, alongside pathways related to lipid metabolism and

atherosclerosis (Figures 4F, G).

Following this, we applied three distinct topological network

algorithms sourced from the CytoHubba plug-in to generate a

subnetwork composed of the top 20 genes identified by each

algorithm (Figure 5A). Through the amalgamation of these

outcomes, a total of 16 genes emerged, appearing consistently in

the output of all three algorithms (Figure 5B). Subsequently, these

16 genes underwent hub gene identification employing three diverse

ML algorithms. Utilizing LASSO regression, we pinpointed 5 core

genes (Figure 5C), while SVM-RFE revealed 8 core genes with an

impressive accuracy rate of 0.95 and an error rate of 0.05

(Figure 5D). Additionally, employing the RF method, the top 10

genes based on importance were designated as core genes

(Figure 5E). Upon scrutinizing the outcomes, we observed an

intersection highlighting three hub genes (HLA-DRA, ITGAX,

and PTPRC) in the context of IRP (Figure 5F). Subsequent

correlation analysis of these three genes in both IRP and RA

samples unveiled significant associations, particularly notable

between HLA-DRA and PTPRC (Figure 5G). A comprehensive

evaluation of the diagnostic potential of these three hub genes

across IRP and RA samples was conducted. Visual examination

revealed markedly elevated expression levels of the three genes in

both IRP and RA groups, with AUC values exceeding 0.9 in IRP and

surpassing 0.8 in RA (Figures 5H, I).
Immune infiltration

Prior studies have elucidated the pivotal roles of HLA-DRA,

ITGAX, and PTPRC in orchestrating immune cell infiltration.

Building upon this foundation, our investigation aimed to

elucidate the intricate interplay between these genes and immune

cells. Initially, we conducted a comparative analysis of the

infiltration levels of 23 distinct immune cell types between NC

and IRP samples, as well as between NC and RA samples,

employing ssGSEA (Figures 6A, C). Notably, the violin plots

unveiled significantly augmented levels of nearly all immune cell

types in both IRP and RA samples relative to NC samples
TABLE 2 Results of sensitivity analyses.

Exposure Outcome
Heterogeneity (MR Egger) Heterogeneity (IVW) Horizontal pleiotropy

Q Q_pval Q Q_pval Egger intercept se pval

RA PAP 58.45 0.3498 58.87 0.3711 0.0039 0.0062 0.536

PAP RA 17.25 0.1006 20.75 0.05412 -0.031 0.021 0.163
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(Figures 6B, D). Subsequent correlation analysis unveiled positive

associations between HLA-DRA, ITGAX, PTPRC, and various

immune cell subsets including activated dendritic cells,

macrophages, MDSCs, natural killer T cells, and regulatory T

cells, observed consistently in both IRP and RA samples

(Figures 6E, F).
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Regulatory network

Based on the pivotal roles of three hub genes, we embarked on

predicting potential regulatory elements including miRNAs, TFs,

chemicals, diseases, and RBPs associations to delineate the

multifaceted regulatory landscape. Initially, leveraging the
FIGURE 3

Identification of DEGs in IRP and RA. (A) Box plots of two IRP datasets before and after batch correction. (B) Volcano plot of the DEGs in IRP.
(C) Heatmap of the top 50 up-regulated and down-regulated genes in IRP. (D) Box plots of three RA datasets before and after batch correction.
(E) Volcano plot of the DEGs in RA. (F) Heatmap of the top 50 up-regulated and down-regulated genes in RA. DEGs, Differentially-expressed genes;
IRP, Irreversible pulpitis.
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miRDB and miRWalk databases, we forecasted a total of 33

miRNAs with no overlapping candidates. Subsequently, we

constructed a comprehensive miRNA-mRNA regulatory

network (Figure 7A). Expanding our analysis, we identified 56

putative TFs using the hTFtarget and ChipBase databases. This led

to the construction of a TF-mRNA network comprising 59 nodes
Frontiers in Immunology 09
and 76 edges. Notably, key regulators such as POLR2A, RUNX3,

and EP300 were identified as joint regulators of biomarkers,

thereby holding substantial promise (Figure 7B). Moving

forward, we employed the CTD database to predict 61

chemicals, assembling a regulatory network comprising 79

edges. Noteworthy chemicals such as Acetaminophen, Benzo(a)
FIGURE 4

Enrichment analyses based on the shared DEGs. (A) Intersecting DEGs obtained by IRP group and RA group. (B) GO analysis according to the DEGs.
(C) KEGG analysis revealed the pathways related to the DEGs. (D) DO analysis revealed the diseases related to the DEGs. (E) Construction of a PPI
network using the proteins encoded by the 84 DEGs. (F) Identification of two important modules using the MCODE plug-in. (G) KEGG analyses for
the two modules. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DO, Disease Ontology; PPI, Protein-protein interaction.
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pyrene, and Lipopolysaccharides were found to target all three

genes, accentuating their potential relevance (Figure 7C).

Subsequent disease prediction utilizing the DisGeNET and

MalaCards databases unveiled a complex disease-gene network
Frontiers in Immunology 10
comprising 3 biomarkers, 58 diseases, and 77 edges. Diseases such

as rheumatoid arthritis, ulcerative colitis, asthma, and Alzheimer’s

disease emerged as co-occurring ailments potentially correlated

with IRP and RA (Figure 7D). Finally, leveraging the ENCORI
FIGURE 5

Identification of three hub genes in IRP. (A) Three algorithms (Betweenness, Closeness, and Degree) within the CytoHubba plug-in presented the top
20 genes in the PPI network. (B) Intersecting the key genes obtained by the above three algorithms. (C) Identification the key genes among the 16
genes using LASSO regression. (D) Identification the key genes using SVM-RFE. (E) Identification the key genes using RF. (F) Obtaining the three hub
genes using the three ML methods. (G) The correlation among the three genes in IRP and RA, respectively. (H) Verification of the differential
expression of the hub genes in IRP and RA groups. (I) Verification of the diagnostic value of the hub genes using the ROC curves. LASSO, least
absolute shrinkage and selection operator; SVM-RFE, Support vector machine-recursive feature elimination; RF, Random forest; ML, Machine
learning; ROC, Receiver operating characteristic. P***<0.001.
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database, we forecasted RBPs binding to biomarkers, resulting in a

regulatory network featuring ITGAX, PTPRC, 26 RBPs, and 31

edges. While the network did not predict RBP binding to HLA-

DRA, several RBPs including IGF2BP1, IGF2BP3, RBM4, RBM39,

and ELAVL1 exhibited potential simultaneous binding to both

ITGAX and PTPRC (Figure 7E).
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Discussion

For the first time, we analyzed the causal relationship between

RA and PAP using the two-sample bidirectional MR method. Our

analysis revealed that RA significantly increased the risk of PAP

(OR = 1.1284), aligning with previous findings. Julia et al.
FIGURE 6

Immune infiltration analysis of IRP and RA groups. Comparison of the fraction of 23 immune cells between NC and IRP samples using the heatmap
(A), and the violin plot (B). Comparison of the fraction of 23 immune cells between NC and RA samples using the heatmap (C), and the violin plot
(D). The relationship between the hub genes and immune cell infiltration in IRP (E) and RA (F), respectively. NC, Negative control. P*<0.05,
P**<0.01; P***<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1440753
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2024.1440753
conducted a systematic review assessing the risk of developing

periapical lesions in patients with autoimmune diseases and

found that periapical lesions were associated with three

autoimmune diseases: type 1 diabetes, RA, and inflammatory

bowel disease (30). Previous studies have also demonstrated that

the prevalence of AP in patients with autoimmune diseases was

significantly higher than in control groups, indicating that
Frontiers in Immunology 12
autoimmune diseases considerably increase the risk of AP (31,

32). In a cross-sectional study involving 96 participants (48 RA

patients and 48 healthy controls), 45 out of 1026 teeth in the RA

group had AP, compared to 21 out of 1025 teeth in the control

group. The prevalence of AP in the RA group, with at least one

affected tooth, was significantly higher (47.9%) than in the control

group (29.7%), with an OR of 3.087. This indicated that RA patients
FIGURE 7

Five regulatory network of the three hub genes. (A) Visualization of the miRNA-mRNA network. (B) Visualization of the TF-mRNA network. (C)
Visualization of the chemical-mRNA network. (D) Visualization of the disease-mRNA network. (E) Visualization of the RBP-mRNA network. TF,
Transcription factor; RBP, RNA-binding protein.
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were more likely to develop AP compared to control patients (17).

When pulpitis extends through the apical foramen, it triggers a

series of inflammatory reactions, attracting inflammatory chemical

mediators that cause periapical lesions and can eventually lead to

periapical abscess, periapical granuloma and periapical cyst (33).

Another retrospective study found that the prevalence of periapical

abscesses in RA patients was 1.53%, compared to 0.51% in control

patients, with an OR of 2.60. Moreover, the incidence of periapical

abscesses in patients treated with Etanercept (a TNF-a inhibitor)

was significantly lower than in those treated with methotrexate or

salazopyridine, suggesting that TNF-a inhibitors can reduce the

incidence of periapical abscesses in RA patients (34). However, our

results did not confirm that PAP increases the risk of RA, and no

previous studies have explored this causal relationship. It was well

established that the progression of autoimmune diseases was

significantly influenced by systemic inflammatory conditions (35).

Periodontal disease has been reported to be associated with the risk

of RA. The periodontal pathogen Porphyromonas gingivalis

produced peptidyl arginine deaminase, which exacerbated RA

pathology. Furthermore, periodontal pathogen DNA has been

detected in the synovial tissue of RA patients with periodontitis,

suggesting that periodontal bacteria were involved in RA (36). The

similar pathogenesis of PAP and periodontitis suggested that

infection control of PAP was as important as periodontitis in

maintaining general health (18). However, more research was

needed to understand the effect of PAP on RA fully.

Secondly, we analyzed the common DEGs and regulatory

pathways associated with IRP and RA using multiple public

datasets. Our analysis revealed that these two diseases share 84

DEGs, predominantly involved in immune and inflammatory

pathways, including cytokine signaling, chemokine signaling, IL-

17 signaling, Th17 cell differentiation, and TNF signaling pathways.

Previous studies have reported similar distributions of cytokines,

such as IL-1, IL-6, IL-12, IL-17, and TNF-a, in the pathological

changes of RA and AP (37–41). The similar pathobiology of these

diseases may explain the significant link between them. Moreover,

as early as 1975, researchers identified free plasma cells producing

rheumatoid factors in periapical lesions in 6% of rheumatoid

patients and 4% of control patients (15). In the SKG mouse

model, oral infection with Porphyromonas gingivalis induced

Th17 cells to invade the joint cavity, and the migration of

polymorphonuclear neutrophils and fibroblasts induced by IL-17

suggested a potential association between oral bacteria and RA. The

inhibition of synovial cell apoptosis was considered a pathological

feature of RA. A significant number of apoptotic cells were detected

in SKG mice with PAP compared to similar lesions in normal mice,

indicating that the phagocytic inhibitory feature of RA may also

occur in oral lesions. Dysphagocytosis in RA affected infiltrating

cells in PAP (18).

Using CytoHubba and machine learning methods, we identified

three hub genes in IRP: HLA-DRA, ITGAX, and PTPRC. These

genes were significantly overexpressed in both IRP and RA, and

exhibited a strong correlation with each other. The ROC value for

these genes was higher than 0.9 in IRP and higher than 0.7 in RA,

indicating their high diagnostic value. HLA-DR, of which HLA-
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DRA is a subunit, is known to be involved in inhibiting tumor

growth and plays a crucial role in human cancer (42). HLA-DRA

was overexpressed in hepatocellular carcinoma, colorectal cancer,

and cervical cancer, but was decreased in breast cancer. It was

related to the tumor microenvironment and can predict

immunotherapy reactivity (43). Liu et al. used bioinformatics

methods to identify nine genes, including HLA-DRA, to create a

model that can effectively distinguish RA from normal samples (44).

In Sjögren’s syndrome, HLA-DRA was significantly upregulated in

salivary gland epithelial cells. However, there have been few studies

on HLA-DRA in PAP (45). ITGAX-positive cells have been

detected in the synovial tissue of RA joints, indicating its

involvement in RA inflammation. ITGAX also participated in the

inflammation associated with asthma (46, 47). Liu et al. confirmed

the importance of ITGAX as a diagnostic marker in IRP through

bioinformatics and RT-PCR methods, and found that ITGAX was

expressed more in inflamed pulp compared to normal pulp (48).

PTPRC encodes protein tyrosine phosphatase, a signaling molecule

that regulates various cellular processes and plays a key role in the

immune system. PTPRC negatively regulated cytokine receptor

signaling by inhibiting the JAK signaling pathway (49). The

expression level of PTPRC was low in normal pulp tissues but

high in pulpitis tissues (50, 51). Additionally, Cui et al. found that

the RA risk allele PTPRC was associated with response to anti-TNF

a therapy (52). PTPRC rs10919563 was a proven RA susceptibility

locus, and the RA risk alleles were associated with an improved

response to treatment. PTPRC has become the most replicated

genetic biomarker for TNFi response (53). MR analysis revealed

that RA significantly increases the risk of PAP and uncovered a

correlation between RA and IRP through bioinformatics analysis.

This finding suggests that the prevention and early treatment of RA

could reduce the risk of PAP and provide valuable guidance for

managing patients with both RA and PAP. Thus, early diagnosis

and treatment of RA are critical, particularly since patients with

autoimmune diseases often require lifelong immunotherapy, which

can be associated with severe adverse reactions and side effects. In

recent years, RA treatment has evolved, with biological disease-

modifying anti-rheumatic drugs (DMARDs) such as TNF-a
inhibitors, CTLA-4 inhibitors, and small molecule targeted

DMARDs being recommended for patients who do not respond

well to traditional DMARDs (54). HLA-DRA has emerged as a key

target in immunotherapy, previously associated with an inflamed

TME in tumors and various non-tumor diseases, including

COVID-19, osteoarthritis, and dry eye syndrome (43, 55–57).

Moreover, HLA-DRA has been identified as a prospective

biomarker for clinical outcomes (58, 59), and its targeting has

been widely adopted in the immunotherapy of various tumors (43,

60). Therefore, targeting HLA-DRA in RA could represent a novel

therapeutic approach.

In both RA and pulpitis, immune cell infiltration is a prominent

feature, particularly the recruitment of myeloid cells such as

macrophages and dendritic cells. PTPRC, encoding CD45, is a

protein expressed on all white blood cells and plays a critical role in

immune cell signaling. Its expression confirms the extensive

presence of immune cells in these diseases. CD45 influences the
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recognition and activation of immune cells by regulating T cell

receptor and B cell receptor signaling (61). Given its central role in

immune cell signaling, CD45 has emerged as a potential target for

immunotherapy, with biological agents targeting CD45 being

investigated to modulate immune responses (62). The protein

CD11c, encoded by ITGAX, is an integrin a X chain expressed

on myeloid cells (63). In RA, CD11c expression is noted in myeloid

cells within the synovium, where it plays a role in the inflammatory

response and antigen presentation (64, 65). The relationship

between MHC-II and myeloid cells is crucial in both RA and

pulp periapical diseases. MHC-II molecules, expressed on these

cell types, are essential for the activation of CD4+ T cells, which are

key players in anti-tumor immunity and autoimmune diseases (66).

In RA, macrophages and dendritic cells within the synovium

express MHC-II and are actively involved in antigen presentation

(67). These findings suggest that both diseases involve increased

recruitment of myeloid cells, a hallmark of Th17 signaling (68). The

Th17 signaling pathway is closely associated with the initiation and

progression of various inflammatory and autoimmune diseases

(69). In RA patients, there is an increase in Th17 cells and the

Th17/Treg ratio, along with a significant rise in CD11c+ dendritic

cells, which correlates positively with the Th17/Treg ratio (70). Xu

et al. found that in sepsis survivors, HLA-DRA levels gradually

increased, and the Th17 levels were significantly higher compared

to non-survivors (71).

In summary, this study was the first to analyze the causal

relationship between RA and PAP using the MR method, finding

that RA can significantly increase the risk of PAP. Additionally, we

explored and identified common DEGs and regulatory pathways

between RA and IRP. We identified hub genes shared between the

two diseases and constructed multiple regulatory networks based on

these hub genes. The genes HLA-DRA, ITGAX, and PTPRC may

serve as potential biomarkers for RA and IRP, highlighting their

association with both conditions. However, this study has several

limitations. Firstly, the MR findings were primarily based on

European populations, and further research was needed to

determine their applicability to other populations. Secondly, while

the MR-Egger and IVW methods suggested the possibility of PAP

increasing the risk of RA, there was a lack of evidence from other

methods, and large-scale retrospective or cohort studies were

insufficient. Future single-center retrospective studies could

explore this reverse causality in greater detail. Thirdly, although

we used reasonable screening methods to explore the hub genes of

RA and IRP, the difficulty in obtaining IRP pulp samples and the

lack of publicly available datasets in the GEO, necessitate future

collection of blood or tissue samples from patients to verify the

expression and potential functions of these hub genes.
Conclusion

This study confirmed that RA can significantly increase the risk

of PAP by MR method, but the effect of PAP on RA risk was not
Frontiers in Immunology 14
clear. At the same time, public datasets were used to screen out the

shared hub genes HLA-DRA, ITGAX and PTPRC of RA and IRP,

which were up-regulated in both diseases and showed excellent

diagnostic capabilities.
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